1
|
Toy L, Huber ME, Lee M, Bartolomé AA, Ortiz Zacarías NV, Nasser S, Scholl S, Zlotos DP, Mandour YM, Heitman LH, Szpakowska M, Chevigné A, Schiedel M. Fluorophore-Labeled Pyrrolones Targeting the Intracellular Allosteric Binding Site of the Chemokine Receptor CCR1. ACS Pharmacol Transl Sci 2024; 7:2080-2092. [PMID: 39022357 PMCID: PMC11249626 DOI: 10.1021/acsptsci.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/18/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
In this study, we describe the structure-based development of the first fluorescent ligands targeting the intracellular allosteric binding site (IABS) of the CC chemokine receptor type 1 (CCR1), a G protein-coupled receptor (GPCR) that has been pursued as a drug target in inflammation and immune diseases. Starting from previously reported intracellular allosteric modulators of CCR1, tetramethylrhodamine (TAMRA)-labeled ligands were designed, synthesized, and tested for their suitability as fluorescent tracers to probe binding to the IABS of CCR1. In the course of these studies, we developed LT166 (12) as a highly versatile fluorescent CCR1 ligand, enabling cell-free as well as cellular NanoBRET-based binding studies in a nonradioactive and high-throughput manner. Besides the detection of intracellular allosteric ligands by direct competition with 12, we were also able to monitor the binding of extracellular antagonists due to their positive cooperative binding with 12. Thereby, we provide a straightforward and nonradioactive method to easily distinguish between ligands binding to the IABS of CCR1 and extracellular negative modulators. Further, we applied 12 for the identification of novel chemotypes for intracellular CCR1 inhibition that feature high binding selectivity for CCR1 over CCR2. For one of the newly identified intracellular CCR1 ligands (i.e., 23), we were able to show CCR1 over CCR2 selectivity also on a functional level and demonstrated that this compound inhibits basal β-arrestin recruitment to CCR1, thereby acting as an inverse agonist. Thus, our fluorescent CCR1 ligand 12 represents a highly promising tool for future studies of CCR1-targeted pharmacology and drug discovery.
Collapse
Affiliation(s)
- Lara Toy
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen 91058, Germany
| | - Max E. Huber
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen 91058, Germany
| | - Minhee Lee
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Ana Alonso Bartolomé
- Immuno-Pharmacology
and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Rue Henri Koch 29, Esch-sur-Alzette L-4354, Luxembourg
- Faculty
of Science, Technology and Medicine, University
of Luxembourg, 2 Avenue
de l’Université, Esch-sur-Alzette L-4365, Luxembourg
| | - Natalia V. Ortiz Zacarías
- Leiden
Academic Centre for Drug Research (LACDR), Division of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - Sherif Nasser
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, the German University in Cairo, New Cairo City 11835, Cairo, Egypt
| | - Stephan Scholl
- Institute
for Chemical and Thermal Process Engineering (ICTV), Technische Universität Braunschweig, Langer Kamp 7, Braunschweig 38106, Germany
| | - Darius P. Zlotos
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, the German University in Cairo, New Cairo City 11835, Cairo, Egypt
| | - Yasmine M. Mandour
- School
of Life and Medical Sciences, University
of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11578, Egypt
| | - Laura H. Heitman
- Leiden
Academic Centre for Drug Research (LACDR), Division of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
- Oncode
Institute, Leiden University, Leiden 2333 CC, Netherlands
| | - Martyna Szpakowska
- Immuno-Pharmacology
and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Rue Henri Koch 29, Esch-sur-Alzette L-4354, Luxembourg
| | - Andy Chevigné
- Immuno-Pharmacology
and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Rue Henri Koch 29, Esch-sur-Alzette L-4354, Luxembourg
| | - Matthias Schiedel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen 91058, Germany
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig 38106, Germany
| |
Collapse
|
2
|
Jeyasri R, Muthuramalingam P, Adarshan S, Shin H, Ramesh M. Assessing the Anti-inflammatory Effects of Bacopa-Derived Bioactive Compounds Using Network Pharmacology and In Vitro Studies. ACS OMEGA 2022; 7:40344-40354. [PMID: 36385888 PMCID: PMC9647831 DOI: 10.1021/acsomega.2c05318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Bacopa monnieri is reported as a potent Indian medicinal plant that possesses numerous pharmacological activities due to the presence of various bioactive compounds. These pharmacological activities were used in the ancient medicine system to cure inflammatory conditions. Bacopa has the ability to reduce acute pain and inflammation by inhibiting the enzyme cyclo-oxygenase-2 (COX-2) and reducing COX-2-arbitrated prostanoid mediators. Moreover, the anti-inflammatory property may also be associated with the neuroprotective activity of Bacopa. Considering this importance, the current pilot study focused on the anti-inflammatory potential of various phytocompounds of bacopa and their interaction with inflammation responsible genes such as COX2, iNOS, LOX, STAT3, CCR1, and MMP9 through pharmacology analysis of its systems. Docking results revealed that, quercetin (QR) showed significant binding energies with inflammatory genes. Hence, we selected QR as a potential phytocompound for further in vitro experiments. This existing study aimed to evaluate the efficacy of QR as a potent anti-inflammatory compound against lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The in vitro analysis concludes that QR effectively reduces the production of nitric oxide (NO) in LPS-induced RAW264.7 cells and downregulates the expression of COX-2 and iNOS genes due to the inhibitory potential of QR on LPS-stimulated NO production.
