1
|
Xiao SQ, Cheng M, Wang L, Cao J, Fang L, Zhou XP, He XJ, Hu YF. The role of apoptosis in the pathogenesis of osteoarthritis. INTERNATIONAL ORTHOPAEDICS 2023:10.1007/s00264-023-05847-1. [PMID: 37294429 DOI: 10.1007/s00264-023-05847-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE Apoptosis is an important physiological process, making a great difference to development and tissue homeostasis. Osteoarthritis (OA) is a chronic joint disease characterized by degeneration and destruction of articular cartilage and bone hyperplasia. This purpose of this study is to provide an updated review of the role of apoptosis in the pathogenesis of osteoarthritis. METHODS A comprehensive review of the literature on osteoarthritis and apoptosis was performed, which mainly focused on the regulatory factors and signaling pathways associated with chondrocyte apoptosis in osteoarthritis and other pathogenic mechanisms involved in chondrocyte apoptosis. RESULTS Inflammatory mediators such as reactive oxygen species (ROS), nitric oxide (NO), IL-1β, tumor necrosis factor-α (TNF-α), and Fas are closely related to chondrocyte apoptosis. NF-κB signaling pathway, Wnt signaling pathway, and Notch signaling pathway activate proteins and gene targets that promote or inhibit the progression of osteoarthritis disease, including chondrocyte apoptosis and ECM degradation. Long non-coding RNAs (LncRNAs) and microRNAs (microRNAs) have gradually replaced single and localized research methods and become the main research approaches. In addition, the relationship between cellular senescence, autophagy, and apoptosis was also briefly explained. CONCLUSION This review offers a better molecular delineation of apoptotic processes that may help in designing new therapeutic options for OA treatment.
Collapse
Affiliation(s)
- Si-Qi Xiao
- Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Miao Cheng
- Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Lei Wang
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Jing Cao
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Liang Fang
- Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Xue-Ping Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Jin He
- Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China.
| | - Yu-Feng Hu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Zhang Z, Liu W, Xiong J, Chen T, Jiang L, Liu M. Candidate Marker Genes for Diagnosis of Osteoarthritis and Prediction of Their Regulatory Mechanisms. Folia Biol (Praha) 2023; 69:22-33. [PMID: 37962028 DOI: 10.14712/fb2023069010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
We have screened candidate marker genes for the diagnosis of osteoarthritis and predicted their regulatory mechanisms. Six expression chips of tissue samples and one expression chip of peripheral blood mononuclear cell (PMBC) samples were obtained from the GEO database. Differential analysis, GSEA, and WGCNA were performed on the integra-ted tissue sample data with batch correction. Can-didate genes were obtained from the intersection of the genes significantly related to osteoarthritis in the WGCNA and the differentially expressed genes. ROC analysis was performed on the candidate genes in the tissue and PMBC samples. Genes with AUC values greater than 0.6 were retained as final candidates, and their upstream regulatory miRNAs were predicted. A total of 106 genes with differential expression were found in osteoarthritis tissue samples, which were mainly enriched in cell cycle and p53 signalling pathways. WGCNA selected a gene module significantly correlated with the occurrence of osteoarthritis. Fourteen candidate genes were obtained from the intersection of the genes in the module and the differentially expressed genes. ROC analysis showed that among these 14 candidate genes, only ADM, CX3CR1 and GADD45A had AUC values greater than 0.6 in both tissue and PMBC samples. The AUC values of the gene set of these three genes were greater than 0.7. Multiple miRNAs were predicted to be regulators of these three genes. ADM, CX3CR1 and GADD45A have potential as diagnostic marker genes for osteoarthritis and may be regulated by multiple miRNAs.
Collapse
Affiliation(s)
- Zuyang Zhang
- Department of Orthopedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410004, China
| | - Wei Liu
- Department of Orthopedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410004, China
| | - Jiepeng Xiong
- Department of Orthopedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410004, China
| | - Tianhua Chen
- Department of Orthopedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410004, China
| | - Liangdong Jiang
- Department of Orthopedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410004, China.
| | - Mingjiang Liu
- Department of Orthopedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410004, China.