Collapse
Affiliation(s)
- Rajendran Jeyasri
- Department
of Biotechnology, Science Campus, Alagappa
University, Karaikudi, 630 003, Tamil Nadu, India
| | - Pandiyan Muthuramalingam
- Department
of Biotechnology, Science Campus, Alagappa
University, Karaikudi, 630 003, Tamil Nadu, India
- Division
of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725, Korea
- Agri-Food
Bio Convergence Institute, Gyeongsang National
University, Jinju, 52725, Korea
| | - Sivakumar Adarshan
- Department
of Biotechnology, Science Campus, Alagappa
University, Karaikudi, 630 003, Tamil Nadu, India
| | - Hyunsuk Shin
- Division
of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725, Korea
- Agri-Food
Bio Convergence Institute, Gyeongsang National
University, Jinju, 52725, Korea
| | - Manikandan Ramesh
- Department
of Biotechnology, Science Campus, Alagappa
University, Karaikudi, 630 003, Tamil Nadu, India
| |
Collapse
|
3
|
Gilchrist A, Echeverria SL. Targeting Chemokine Receptor CCR1 as a Potential Therapeutic Approach for Multiple Myeloma. Front Endocrinol (Lausanne) 2022; 13:846310. [PMID: 35399952 PMCID: PMC8991687 DOI: 10.3389/fendo.2022.846310] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple myeloma is an incurable plasma B-cell malignancy with 5-year survival rates approximately 10-30% lower than other hematologic cancers. Treatment options include combination chemotherapy followed by autologous stem cell transplantation. However, not all patients are eligible for autologous stem cell transplantation, and current pharmacological agents are limited in their ability to reduce tumor burden and extend multiple myeloma remission times. The "chemokine network" is comprised of chemokines and their cognate receptors, and is a critical component of the normal bone microenvironment as well as the tumor microenvironment of multiple myeloma. Antagonists targeting chemokine-receptor 1 (CCR1) may provide a novel approach for treating multiple myeloma. In vitro CCR1 antagonists display a high degree of specificity, and in some cases signaling bias. In vivo studies have shown they can reduce tumor burden, minimize osteolytic bone damage, deter metastasis, and limit disease progression in multiple myeloma models. While multiple CCR1 antagonists have entered the drug pipeline, none have entered clinical trials for treatment of multiple myeloma. This review will discuss whether current CCR1 antagonists are a viable treatment option for multiple myeloma, and studies aimed at identifying which CCR1 antagonist(s) are most appropriate for this disease.
Collapse
Affiliation(s)
- Annette Gilchrist
- College of Pharmacy-Downers Grove, Department of Pharmaceutical Sciences, Midwestern University, Downers Grove, IL, United States
- *Correspondence: Annette Gilchrist,
| | | |
Collapse
|
4
|
Nucera F, Lo Bello F, Shen SS, Ruggeri P, Coppolino I, Di Stefano A, Stellato C, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of Atypical Chemokines and Chemokine Receptors Pathways in the Pathogenesis of COPD. Curr Med Chem 2021; 28:2577-2653. [PMID: 32819230 DOI: 10.2174/0929867327999200819145327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung generally resulting from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors (such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end products (RAGE) or toll-like receptors (TLRs)) in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in preclinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes because there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential antiinflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of atypical chemokines in COPD pathophysiology and thereby improve COPD management.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Federica Lo Bello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Sj S Shen
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Paolo Ruggeri
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Irene Coppolino
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Antonino Di Stefano
- Division of Pneumology, Cyto- Immunopathology Laboratory of the Cardio-Respiratory System, Clinical Scientific Institutes Maugeri IRCCS, Veruno, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Phil M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Gaetano Caramori
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| |
Collapse
|
5
|
He P, Zhou W, Liu M, Chen Y. Recent Advances of Small Molecular Regulators Targeting G Protein- Coupled Receptors Family for Oncology Immunotherapy. Curr Top Med Chem 2019; 19:1464-1483. [PMID: 31264549 DOI: 10.2174/1568026619666190628115644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022]
Abstract
The great clinical success of chimeric antigen receptor T cell (CAR-T) and PD-1/PDL-1 inhibitor therapies suggests the drawing of a cancer immunotherapy age. However, a considerable proportion of cancer patients currently receive little benefit from these treatment modalities, indicating that multiple immunosuppressive mechanisms exist in the tumor microenvironment. In this review, we mainly discuss recent advances in small molecular regulators targeting G Protein-Coupled Receptors (GPCRs) that are associated with oncology immunomodulation, including chemokine receptors, purinergic receptors, prostaglandin E receptor EP4 and opioid receptors. Moreover, we outline how they affect tumor immunity and neoplasia by regulating immune cell recruitment and modulating tumor stromal cell biology. We also summarize the data from recent clinical advances in small molecular regulators targeting these GPCRs, in combination with immune checkpoints blockers, such as PD-1/PDL-1 and CTLA4 inhibitors, for cancer treatments.
Collapse
Affiliation(s)
- Peng He
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wenbo Zhou
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
6
|
Harcken C, Kuzmich D, Cook B, Mao C, Disalvo D, Razavi H, Swinamer A, Liu P, Zhang Q, Kukulka A, Skow D, Patel M, Patel M, Fletcher K, Sherry T, Joseph D, Smith D, Canfield M, Souza D, Bogdanffy M, Berg K, Brown M. Identification of novel azaindazole CCR1 antagonist clinical candidates. Bioorg Med Chem Lett 2019; 29:441-448. [PMID: 30595446 DOI: 10.1016/j.bmcl.2018.12.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/08/2018] [Accepted: 12/12/2018] [Indexed: 11/27/2022]
Abstract
Exploring various cyclization strategies, using a submicromolar pyrazole HTS screening hit 6 as a starting point, a novel indazole based CCR1 antagonist core was discovered. This report presents the design and SAR of CCR1 indazole and azaindazole antagonists leading to the identification of three development compounds, including 19e that was advanced to early clinical trials.
Collapse
Affiliation(s)
- Christian Harcken
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA.
| | - Daniel Kuzmich
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Brain Cook
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Can Mao
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Darren Disalvo
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Hossein Razavi
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Alan Swinamer
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Pingrong Liu
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Qiang Zhang
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Alison Kukulka
- Compound Profiling Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Donna Skow
- Compound Profiling Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Mita Patel
- Drug Discovery Support Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Monica Patel
- Drug Discovery Support Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Kimberly Fletcher
- Drug Discovery Support Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Tara Sherry
- Drug Discovery Support Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - David Joseph
- Drug Discovery Support Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Dustin Smith
- Drug Discovery Support Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Melissa Canfield
- Immunology & Respiratory Disease Research Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Donald Souza
- Immunology & Respiratory Disease Research Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Matthew Bogdanffy
- Non-Clinical Drug Safety Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Karen Berg
- Immunology & Respiratory Disease Research Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Maryanne Brown
- Immunology & Respiratory Disease Research Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| |
Collapse
|
7
|
Harcken C, Sarko C, Mao C, Lord J, Raudenbush B, Razavi H, Liu P, Swinamer A, Disalvo D, Lee T, Lin S, Kukulka A, Grbic H, Patel M, Patel M, Fletcher K, Joseph D, White D, Amodeo L, Berg K, Brown M, Thomson DS. Discovery and optimization of pyrazole amides as antagonists of CCR1. Bioorg Med Chem Lett 2019; 29:435-440. [PMID: 30455146 DOI: 10.1016/j.bmcl.2018.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/04/2018] [Accepted: 11/08/2018] [Indexed: 11/25/2022]
Abstract
A HTS screen for CCR1 antagonists afforded a novel sub-micromolar hit 5 containing a pyrazole core. In this report the design, optimization, and SAR of novel CCR1 antagonists based on a pyrazole core motif is presented. Optimization led to the advanced candidate compounds (S)-16q and (S)-16r with 250-fold improved CCR1 potency, excellent off-target selectivity and attractive drug-like properties.
Collapse
Affiliation(s)
- Christian Harcken
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA.
| | - Christopher Sarko
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Can Mao
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - John Lord
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Brian Raudenbush
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Hossein Razavi
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Pingrong Liu
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Alan Swinamer
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Darren Disalvo
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Thomas Lee
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Siqi Lin
- Compound Profiling Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Alison Kukulka
- Compound Profiling Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Heather Grbic
- Drug Discovery Support Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Mita Patel
- Drug Discovery Support Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Monica Patel
- Drug Discovery Support Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Kim Fletcher
- Drug Discovery Support Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - David Joseph
- Drug Discovery Support Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Della White
- Immunology & Respiratory Disease Research Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Laura Amodeo
- Immunology & Respiratory Disease Research Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Karen Berg
- Immunology & Respiratory Disease Research Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Maryanne Brown
- Immunology & Respiratory Disease Research Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - David S Thomson
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| |
Collapse
|
8
|
Genetic Adaptation and Neandertal Admixture Shaped the Immune System of Human Populations. Cell 2016; 167:643-656.e17. [PMID: 27768888 PMCID: PMC5075285 DOI: 10.1016/j.cell.2016.09.024] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/14/2016] [Accepted: 09/15/2016] [Indexed: 12/30/2022]
Abstract
Humans differ in the outcome that follows exposure to life-threatening pathogens, yet the extent of population differences in immune responses and their genetic and evolutionary determinants remain undefined. Here, we characterized, using RNA sequencing, the transcriptional response of primary monocytes from Africans and Europeans to bacterial and viral stimuli-ligands activating Toll-like receptor pathways (TLR1/2, TLR4, and TLR7/8) and influenza virus-and mapped expression quantitative trait loci (eQTLs). We identify numerous cis-eQTLs that contribute to the marked differences in immune responses detected within and between populations and a strong trans-eQTL hotspot at TLR1 that decreases expression of pro-inflammatory genes in Europeans only. We find that immune-responsive regulatory variants are enriched in population-specific signals of natural selection and show that admixture with Neandertals introduced regulatory variants into European genomes, affecting preferentially responses to viral challenges. Together, our study uncovers evolutionarily important determinants of differences in host immune responsiveness between human populations.
Collapse
|
9
|
Modified Vaccinia virus Ankara but not vaccinia virus induces chemokine expression in cells of the monocyte/macrophage lineage. Virol J 2015; 12:21. [PMID: 25889495 PMCID: PMC4349667 DOI: 10.1186/s12985-015-0252-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/29/2015] [Indexed: 12/27/2022] Open
Abstract
Background The orthopoxvirus strain Modified Vaccinia virus Ankara (MVA) rapidly induces innate immune responses. Previously, we demonstrated that CCL2 and CCR1 are important players in MVA induced recruitment of leukocytes to the lung. Alveolar macrophages are sentinel cells in the lung, which are likely amongst the first cells of the immune system to encounter and respond to virus during respiratory infection. Therefore we examined the potential of the murine alveolar macrophage MH-S cell line as a model to study chemokine expression during infection with MVA and vaccinia virus (VACV) strain Western Reserve (WR). Findings MVA but not VACV infected MH-S cells increased the expression of the CXCR2 acting chemokine CXCL2. MH-S cells constitutively produced CCL2 and CCR1 acting chemokines CCL3, CCL5 and CCL9. Consequently, supernatants of mock treated and virus infected MH-S cells induced chemotaxis of murine promyelocyte MPRO cells and human monocytic THP-1 cells at the same level. However, supernatants of MVA infected MH-S cells significantly increased chemotaxis of the CCR2 deficient human monocytic cell line U-937. Chemotaxis of all three cell types was inhibited by J 113863, a CCR1 antagonist. Additionally, we show that MVA but not VACV WR infection of THP-1 cells induces expression of C-C motif and C-X-C motif chemokines and generates a chemotactic activity for monocytes, which was J 113863 sensitive. Conclusions These results extend our previous findings, demonstrating that MVA but not VACV WR induces chemokine production in alveolar macrophages and monocytes, which can induce recruitment of monocytes in a CCR1 dependent manner. Electronic supplementary material The online version of this article (doi:10.1186/s12985-015-0252-1) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Lewis ND, Muthukumarana A, Fogal SE, Corradini L, Stefanopoulos DE, Adusumalli P, Pelletier J, Panzenbeck M, Berg K, Canfield M, Cook BN, Razavi H, Kuzmich D, Anderson S, Allard D, Harrison P, Grimaldi C, Souza D, Harcken C, Fryer RM, Modis LK, Brown ML. CCR1 plays a critical role in modulating pain through hematopoietic and non-hematopoietic cells. PLoS One 2014; 9:e105883. [PMID: 25170619 PMCID: PMC4149507 DOI: 10.1371/journal.pone.0105883] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 07/29/2014] [Indexed: 12/25/2022] Open
Abstract
Inflammation is associated with immune cells infiltrating into the inflammatory site and pain. CC chemokine receptor 1 (CCR1) mediates trafficking of leukocytes to sites of inflammation. However, the contribution of CCR1 to pain is incompletely understood. Here we report an unexpected discovery that CCR1-mediated trafficking of neutrophils and CCR1 activity on non-hematopoietic cells both modulate pain. Using a genetic approach (CCR1−/− animals) and pharmacological inhibition of CCR1 with selective inhibitors, we show significant reductions in pain responses using the acetic acid-induced writhing and complete Freund's adjuvant-induced mechanical hyperalgesia models. Reductions in writhing correlated with reduced trafficking of myeloid cells into the peritoneal cavity. We show that CCR1 is highly expressed on circulating neutrophils and their depletion decreases acetic acid-induced writhing. However, administration of neutrophils into the peritoneal cavity did not enhance acetic acid-induced writhing in wild-type (WT) or CCR1−/− mice. Additionally, selective knockout of CCR1 in either the hematopoietic or non-hematopoietic compartments also reduced writhing. Together these data suggest that CCR1 functions to significantly modulate pain by controlling neutrophil trafficking to the inflammatory site and having an unexpected role on non-hematopoietic cells. As inflammatory diseases are often accompanied with infiltrating immune cells at the inflammatory site and pain, CCR1 antagonism may provide a dual benefit by restricting leukocyte trafficking and reducing pain.