| |
Collapse
|
3
|
Benyahia Z, Gaudy-Marqueste C, Berenguer-Daizé C, Chabane N, Dussault N, Cayol M, Vellutini C, Djemli A, Nanni I, Beaufils N, Mabrouk K, Grob JJ, Ouafik L. Adrenomedullin Secreted by Melanoma Cells Promotes Melanoma Tumor Growth through Angiogenesis and Lymphangiogenesis. Cancers (Basel) 2022; 14:cancers14235909. [PMID: 36497391 PMCID: PMC9738606 DOI: 10.3390/cancers14235909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Metastatic melanoma is an aggressive tumor and can constitute a real therapeutic challenge despite the significant progress achieved with targeted therapies and immunotherapies, thus highlighting the need for the identification of new therapeutic targets. Adrenomedullin (AM) is a peptide with significant expression in multiple types of tumors and is multifunctional. AM impacts angiogenesis and tumor growth and binds to calcitonin receptor-like receptor/receptor activity-modifying protein 2 or 3 (CLR/RAMP2; CLR/RAMP3). METHODS In vitro and in vivo studies were performed to determine the functional role of AM in melanoma growth and tumor-associated angiogenesis and lymphangiogenesis. RESULTS In this study, AM and AM receptors were immunohistochemically localized in the tumoral compartment of melanoma tissue, suggesting that the AM system plays a role in melanoma growth. We used A375, SK-MEL-28, and MeWo cells, for which we demonstrate an expression of AM and its receptors; hypoxia induces the expression of AM in melanoma cells. The proliferation of A375 and SK-MEL-28 cells is decreased by anti-AM antibody (αAM) and anti-AMR antibodies (αAMR), supporting the fact that AM may function as a potent autocrine/paracrine growth factor for melanoma cells. Furthermore, migration and invasion of melanoma cells increased after treatment with AM and decreased after treatment with αAMR, thus indicating that melanoma cells are regulated by AM. Systemic administration of αAMR reduced neovascularization of in vivo Matrigel plugs containing melanoma cells, as demonstrated by reduced numbers of vessel structures, which suggests that AM is one of the melanoma cells-derived factors responsible for endothelial cell-like and pericyte recruitment in the construction of neovascularization. In vivo, αAMR therapy blocked angiogenesis and lymphangiogenesis and decreased proliferation in MeWo xenografts, thereby resulting in tumor regression. Histological examination of αAMR-treated tumors showed evidence of the disruption of tumor vascularity, with depletion of vascular endothelial cells and a significant decrease in lymphatic endothelial cells. CONCLUSIONS The expression of AM by melanoma cells promotes tumor growth and neovascularization by supplying/amplifying signals for neoangiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Zohra Benyahia
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | - Caroline Gaudy-Marqueste
- Aix Marseille Univ, APHM, CHU Timone, Service de Dermatologie et de Cancérologie Cutanée, 13005 Marseille, France
| | | | - Norhimane Chabane
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | - Nadège Dussault
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | - Mylène Cayol
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | - Christine Vellutini
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | - Amina Djemli
- Aix Marseille Univ, APHM, CHU Nord, Service D’anatomopathologie, 13015 Marseille, France
| | - Isabelle Nanni
- Aix Marseille Univ, APHM, CHU Nord, Service D’Onco-Biologie, 13015 Marseille, France
| | - Nathalie Beaufils
- Aix Marseille Univ, APHM, CHU Nord, Service D’Onco-Biologie, 13015 Marseille, France
| | - Kamel Mabrouk
- Aix Marseille Univ, CNRS, ICR, Institut de Chimie Radicalaire, 13013 Marseille, France
| | - Jean-Jacques Grob
- Aix Marseille Univ, APHM, CHU Timone, Service de Dermatologie et de Cancérologie Cutanée, 13005 Marseille, France
| | - L’Houcine Ouafik
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
- Aix Marseille Univ, APHM, CHU Nord, Service D’Onco-Biologie, 13015 Marseille, France
- Correspondence: ; Tel.: +33-491324447
| |
Collapse
|
4
|
Cao J, Ding H, Shang J, Ma L, Wang Q, Feng S. Weighted gene co-expression network analysis reveals specific modules and hub genes related to immune infiltration of osteoarthritis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1525. [PMID: 34790731 PMCID: PMC8576690 DOI: 10.21037/atm-21-4566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022]
Abstract
Background The incidence of osteoarthritis (OA), a chronic degenerative disease, is increasing every year. There is no effective clinical treatment for OA and the pathological mechanism remains unclear. Early diagnosis is an effective strategy to control the progress of OA. In this study, we aimed to identify potential early diagnostic biomarkers. Methods We downloaded the gene expression profile dataset, GSE51588 and GSE55235, from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) public database. The differentially expressed genes (DEGs) were screened out using the “limma” R package. Weighted gene co-expression network analysis (WGCNA) was utilized to build the co-expression network between the normal and OA samples. A Venn diagram was constructed to detect the hub genes. Potential molecular mechanisms and signaling pathways were enriched by gene set variation analysis (GSVA). Single sample gene set enrichment analysis (ssGSEA) was used to identify the immune infiltration of OA. Results We screened out three hub genes based on WGCNA and DEGs in this study. GSVA results showed that nuclear factor interleukin-3 (NFIL3) was related to tumor necrosis factor alpha (TNF-α) signaling via nuclear factor kappa-B (NF-κB), the reactive oxygen species pathway, and myelocytomatosis (MYC) targets v2. Highly-expressed ADM (adrenomedullin) pathways included TNF-α signaling via NF-κB, the reactive oxygen species pathway, and ultraviolet (UV) response up. OGN (osteoglycin)-enriched pathways included epithelial mesenchymal transition, coagulation, and peroxisome. Conclusions We identified three hub genes (NFIL3, ADM, and OGN) that were correlated to the development and progression of OA, which may provide new biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Jiangang Cao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Han Ding
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Shang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Lei Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Qi Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Simonetti G, Angeli D, Petracci E, Fonzi E, Vedovato S, Sperotto A, Padella A, Ghetti M, Ferrari A, Robustelli V, Di Liddo R, Conconi MT, Papayannidis C, Cerchione C, Rondoni M, Astolfi A, Ottaviani E, Martinelli G, Gottardi M. Adrenomedullin Expression Characterizes Leukemia Stem Cells and Associates With an Inflammatory Signature in Acute Myeloid Leukemia. Front Oncol 2021; 11:684396. [PMID: 34150648 PMCID: PMC8208888 DOI: 10.3389/fonc.2021.684396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Adrenomedullin (ADM) is a hypotensive and vasodilator peptide belonging to the calcitonin gene-related peptide family. It is secreted in vitro by endothelial cells and vascular smooth muscle cells, and is significantly upregulated by a number of stimuli. Moreover, ADM participates in the regulation of hematopoietic compartment, solid tumors and leukemias, such as acute myeloid leukemia (AML). To better characterize ADM involvement in AML pathogenesis, we investigated its expression during human hematopoiesis and in leukemic subsets, based on a morphological, cytogenetic and molecular characterization and in T cells from AML patients. In hematopoietic stem/progenitor cells and T lymphocytes from healthy subjects, ADM transcript was barely detectable. It was expressed at low levels by megakaryocytes and erythroblasts, while higher levels were measured in neutrophils, monocytes and plasma cells. Moreover, cells populating the hematopoietic niche, including mesenchymal stem cells, showed to express ADM. ADM was overexpressed in AML cells versus normal CD34+ cells and in the subset of leukemia compared with hematopoietic stem cells. In parallel, we detected a significant variation of ADM expression among cytogenetic subgroups, measuring the highest levels in inv(16)/t(16;16) or complex karyotype AML. According to the mutational status of AML-related genes, the analysis showed a lower expression of ADM in FLT3-ITD, NPM1-mutated AML and FLT3-ITD/NPM1-mutated cases compared with wild-type ones. Moreover, ADM expression had a negative impact on overall survival within the favorable risk class, while showing a potential positive impact within the subgroup receiving a not-intensive treatment. The expression of 135 genes involved in leukemogenesis, regulation of cell proliferation, ferroptosis, protection from apoptosis, HIF-1α signaling, JAK-STAT pathway, immune and inflammatory responses was correlated with ADM levels in the bone marrow cells of at least two AML cohorts. Moreover, ADM was upregulated in CD4+ T and CD8+ T cells from AML patients compared with healthy controls and some ADM co-expressed genes participate in a signature of immune tolerance that characterizes CD4+ T cells from leukemic patients. Overall, our study shows that ADM expression in AML associates with a stem cell phenotype, inflammatory signatures and genes related to immunosuppression, all factors that contribute to therapy resistance and disease relapse.
Collapse
Affiliation(s)
- Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Davide Angeli
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Elisabetta Petracci
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Eugenio Fonzi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Susanna Vedovato
- Department of Clinical and Experimental Medicine, University of Padova, Padua, Italy
| | - Alessandra Sperotto
- Hematology and Transplant Center Unit, Dipartimento di Area Medica (DAME), Udine University Hospital, Udine, Italy
| | - Antonella Padella
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Martina Ghetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Anna Ferrari
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Valentina Robustelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Cristina Papayannidis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Claudio Cerchione
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Michela Rondoni
- Hematology Unit & Romagna Transplant Network, Ravenna Hospital, Ravenna, Italy
| | - Annalisa Astolfi
- “Giorgio Prodi” Cancer Research Center, University of Bologna, Bologna, Italy
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Emanuela Ottaviani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Michele Gottardi
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology IOV, IRCCS, Padua, Italy
| |
Collapse
|
6
|
Velard F, Chatron-Colliet A, Côme D, Ah-Kioon MD, Lin H, Hafsia N, Cohen-Solal M, Ea HK, Lioté F. Adrenomedullin and truncated peptide adrenomedullin(22-52) affect chondrocyte response to apoptotis in vitro: downregulation of FAS protects chondrocyte from cell death. Sci Rep 2020; 10:16740. [PMID: 33028903 PMCID: PMC7541509 DOI: 10.1038/s41598-020-73924-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/31/2020] [Indexed: 12/03/2022] Open
Abstract
Chondrocyte apoptosis may have a pivotal role in the development of osteoarthritis. Interest has increased in the use of anti-apoptotic compounds to protect against osteoarthritis development. In this work, we investigated the effect of adrenomedullin (AM), a 52 amino-acid hormone peptide, and a 31 amino-acid truncated form, AM(22-52), on chondrocyte apoptosis. Bovine articular chondrocytes (BACs) were cultured under hypoxic conditions to mimic cartilage environment and then treated with Fas ligand (Fas-L) to induce apoptosis. The expression of AM and its calcitonin receptor-like receptor (CLR)/receptor activity-modifying protein (RAMP) (receptor/co-receptor) was assessed by immunostaining. We evaluated the effect of AM and AM(22-52) on Fas-L-induced chondrocyte apoptosis. FAS expression was appreciated by RT-qPCR and immunostainings. The expression of hypoxia-inducible factor 1α (HIF-1α), CLR and one co-receptor (RAMP2) was evidenced. With BACs under hypoxia, cyclic adenosine monophosphate production increased dose-dependently with AM stimulation. AM significantly decreased caspase-3 activity (mean 35% decrease; p = 0.03) as a marker of Fas-L-induced apoptosis. Articular chondrocytes treated with AM showed significantly reduced cell death, along with downregulated Fas expression and production, as compared with AM(22-52). AM decreased articular chondrocyte apoptosis by downregulating a Fas receptor. These findings may pave the way for novel therapeutic approaches in osteoarthritis.