Collapse
Affiliation(s)
- Nuruddeen D. Lewis
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Akalushi Muthukumarana
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Steven E. Fogal
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Laura Corradini
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Dimitria E. Stefanopoulos
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Prathima Adusumalli
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Josephine Pelletier
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Mark Panzenbeck
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Karen Berg
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Melissa Canfield
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Brian N. Cook
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Hossein Razavi
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Daniel Kuzmich
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Shawn Anderson
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Devan Allard
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Paul Harrison
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Christine Grimaldi
- Department of Integrative Toxicology, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Donald Souza
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Christian Harcken
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Ryan M. Fryer
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| | - Louise K. Modis
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
- * E-mail:
| | - Maryanne L. Brown
- Department of Immunology & Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States of America
| |
Collapse
|
11
|
Sahin H, Berres ML, Wasmuth HE. Therapeutic potential of chemokine receptor antagonists for liver disease. Expert Rev Clin Pharmacol 2014; 4:503-13. [DOI: 10.1586/ecp.11.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AEI, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2013; 66:1-79. [PMID: 24218476 DOI: 10.1124/pr.113.007724] [Citation(s) in RCA: 653] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
Collapse
Affiliation(s)
- Francoise Bachelerie
- Chair, Subcommittee on Chemokine Receptors, Nomenclature Committee-International Union of Pharmacology, Bldg. 10, Room 11N113, NIH, Bethesda, MD 20892.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Chemokines represent a class of cytokines that control the migration of leucocytes. The human chemokine system comprises 44 ligands and 21 receptors that have evolved to control leucocyte migration. Although chemokines are an attractive therapeutic target for anti-inflammatory intervention, clinical trials of small molecule receptor antagonists have failed to demonstrate efficacy. One often cited explanation for this is the apparent redundancy within the chemokine system, wherein several ligands bind and activate each receptor. The work of Scholten et al. and Nedjai et al. reported in this issue of the British Journal of Pharmacology demonstrates that this redundancy does not exist at the molecular level and provides a powerful insight into the complex nature of chemokine receptor activation.
Collapse
Affiliation(s)
- Graeme O'Boyle
- Applied Immunobiology Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
14
|
Affiliation(s)
- James Pease
- Leukocyte Biology Section, National Heart and Lung Institute, Faculty of Medicine, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London SW7 2AZ, U.K
| | | |
Collapse
|
15
|
Dairaghi DJ, Oyajobi BO, Gupta A, McCluskey B, Miao S, Powers JP, Seitz LC, Wang Y, Zeng Y, Zhang P, Schall TJ, Jaen JC. CCR1 blockade reduces tumor burden and osteolysis in vivo in a mouse model of myeloma bone disease. Blood 2012; 120:1449-57. [PMID: 22618707 PMCID: PMC3423783 DOI: 10.1182/blood-2011-10-384784] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 05/12/2012] [Indexed: 01/02/2023] Open
Abstract
The chemokine CCL3/MIP-1α is a risk factor in the outcome of multiple myeloma (MM), particularly in the development of osteolytic bone disease. This chemokine, highly overexpressed by MM cells, can signal mainly through 2 receptors, CCR1 and CCR5, only 1 of which (CCR1) is responsive to CCL3 in human and mouse osteoclast precursors. CCR1 activation leads to the formation of osteolytic lesions and facilitates tumor growth. Here we show that formation of mature osteoclasts is blocked by the highly potent and selective CCR1 antagonist CCX721, an analog of the clinical compound CCX354. We also show that doses of CCX721 selected to completely inhibit CCR1 produce a profound decrease in tumor burden and osteolytic damage in the murine 5TGM1 model of MM bone disease. Similar effects were observed when the antagonist was used prophylactically or therapeutically, with comparable efficacy to that of zoledronic acid. 5TGM1 cells were shown to express minimal levels of CCR1 while secreting high levels of CCL3, suggesting that the therapeutic effects of CCX721 result from CCR1 inhibition on non-MM cells, most likely osteoclasts and osteoclast precursors. These results provide a strong rationale for further development of CCR1 antagonists for the treatment of MM and associated osteolytic bone disease.
Collapse
|
16
|
Abstract
The chemokine receptor CCR1 has been the target of intensive research for nearly two decades. Small-molecule antagonists were first reported in 1998 and, since then, many inhibitors for CCR1 have been brought forth. Yet, with all the money and time spent, to date, no small-molecule antagonists have successfully moved past Phase II clinical trials. With the current advancement of CCR1 antagonists by Bristol-Myers Squibb and Chemocentrix, there has been renewed interest. In this review, we present an overview of CCR1, its activating ligands, methods of signaling, and downstream response. We discuss studies that indicate CCR1 plays an important role in multiple myeloma and the underlying molecular mechanisms. Finally, we present an overview of the clinical and preclinical compounds for CCR1. We address individual structures, discuss their pharmacological précis, and summarize the published evidence to assess their value for use in multiple myeloma.