Collapse
Affiliation(s)
- Frédéric Velard
- INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, 75010, Paris, France
| | - Aurore Chatron-Colliet
- INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, 75010, Paris, France
| | - Dominique Côme
- INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, 75010, Paris, France
| | - Marie-Dominique Ah-Kioon
- INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, 75010, Paris, France
| | - Hilène Lin
- INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, 75010, Paris, France
| | - Narjes Hafsia
- INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, 75010, Paris, France.,Université de Paris (UFR de Médecine), 75205, Paris, France
| | - Martine Cohen-Solal
- INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, 75010, Paris, France.,Université de Paris (UFR de Médecine), 75205, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Rhumatologie, Centre Viggo Petersen, Hôpital Lariboisière, 75010, Paris, France
| | - Hang-Korng Ea
- INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, 75010, Paris, France.,Université de Paris (UFR de Médecine), 75205, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Rhumatologie, Centre Viggo Petersen, Hôpital Lariboisière, 75010, Paris, France
| | - Frédéric Lioté
- INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, 75010, Paris, France. .,Université de Paris (UFR de Médecine), 75205, Paris, France. .,Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Rhumatologie, Centre Viggo Petersen, Hôpital Lariboisière, 75010, Paris, France.
| |
Collapse
|
7
|
Korucu RU, Karadağ A, Taş A, Özmen E, Hayta E, Siliğ Y. Serum Calcitonin Gene-Related Peptide and Receptor Protein Levels in Patients With Fibromyalgia Syndrome: A Cross-Sectional Study. Arch Rheumatol 2020; 35:463-467. [PMID: 33758802 PMCID: PMC7945696 DOI: 10.46497/archrheumatol.2020.7783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/02/2019] [Indexed: 11/20/2022] Open
Abstract
Objectives
This study aims to compare the serum calcitonin gene-related peptide (CGRP) and CGRP receptor protein levels between patients with fibromyalgia syndrome (FM) and healthy control subjects. Patients and methods
The study included 88 patients (7 males, 81 females; mean age 44.5±9.1 years; range, 20 to 72 years) newly-diagnosed with FM according to the 2010 American College of Rheumatology criteria and 88 healthy volunteers (6 males, 82 females; mean age 43.0±6.1 years; range, 20 to 57 years). Venous blood samples were collected from both groups for the measurement of the levels of serum CGRP and CGRP receptor proteins (receptor component protein [RCP], receptor activity modifying protein 1 [RAMP 1] and calcitonin receptor-like receptor [CLR]). Results
A comparison of the serum CGRP, CLR and RCP levels of the FM and control groups revealed a statistically significant difference (p=0.001, p=0.005, p=0.001, respectively). The difference between the groups in respect of the serum RAMP 1 levels was not statistically significant (p=0.107). Conclusion The serum CGRP, CLR and RCP levels were found to be higher in the FM patients, but no difference was determined between the FM patients and the healthy control group in respect of the RAMP 1 level. These results can be of guidance for further clinical studies of the etiopathogenesis and treatment of FM.
Collapse
Affiliation(s)
- Ragıp Ulvi Korucu
- Department of Physical Medicine and Rehabilitation, Cumhuriyet University Faculty of Medicine, Sivas, Turkey
| | - Ahmet Karadağ
- Department of Physical Medicine and Rehabilitation, Cumhuriyet University Faculty of Medicine, Sivas, Turkey
| | - Ayça Taş
- Department of Biochemistry, Cumhuriyet University Faculty of Medicine, Sivas, Turkey
| | - Esma Özmen
- Department of Biochemistry, Cumhuriyet University Faculty of Medicine, Sivas, Turkey
| | - Emrullah Hayta
- Department of Physical Medicine and Rehabilitation, Acıbadem University Faculty of Medicine, Istanbul, Turkey
| | - Yavuz Siliğ
- Department of Biochemistry, Cumhuriyet University Faculty of Medicine, Sivas, Turkey
| |
Collapse
|
8
|
Adrenomedullin promotes the growth of pancreatic ductal adenocarcinoma through recruitment of myelomonocytic cells. Oncotarget 2018; 7:55043-55056. [PMID: 27391260 PMCID: PMC5342400 DOI: 10.18632/oncotarget.10393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/17/2016] [Indexed: 12/20/2022] Open
Abstract
Stromal infiltration of myelomonocytic cells is a hallmark of pancreatic ductal adenocarcinoma (PDAC) and is related to a poor prognosis. However, the detailed mechanism for the recruitment of myelomonocytic cells to pancreatic cancer tissue remains unclear. In the present study, pancreatic cancer cells secreted high levels of adrenomedullin (ADM), and CD11b+ myelomonocytic cells expressed all components of ADM receptors, including GPR182, CRLR, RAMP2 and RAMP3. ADM enhanced the migration and invasion of myelomonocytic cells through activation of the MAPK, PI3K/Akt and eNOS signaling pathways, as well as the expression and activity of MMP-2. ADM also promoted the adhesion and trans-endothelial migration of myelomonocytic cells by increasing expression of VCAM-1 and ICAM-1 in endothelial cells. In addition, ADM induced macrophages and myeloid-derived suppressor cells (MDSCs) to express pro-tumor phenotypes. ADM knockdown in tumor-bearing mice or administration of AMA, an ADM antagonist, significantly inhibited the recruitment of myelomonocytic cells and tumor angiogenesis. Moreover, in vivo depletion of myelomonocytic cells using clodronate liposomes suppressed the progression of PDAC. These results reveal a novel function of ADM in PDAC, and suggest ADM is a promising target in the treatment of PDAC.
Collapse
|
9
|
Adrenomedullin Regulates IL-1β Gene Expression in F4/80+ Macrophages during Synovial Inflammation. J Immunol Res 2017; 2017:9832430. [PMID: 28299347 PMCID: PMC5337394 DOI: 10.1155/2017/9832430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023] Open
Abstract
Adrenomedullin (AM) plays an important role in the regulation of inflammatory processes; however, the role and expression of AM in synovial inflammation have not been determined. To investigate the expression and role of AM in inflamed synovial tissue (ST), the gene expression profiles of AM in the ST, including synovial macrophages and fibroblasts, of a murine patellar surgical dislocation model were characterized. In addition, the effects of interleukin- (IL-) 1β and AM in cultured synovial cells were also examined. CD11c+ macrophages were found to be elevated in ST of the surgically dislocated patella. Higher gene expression of CD11c, IL-1β, AM, receptor activity-modifying proteins 2 (RAMP2), and 3 (RAMP3) was also observed in ST obtained from the dislocated side. AM expression was also significantly increased in synovial fibroblasts and macrophages in response to IL-1β treatment. Synovial macrophages also highly expressed RAMP3 compared to fibroblasts and this expression was further stimulated by exogenously added IL-1β. Further, the treatment of the F4/80-positive cell fraction obtained from ST with AM inhibited IL-1β expression. Taken together, these findings demonstrated that AM was produced by synovial fibroblasts and macrophages in inflamed ST and that increased levels of AM may exert anti-inflammatory effects on synovial macrophages.
Collapse
|
10
|
Greillier L, Tounsi A, Berenguer-Daizé C, Dussault N, Delfino C, Benyahia Z, Cayol M, Mabrouk K, Garcia S, Martin PM, Barlesi F, Ouafik L. Functional Analysis of the Adrenomedullin Pathway in Malignant Pleural Mesothelioma. J Thorac Oncol 2016; 11:94-107. [PMID: 26762744 DOI: 10.1016/j.jtho.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Malignant pleural mesothelioma (MPM) grows aggressively within the thoracic cavity and has a very low cure rate, thus highlighting the need for identification of new therapeutic targets. Adrenomedullin (AM) is a multifunctional peptide that is highly expressed in several tumors and plays an important role in angiogenesis and tumor growth after binding to its receptors, calcitonin receptor-like receptor/receptor activity-modifying protein 2 (CLR/RAMP2) and calcitonin receptor-like receptor/receptor activity-modifying protein 3 (CLR/RAMP3). METHODS Real time quantitative reverse transcriptase polymerase chain reaction (RT-PCR) was used to assess the steady-state levels of AM, CLR, RAMP2 and RAMP3 messenger RNA (mRNA) transcripts in normal pleural tissue (n=5) and MPM (n=24). The expression of these candidates at protein level was revealed by immunohistochemistry. We also characterized the expression and regulation by hypoxia of AM system in MPM cell lines and MeT-5A cells. In vitro and in vivo studies were performed to determine the functional role of AM system in MPM. RESULTS In this study, real-time quantitative reverse transcriptase polymerase chain reaction showed twofold to 10-fold higher levels of AM messenger RNA in MPM tissue than in normal pleural tissue. The MPM cell lines H2452, H2052, and human mesothelioma cell line MSTO-211H showed a significant increase in expression of AM messenger RNA under hypoxic conditions. Our results also show that AM stimulates cell proliferation in vitro through the Raf1 proto-oncogene, serine/threonine kinase (CRAF)/ Mitogen-activated protein kinase kinase 1 (MEK)/Extracellular regulated MAPKinase (ERK) pathway. Furthermore, the proliferation, migration, and invasion of MPM cells were decreased after treatment with anti-AM (αAM) and anti-AM receptor antibodies, thus indicating that MPM cells are regulated by AM. The action of AM was specific and mediated by CLR/RAMP2 and CLR/RAMP3 receptors. In vivo, αAM and AM22-52 antagonist therapies blocked angiogenesis and induced apoptosis in MSTO-211H xenografts, thereby resulting in tumor regression. Histologic examination of tumors treated with AM22-52 and αAM antibody showed evidence of disruption of tumor vasculature with depletion of vascular endothelial cells and a significant decrease in lymphatic endothelial cells. CONCLUSIONS Our findings highlight the importance of the AM pathway in growth of MPM and in neovascularization by supplying and amplifying signals that are essential for pathologic neoangiogenesis and lymphangiogenesis.