Collapse
|
17
|
Melancon BJ, Hopkins CR, Wood MR, Emmitte KA, Niswender CM, Christopoulos A, Conn PJ, Lindsley CW. Allosteric modulation of seven transmembrane spanning receptors: theory, practice, and opportunities for central nervous system drug discovery. J Med Chem 2012; 55:1445-64. [PMID: 22148748 DOI: 10.1021/jm201139r] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bruce J Melancon
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Alcaide P, Maganto-Garcia E, Newton G, Travers R, Croce KJ, Bu DX, Luscinskas FW, Lichtman AH. Difference in Th1 and Th17 lymphocyte adhesion to endothelium. THE JOURNAL OF IMMUNOLOGY 2012; 188:1421-30. [PMID: 22219321 DOI: 10.4049/jimmunol.1101647] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
T cell subset-specific migration to inflammatory sites is tightly regulated and involves interaction of the T cells with the endothelium. Th17 cells often appear at different inflammatory sites than Th1 cells, or both subsets appear at the same sites but at different times. Differences in T cell subset adhesion to endothelium may contribute to subset-specific migratory behavior, but this possibility has not been well studied. We examined the adhesion of mouse Th17 cells to endothelial adhesion molecules and endothelium under flow in vitro and to microvessels in vivo and we characterized their migratory phenotype by flow cytometry and quantitative RT-PCR. More Th17 than Th1 cells interacted with E-selectin. Fewer Th17 than Th1 cells bound to TNF-α-activated E-selectin-deficient endothelial cells, and intravital microscopy studies demonstrated that Th17 cells engage in more rolling interactions with TNF-α-treated microvessels than Th1 cells in wild-type mice but not in E-selectin-deficient mice. Th17 adhesion to ICAM-1 was dependent on integrin activation by CCL20, the ligand for CCR6, which is highly expressed by Th17 cells. In an air pouch model of inflammation, CCL20 triggered recruitment of Th17 but not Th1 cells. These data provide evidence that E-selectin- and ICAM-1-dependent adhesion of Th17 and Th1 cells with endothelium are quantitatively different.
Collapse
Affiliation(s)
- Pilar Alcaide
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
INTRODUCTION By directing cell trafficking, differentiation and growth, chemokines modulate the immune response and are involved in the pathogenesis of autoimmune diseases and cancers, including multiple myeloma (MM). MM, the second most common hematological malignancy in the US, is characterized by disordered plasma cell growth within the bone marrow microenvironment. CCL3 and its receptors, CCR1 in particular, play a central role in the pathogenesis of MM and MM-induced osteolytic bone disease. AREAS COVERED This review describes the functional role of CCR1 in MM and the preclinical results observed with CCR1 antagonists. CCL3 and CCR1 stimulate tumor growth, both directly and indirectly, via upregulation of cell adhesion and cytokine secretion. In addition, they modulate the osteoclast/osteoblast balance, by inducing osteoclast differentiation and inhibiting osteoblast function. Targeting either ligand or receptor reverses these effects, leading to in vivo tumor burden control and prevention of osteolysis, as confirmed in both murine and humanized mouse models. EXPERT OPINION These promising data set the stage for clinical trials to assess the effects of CCR1 inhibitors in MM. The success of these studies depends on the development of novel antagonists with improved chemical/physical properties and careful selection of the patient population who may benefit the most from these agents.
Collapse
Affiliation(s)
- Sonia Vallet
- Massachusetts General Hospital, Harvard Medical School, Department of Hematology Oncology, Boston, MA 02114, USA
| | | |
Collapse
|
20
|
|
21
|
Sharma R, Sharma PR, Kim YC, Leitinger N, Lee JK, Fu SM, Ju ST. IL-2-controlled expression of multiple T cell trafficking genes and Th2 cytokines in the regulatory T cell-deficient scurfy mice: implication to multiorgan inflammation and control of skin and lung inflammation. THE JOURNAL OF IMMUNOLOGY 2010; 186:1268-78. [PMID: 21169543 DOI: 10.4049/jimmunol.1002677] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Scurfy (Sf) mice bear a mutation in the Foxp3 transcription factor, lack regulatory T cells (Treg), develop multiorgan inflammation, and die prematurely. The major target organs affected are skin, lungs, and liver. “Sf mice lacking the Il2 gene (Sf.Il2–/–), despite being devoid of Treg, did not develop skin and lung inflammation, but the inflammation in liver remained [corrected]. Genome-wide microarray analysis revealed hundreds of genes that were differentially regulated among Sf, Sf.Il2(-/-), and B6 CD4(+) T cells, but the most significant changes were those encoding receptors for trafficking/chemotaxis/retention and cytokines. Our study suggests that IL-2 controls the skin and lung inflammation in Sf mice in an apparent "organ-specific" manner through two novel mechanisms: by regulating the expression of genes encoding a variety of receptors for T cell trafficking/chemotaxis/retention and by regulating Th2 cell expansion and cytokine production. Thus, IL-2 is potentially a master regulator for multiorgan inflammation and an underlying etiological factor for various diseases associated with skin and lung inflammation.