Collapse
MESH Headings
- Adrenomedullin/genetics
- Adrenomedullin/metabolism
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Calcitonin Receptor-Like Protein/genetics
- Calcitonin Receptor-Like Protein/metabolism
- Cell Movement
- Cell Proliferation
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mesothelioma/genetics
- Mesothelioma/metabolism
- Mesothelioma/pathology
- Mesothelioma, Malignant
- Mice
- Mice, Nude
- Neovascularization, Pathologic
- Pleural Neoplasms/genetics
- Pleural Neoplasms/metabolism
- Pleural Neoplasms/pathology
- Proto-Oncogene Mas
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptor Activity-Modifying Protein 2/genetics
- Receptor Activity-Modifying Protein 2/metabolism
- Receptor Activity-Modifying Protein 3/genetics
- Receptor Activity-Modifying Protein 3/metabolism
- Receptors, Adrenomedullin/genetics
- Receptors, Adrenomedullin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Laurent Greillier
- Aix-Marseille University, CRO2 UMR 911, Marseille, France; INSERM, CRO2 UMR 911, Marseille, France; Assistance Publique Hopitaux de Marseille, Service d'Oncologie Multidisciplinaire et Innovations Thérapeutiques, Marseille, France.
| | - Asma Tounsi
- Aix-Marseille University, CRO2 UMR 911, Marseille, France; INSERM, CRO2 UMR 911, Marseille, France
| | - Caroline Berenguer-Daizé
- Aix-Marseille University, CRO2 UMR 911, Marseille, France; INSERM, CRO2 UMR 911, Marseille, France
| | - Nadège Dussault
- Aix-Marseille University, CRO2 UMR 911, Marseille, France; INSERM, CRO2 UMR 911, Marseille, France
| | - Christine Delfino
- Aix-Marseille University, CRO2 UMR 911, Marseille, France; INSERM, CRO2 UMR 911, Marseille, France
| | - Zohra Benyahia
- Aix-Marseille University, CRO2 UMR 911, Marseille, France; INSERM, CRO2 UMR 911, Marseille, France
| | - Mylène Cayol
- Aix-Marseille University, CRO2 UMR 911, Marseille, France; INSERM, CRO2 UMR 911, Marseille, France
| | - Kamel Mabrouk
- Aix-Marseille University, LCP UMR 6264, CROPS, Marseille, France
| | - Stéphane Garcia
- Assistance Publique Hopitaux de Marseille, Service d'Anatomie et de Cytologie Pathologiques, Marseille, France
| | - Pierre-Marie Martin
- Aix-Marseille University, CRO2 UMR 911, Marseille, France; INSERM, CRO2 UMR 911, Marseille, France; Assistance Publique Hopitaux de Marseille, Service de Transfert d'Oncologie Biologique, Marseille, France
| | - Fabrice Barlesi
- Aix-Marseille University, CRO2 UMR 911, Marseille, France; INSERM, CRO2 UMR 911, Marseille, France; Assistance Publique Hopitaux de Marseille, Service d'Oncologie Multidisciplinaire et Innovations Thérapeutiques, Marseille, France
| | - L'Houcine Ouafik
- Aix-Marseille University, CRO2 UMR 911, Marseille, France; INSERM, CRO2 UMR 911, Marseille, France; Assistance Publique Hopitaux de Marseille, Service de Transfert d'Oncologie Biologique, Marseille, France
| |
Collapse
|
11
|
Minatani A, Uchida K, Inoue G, Takano S, Aikawa J, Miyagi M, Fujimaki H, Iwase D, Onuma K, Matsumoto T, Takaso M. Activation of calcitonin gene-related peptide signaling through the prostaglandin E2-EP1/EP2/EP4 receptor pathway in synovium of knee osteoarthritis patients. J Orthop Surg Res 2016; 11:117. [PMID: 27751171 PMCID: PMC5067902 DOI: 10.1186/s13018-016-0460-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/28/2016] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) is a 37-amino-acid vasodilatory neuropeptide that binds to receptor activity-modifying protein 1 (RAMP1) and the calcitonin receptor-like receptor (CLR). Clinical and preclinical evidence suggests that CGRP is associated with hip and knee joint pain; however, the regulation mechanisms of CGRP/CGRP receptor signaling in synovial tissue are not fully understood. METHODS Synovial tissues were harvested from 43 participants with radiographic knee osteoarthritis (OA; unilateral Kellgren/Lawrence (K/L) grades 3-4) during total knee arthroplasty. Correlationships between the mRNA expression levels of CGRP and those of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and cycloxygenase-2 (COX-2) were evaluated using real-time PCR analysis of total RNA extracted from the collected synovial tissues. To investigate the factors controlling the regulation of CGRP and CGRP receptor expression, cultured synovial cells were stimulated with TNF-α, IL-1β, IL-6, and prostaglandin E2 (PGE2) and were also treated with PGE2 receptor (EP) agonist. RESULTS CGRP and COX-2 localized in the synovial lining layer. Expression of COX-2 positively correlated with CGRP mRNA expression in the synovial tissue of OA patients. The gene expression of CGRP and RAMP1 increased significantly in synovial cells exogenously treated with PGE2 compared to untreated control cells. In cultured synovial cells, CGRP gene expression increased significantly following EP4 agonist treatment, whereas RAMP1 gene expression increased significantly in the presence of exogenously added EP1 and EP2 agonists. CONCLUSIONS PGE2 appears to regulate CGRP/CGRP receptor signaling through the EP receptor in the synovium of knee OA patients.