Collapse
Affiliation(s)
- Rahul Sharma
- Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Kerstjens HA, Bjermer L, Eriksson L, Dahlström K, Vestbo J. Tolerability and efficacy of inhaled AZD4818, a CCR1 antagonist, in moderate to severe COPD patients. Respir Med 2010; 104:1297-303. [PMID: 20466530 DOI: 10.1016/j.rmed.2010.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 04/08/2010] [Accepted: 04/15/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE This study evaluated the tolerability and efficacy of inhaled AZD4818, a CCR1 antagonist, in patients with COPD. METHODS This double-blind, placebo-controlled study (NCT00629239) randomised patients with moderate to severe COPD to AZD4818 300mug or placebo twice daily via Turbuhaler((R)) for 4 weeks. Safety, lung function, functional capacity and health status measures were measured. Plasma concentrations of AZD4818 were measured after the first dose and after 2 and 4 weeks' treatment. RESULTS Sixty-five patients (47 male; median age 65.6 years) received AZD4818 (n=33) or placebo (n=32). There was no statistically significant difference between AZD4818 and placebo in change from baseline to endpoint for FEV(1) (AZD4818-placebo: 0.026L, p=0.69), morning PEF (-6L/min, p=0.23), or other lung function measures. There was no difference between treatment groups in the 6-min walk test, MMRC dyspnoea index, BODE index and CCQ scores. Plasma concentrations indicated that patients were exposed to AZD4818 as expected. AZD4818 was well tolerated: 27 treatment-related adverse events (13 with AZD4818, 14 with placebo), 2 serious adverse events (both AZD4818: exacerbation [considered not treatment-related] and deep vein thrombosis [considered treatment-related]) and 11 discontinuations (7 with AZD4818). CONCLUSIONS Inhaled AZD4818 was well tolerated at 300mug twice daily for 4 weeks in patients with COPD; however, there was no indication of a beneficial treatment effect despite exposure as expected. These findings in COPD are in line with other studies reporting a lack of clinical efficacy with CCR1 antagonists in other therapy areas.
Collapse
Affiliation(s)
- Huib A Kerstjens
- Department of Pulmonary Medicine, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
23
|
Proudfoot AEI, Power CA, Schwarz MK. Anti-chemokine small molecule drugs: a promising future? Expert Opin Investig Drugs 2010; 19:345-55. [PMID: 20113217 DOI: 10.1517/13543780903535867] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
IMPORTANCE OF THE FIELD Chemokines have principally been associated with inflammation due to their role in the control of leukocyte migration, but just over a decade ago chemokine receptors were also identified as playing a pivotal role in the entry of the HIV virus into cells. Chemokines activate seven transmembrane G protein-coupled receptors, making them extremely attractive therapeutic targets for the pharmaceutical industry. AREAS COVERED IN THIS REVIEW Although there are now a large number of molecules targeting chemokines and chemokine receptors including neutralizing antibodies in clinical trials for inflammatory diseases, the results to date have not always been positive, which has been disappointing for the field. These failures have often been attributed to redundancy in the chemokine system. However, other difficulties have been encountered in drug discovery processes targeting the chemokine system, and these will be addressed in this review. WHAT THE READER WILL GAIN In this review, the reader will get an insight into the hurdles that have to be overcome, learn about some of the pitfalls that may explain the lack of success, and get a glimpse of the outlook for the future. TAKE HOME MESSAGE In 2007, the FDA approved maraviroc, an inhibitor of CCR5 for the prevention of HIV infection, the first triumph for a small-molecule drug acting on the chemokine system. The time to market, 11 years from discovery of CCR5, was fast by industry standards. A second small-molecule drug, a CXCR4 antagonist for hematopoietic stem cell mobilization, was approved by the FDA at the end of 2008. The results of a Phase III trial with a CCR9 inhibitor for Crohn's disease are also promising. This could herald the first success for a chemokine receptor antagonist as an anti-inflammatory therapeutic and confirms the importance of chemokine receptors as a target class for anti-inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Amanda E I Proudfoot
- Merck Serono Geneva Research Center, Merck Serono International SA, 9 Chemin des Mines, 1202 Geneva, Switzerland.
| | | | | |
Collapse
|
24
|
Sacca R, Engle SJ, Qin W, Stock JL, McNeish JD. Genetically engineered mouse models in drug discovery research. Methods Mol Biol 2010; 602:37-54. [PMID: 20012391 DOI: 10.1007/978-1-60761-058-8_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetically modified mouse models have been proven to be a powerful tool in drug discovery. The ability to genetically modify the mouse genome by removing or replacing a specific gene has enhanced our ability to identify and validate target genes of interest. In addition, many human diseases can be mimicked in the mouse and signaling pathways have been shown to be conserved. In spite of these advantages the technology has limitations. In transgenic animals there may be significant heterogeneity among different founders. In knock-out animals the predicted phenotypes are not always readily observed and occasionally a completely novel and unexpected phenotype emerges. To address the latter and ensure that a deep knowledge of the target of interest is obtained, we have developed a comprehensive phenotyping program which has identified novel phenotypes as well as any potential safety concerns which may be associated with a particular target. Finally we continue to explore innovative technologies as they become available such as RNAi for temporal and spatial gene knock-down and humanized models that may better simulate human disease states.
Collapse
Affiliation(s)
- Rosalba Sacca
- Genetically Modified Models Center of Emphasis, Pfizer Global Research and Development, Pfizer Inc., Groton, CT, USA
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Roy S, Biswas S, Khanna S, Gordillo G, Bergdall V, Green J, Marsh CB, Gould LJ, Sen CK. Characterization of a preclinical model of chronic ischemic wound. Physiol Genomics 2009; 37:211-24. [PMID: 19293328 DOI: 10.1152/physiolgenomics.90362.2008] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic ischemic wounds presenting at wound clinics are heterogeneous with respect to etiology, age of the wound, and other factors complicating wound healing. In addition, there are ethical challenges associated with collecting repeated biopsies from a patient to develop an understanding of the temporal dynamics of the mechanisms underlying chronic wounds. The need for a preclinical model of ischemic wound is therefore compelling. The porcine model is widely accepted as an excellent preclinical model for human wounds. A full-thickness bipedicle flap approach was adopted to cause skin ischemia. Closure of excisional wounds placed on ischemic tissue was severely impaired resulting in chronic wounds. Histologically, ischemic wounds suffered from impaired re-epithelialization, delayed macrophage recruitment and poorer endothelial cell abundance and organization. Compared with the pair-matched nonischemic wound, unique aspects of the ischemic wound biology were examined on days 3, 7, 14, and 28 by systematic screening of the wound tissue transcriptome using high-density porcine GeneChips. Ischemia markedly potentiated the expression of arginase-1, a cytosolic enzyme that metabolizes the precursor of nitric oxide l-arginine. Ischemia also induced the SOD2 in the wound tissue perhaps as survival response of the challenged tissue. Human chronic wounds also demonstrated elevated expression of SOD2 and arginase-1. This study provides a thorough database that may serve as a valuable reference tool to develop novel hypotheses aiming to elucidate the biology of ischemic chronic wounds in a preclinical setting.
Collapse
Affiliation(s)
- Sashwati Roy
- Comprehensive Wound Center, Davis Heart and Lung Research Institute, Department of Surgery, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Abstract
Chemokine receptors have a key role in the pathogenesis of autoimmune diseases, inflammation and viral infection. However, with the exception of selective CCR5 antagonists for HIV, the promise of obtaining new therapeutics related to chemokine receptors has not yet been realized. This article highlights some of the recent failures in the clinical trials of chemokine receptor antagonists and explores possible reasons as to why this might have occurred. Such reasons include the lack of predictability of animal models and redundancy of the target. A potential solution could be to develop drugs that target more than one receptor--known as polypharmacology--which could be a novel way to generate effective therapeutics.
Collapse
|
29
|
Borregaard J, Skov L, Wang L, Ting N, Wang C, Beck LA, Sonne J, Clucas A. Evaluation of the effect of the specific CCR1 antagonist CP-481715 on the clinical and cellular responses observed following epicutaneous nickel challenge in human subjects. Contact Dermatitis 2008; 59:212-9. [DOI: 10.1111/j.1600-0536.2008.01365.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
|
31
|
Development of a novel chemokine-mediated in vivo T cell recruitment assay. J Immunol Methods 2008; 331:127-39. [PMID: 18206159 DOI: 10.1016/j.jim.2007.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 11/30/2007] [Accepted: 12/05/2007] [Indexed: 11/24/2022]
Abstract
Trafficking of leukocytes to sites of inflammation is an important step in the establishment of an immune response. Chemokines are critical regulators of leukocyte trafficking and are widely studied molecules for their important role in disease and for their potential as new therapeutic targets. The ability of chemokines to induce leukocyte recruitment has been mainly measured by in vitro chemotaxis assays, which lack many components of the complex biological process of leukocyte migration and therefore provide incomplete information about chemokine function in vivo. In vivo assays to study the activity of chemokines to induce leukocyte recruitment have been difficult to establish. We describe here the development of a robust in vivo recruitment assay for CD8(+) and CD4(+) T lymphocytes induced by the CXCR3 ligands IP-10 (CXCL10) and I-TAC (CXCL11). For this assay, in vitro activated T lymphocytes were adoptively transferred into the peritoneum of naïve mice. Homing of these transferred T lymphocytes into the airways was measured following intratracheal instillation of chemokines. High recruitment indices were achieved that were dependent on chemokine concentration and CXCR3 expression on the transferred lymphocytes. Recruitment was also inhibited by antibodies to the chemokine. The assay models the natural condition of chemokine-mediated lymphocyte migration into the airways as chemokines are expressed in the airways during inflammation. The nature of this model allows flexibility to study wildtype and mutant chemokines and chemokine receptors and the ability to evaluate chemokine antagonists and antibodies in vivo. This assay will therefore help elucidate a deeper understanding of the chemokine system in vivo.
Collapse
|
32
|
Liehn EA, Merx MW, Postea O, Becher S, Djalali-Talab Y, Shagdarsuren E, Kelm M, Zernecke A, Weber C. Ccr1 deficiency reduces inflammatory remodelling and preserves left ventricular function after myocardial infarction. J Cell Mol Med 2007; 12:496-506. [PMID: 18088392 PMCID: PMC3822538 DOI: 10.1111/j.1582-4934.2007.00194.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Myocardial necrosis triggers inflammatory changes and a complex cytokine cascade that are only incompletely understood. The chemokine receptor CCR1 mediates inflammatory recruitment in response to several ligands released by activated platelets and up-regulated after myocardial infarction (MI). Here, we assess the effect of CCR1 on remodelling after MI using Ccr1-deficient (Ccr1−/−) mice. MI was induced in Ccr1−/− or wild-type mice by proximal ligation of the left anterior descending (LAD). Mice were sacrificed and analysed at day 1, 4, 7, 14 and 21 after MI. While initial infarct areas and areas at risk did not differ between groups, infarct size increased to 20.6±8.4% of the left ventricle (LV) in wild-type mice by day 21 but remained at 11.2±1.2% of LV (P<0.05) in Ccr1−/− mice. This attenuation in infarct expansion was associated with preserved LV function, as analysed by isolated heart studies according to Langendorff. Left ventricular developed pressure was 84.5±19.8 mmHg in Ccr1−/− mice compared to 49.0±19.7 mmHg in wild-type mice (P<0.01) and coronary flow reserve was improved in Ccr1−/− mice. An altered post-infarct inflammatory pattern was observed in Ccr1−/− mice characterized by diminished neutrophil infiltration, accelerated monocyte/lymphocyte infiltration, decreased apoptosis, increased cell proliferation and earlier myofibroblast population in the infarcted tissue. In conclusion, functional impairment and structural remodelling after MI is reduced in the genetic absence of Ccr1 due to an abrogated early inflammatory recruitment of neutrophils and improved tissue healing, thus revealing a potential therapeutic target.
Collapse
Affiliation(s)
- E A Liehn
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kuhn CF, Bazin M, Philippe L, Zhang J, Tylaska L, Miret J, Bauer PH. Bipiperidinyl carboxylic acid amides as potent, selective, and functionally active CCR4 antagonists. Chem Biol Drug Des 2007; 70:268-72. [PMID: 17718722 DOI: 10.1111/j.1747-0285.2007.00551.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A cell-based assay for the chemokine G-protein-coupled receptor CCR4 was developed, and used to screen a small-molecule compound collection in a multiplex format. A series of bipiperidinyl carboxylic acid amides amenable to parallel chemistry were derived that were potent and selective antagonists of CCR4. One prototype compound was shown to be active in a functional model of chemotaxis, making it a useful chemical tool to explore the role of CCR4 in asthma, allergy, diabetes, and cancer.