Collapse
Affiliation(s)
- Atsushi Minatani
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan.
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Shotaro Takano
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Jun Aikawa
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Hisako Fujimaki
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Dai Iwase
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Kenji Onuma
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Toshihide Matsumoto
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| |
Collapse
|
12
|
Liu L, Huang R, Ma D, Cheng W, Feng W, Xing D, Kan W, Xiao Z. Correlation of Adrenomedullin Concentrations with Knee Osteoarthritis Grade. Med Sci Monit 2016; 22:2775-8. [PMID: 27495944 PMCID: PMC4978210 DOI: 10.12659/msm.896987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Adrenomedullin, a recently identified myokine, has an anti-inflammatory effect. Therefore, we aimed to assess the correlation of adrenomedullin concentrations with the presence and grade of severity of knee osteoarthritis (OA). MATERIAL AND METHODS We recruited 187 knee OA patients and 109 healthy subjects. The severity of OA was evaluated using the Kellgren-Lawrence grading system. RESULTS Compared with the control group, the knee OA group revealed markedly higher adrenomedullin concentrations. Serum and synovial fluid (SF) adrenomedullin concentrations increased with increased KL grades. CONCLUSIONS Serum and SF adrenomedullin concentrations show a correlation with the severity of knee OA.
Collapse
Affiliation(s)
- Linghua Liu
- Department of Nursing, Hubei College of Chinese Medicine, Jingzhou, Hubei, China (mainland)
| | - Ruokun Huang
- Department of Orthopaedics, Pu'ai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Dezhang Ma
- Department of Orthopaedics, Pu'ai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Wenjun Cheng
- Department of Orthopaedics, Pu'ai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Wei Feng
- Department of Orthopaedics, Pu'ai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Danmou Xing
- Department of Orthopaedics, Pu'ai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Wusheng Kan
- Department of Orthopaedics, Pu'ai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Zhihong Xiao
- Department of Orthopaedics, Pu'ai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
13
|
Jiang K, Sun X, Chen Y, Shen Y, Jarvis JN. RNA sequencing from human neutrophils reveals distinct transcriptional differences associated with chronic inflammatory states. BMC Med Genomics 2015; 8:55. [PMID: 26310571 PMCID: PMC4551565 DOI: 10.1186/s12920-015-0128-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/11/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The transcriptional complexity of mammalian cells suggests that they have broad abilities to respond to specific environmental stimuli and physiologic contexts. These abilities were not apparent a priori from the structure of mammalian genomes, but have been identified through detailed transcriptome analyses. In this study, we examined the transcriptomes of cells of the innate immune system, human neutrophils, using RNA sequencing (RNAseq). METHODS We sequenced poly-A RNA from nine individual samples corresponding to specific phenotypes: three children with active, untreated juvenile idiopathic arthritis (JIA)(AD), three children with the same disease whose disease was inactive on medication (CRM), and three children with cystic fibrosis (CF). RESULTS We demonstrate that transcriptomes of neutrophils, typically considered non-specific in their responses and functions, display considerable specificity in their transcriptional repertoires dependent on the pathologic context, and included genes, gene isoforms, and long non-coding RNA transcripts. Furthermore, despite the small sample numbers, these findings demonstrate the potential of RNAseq approaches to biomarker development in rheumatic diseases. CONCLUSIONS These data demonstrate the capacity of cells previously considered non-specific in function to adapt their transcriptomes to specific biologic contexts. These data also provide insight into previously unrecognized pathological pathways and show considerable promise for elucidating disease and disease-state specific regulatory networks.