Collapse
Affiliation(s)
- Cyrille F Kuhn
- Pfizer Research Technology Center, 620 Memorial Drive, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Thomas LH, Friedland JS, Sharland M. Chemokines and their receptors in respiratory disease: a therapeutic target for respiratory syncytial virus infection. Expert Rev Anti Infect Ther 2007; 5:415-25. [PMID: 17547506 DOI: 10.1586/14787210.5.3.415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell recruitment is a multistep process orchestrated by chemokines and their receptors. The chemokine/receptor system is central to many inflammatory diseases, making it a key target for therapeutic intervention. Despite complexity and redundancy within the system, effective antagonists are in development and undergoing clinical trials, for example, maraviroc, for use in HIV treatment. Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infection in infants, with global annual infection estimated at 64 million people. Current treatment is purely supportive, with no effective vaccine available. RSV pathology is partly due to excessive airway inflammation. Evidence is growing for a key role for chemokine receptors. Receptor blockade may therefore provide a feasible therapeutic option to inhibit RSV-induced inflammation and thereby reduce disease severity.
Collapse
Affiliation(s)
- Lynette H Thomas
- Department of Infectious Diseases & Immunity, Imperial College, London, UK.
| | | | | |
Collapse
|
35
|
Simperler A, Kornherr A, Chopra R, Jones W, Motherwell WDS, Zifferer G. Lactonisation—a degradation pathway for active pharmaceutical compounds: an in silico study in amorphous trehalose. Phys Chem Chem Phys 2007; 9:3999-4006. [PMID: 17646889 DOI: 10.1039/b618717j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The lactonisation of a CCR1 inhibitor (CC chemokine receptor 1, involved in autoimmune diseases) featuring a hydroxyl group in a gamma-position (gamma-OH) with respect to an amide group has been investigated in silico. The two key steps of the lactonisation reaction are (i) rearrangement to an optimal conformation and (ii) the formation of the lactone (ring closure) and expulsion of NH3. Quantum chemical calculations in the gas phase were employed to identify conformers of the molecule with favorable starting geometries for a lactonisation reaction. In total, calculations of 1296 conformers revealed that it is energetically feasible for an inhibitor molecule to adopt a conformation where the carbon atom of the amide group (C(amide)) is suitably close to the oxygen atom of the gamma-OH (O(gamma)) to facilitate a successful lactonisation reaction. Additionally, molecular dynamics methods were used to show that rearrangement to a suitable conformer for lactonisation to occur happens to a lesser extent when the CCR1 inhibitor was embedded in an amorphous trehalose matrix (a model carbohydrate excipient). The mechanism of the actual lactonisation was investigated using the complete Linear Synchronous Transit/Quadratic Synchronous Transit (LST/QST) method. This was performed in both the gas phase and in water and was found to be a concerted reaction.
Collapse
Affiliation(s)
- Alexandra Simperler
- The Pfizer Institute for Pharmaceutical Materials Science, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UKCB2 1EW
| | | | | | | | | | | |
Collapse
|
36
|
Allen DR, Bolt A, Chapman GA, Knight RL, Meissner JWG, Owen DA, Watson RJ. Identification and structure-activity relationships of 1-aryl-3-piperidin-4-yl-urea derivatives as CXCR3 receptor antagonists. Bioorg Med Chem Lett 2006; 17:697-701. [PMID: 17097877 DOI: 10.1016/j.bmcl.2006.10.088] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 10/26/2006] [Accepted: 10/27/2006] [Indexed: 11/25/2022]
Abstract
The synthesis and biological evaluation of a series of 1-aryl-3-piperidin-4-yl-urea derivatives as small-molecule CXCR3 antagonists is described. SAR studies resulted in significant improvement of potency and physicochemical properties and established the key pharmacophore of the series, and led to the identification of 9t, which exhibits an IC50 of 16 nM in the GTPgammaS35 functional assay.
Collapse
Affiliation(s)
- Daniel R Allen
- UCB, Inflammation Discovery, Granta Park, Great Abington, Cambridge CB21 6GS, UK
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disease that causes significant morbidity and mortality. The pathogenesis outlined to date in RA consists of a cascade of pro-inflammatory cytokines and chemokines leading to the recruitment of inflammatory cells and the self perpetuation of inflammation, ultimately leading to cartilage and bone destruction. The dramatic progress in understanding the molecular immunology in RA has led to a transition from conventional treatment with aggressive immune suppression to targeted biological-based therapies that control the inflammatory pathways associated with RA. This article reviews the current biological and small-molecule therapies approved for the treatment of RA and those in development, including antibodies, tolerising agents and vaccines.
Collapse
Affiliation(s)
- Adriana H Tremoulet
- University of California, Department of Pediatrics, 9500 Gilman Drive, MC 0731, La Jolla, CA 92093, USA
| | | |
Collapse
|
38
|
Friese MA, Jensen LT, Willcox N, Fugger L. Humanized mouse models for organ-specific autoimmune diseases. Curr Opin Immunol 2006; 18:704-9. [PMID: 17008081 DOI: 10.1016/j.coi.2006.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 09/18/2006] [Indexed: 11/23/2022]
Abstract
Murine models for human autoimmune diseases are an essential tool for studying pathogenesis and for identifying new therapeutic targets. Mice are not the natural disease host, and conventional models have proved to be poor predictors of efficacy and safety in recent trials aiming to translate drug and biologic treatments to humans. Evidently, further steps towards recapitulating human diseases are urgently needed, for example using transgenic predisposing human HLA allele(s) plus T-cell receptor(s) implicated in a representative patient's autoimmune disease. The latest development - humanizing most of the immune system by transplanting human hematopoietic stem cells into severely immunodeficient mice - should lead to even better modeling.
Collapse
Affiliation(s)
- Manuel A Friese
- MRC Human Immunology Unit and Department of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | | | | |
Collapse
|
39
|
Chemokines and chemokine receptors: Large and small therapeutic strategies for inflammatory diseases. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.ddstr.2006.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|