Collapse
Affiliation(s)
- Kaiyu Jiang
- Department of Pediatrics, State University of New York at Buffalo School of Medicine, Buffalo, NY, USA.
| | - Xiaoyun Sun
- JP Sulzberger Columbia Genome Center, Columbia University Medical Center, New York, NY, USA.
| | - Yanmin Chen
- Department of Pediatrics, State University of New York at Buffalo School of Medicine, Buffalo, NY, USA.
| | - Yufeng Shen
- JP Sulzberger Columbia Genome Center, Columbia University Medical Center, New York, NY, USA. .,Departments of Systems Biology and Biomedical Informatics, Columbia University Medical Center, New York, NY, USA.
| | - James N Jarvis
- Department of Pediatrics, State University of New York at Buffalo School of Medicine, Buffalo, NY, USA.
| |
Collapse
|
14
|
Walsh DA, Mapp PI, Kelly S. Calcitonin gene-related peptide in the joint: contributions to pain and inflammation. Br J Clin Pharmacol 2015; 80:965-78. [PMID: 25923821 DOI: 10.1111/bcp.12669] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/31/2015] [Accepted: 04/27/2015] [Indexed: 12/15/2022] Open
Abstract
Arthritis is the commonest cause of disabling chronic pain, and both osteoarthritis (OA) and rheumatoid arthritis (RA) remain major burdens on both individuals and society. Peripheral release of calcitonin gene-related peptide (CGRP) contributes to the vasodilation of acute neurogenic inflammation. Contributions of CGRP to the pain and inflammation of chronic arthritis, however, are only recently being elucidated. Animal models of arthritis are revealing the molecular and pathophysiological events that accompany and lead to progression of both arthritis and pain. Peripheral actions of CGRP in the joint might contribute to both inflammation and joint afferent sensitization. CGRP and its specific receptors are expressed in joint afferents and up-regulated following arthritis induction. Peripheral CGRP release results in activation of synovial vascular cells, through which acute vasodilatation is followed by endothelial cell proliferation and angiogenesis, key features of chronic inflammation. Local administration of CGRP to the knee also increases mechanosensitivity of joint afferents, mimicking peripheral sensitization seen in arthritic joints. Increased mechanosensitivity in OA knees and pain behaviour can be reduced by peripherally acting CGRP receptor antagonists. Effects of CGRP pathway blockade on arthritic joint afferents, but not in normal joints, suggest contributions to sensitization rather than normal joint nociception. CGRP therefore might make key contributions to the transition from normal to persistent synovitis, and the progression from nociception to sensitization. Targeting CGRP or its receptors within joint tissues to prevent these undesirable transitions during early arthritis, or suppress them in established disease, might prevent persistent inflammation and relieve arthritis pain.
Collapse
Affiliation(s)
- David A Walsh
- Professor of Rheumatology, Director Arthritis Research UK Pain Centre University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB
| | - Paul I Mapp
- Research Fellow, Arthritis UK Pain Centre, University of Nottingham, NG5 1PB
| | - Sara Kelly
- Assistant Professor in Neuroscience, School of Biosciences, University of Nottingham, Sutton Bonnington Campus, Nr Loughborough, Leicestershire, LE12 5RD, United Kingdom
| |
Collapse
|
15
|
Role of soluble adenylyl cyclase in cell death and growth. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2646-55. [PMID: 25010002 DOI: 10.1016/j.bbadis.2014.06.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/13/2022]
Abstract
cAMP signaling is an evolutionarily conserved intracellular communication system controlling numerous cellular functions. Until recently, transmembrane adenylyl cyclase (tmAC) was considered the major source for cAMP in the cell, and the role of cAMP signaling was therefore attributed exclusively to the activity of this family of enzymes. However, increasing evidence demonstrates the role of an alternative, intracellular source of cAMP produced by type 10 soluble adenylyl cyclase (sAC). In contrast to tmAC, sAC produces cAMP in various intracellular microdomains close to specific cAMP targets, e.g., in nucleus and mitochondria. Ongoing research demonstrates involvement of sAC in diverse physiological and pathological processes. The present review is focused on the role of cAMP signaling, particularly that of sAC, in cell death and growth. Although the contributions of sAC to the regulation of these cellular functions have only recently been discovered, current data suggest that sAC plays key roles in mitochondrial bioenergetics and the mitochondrial apoptosis pathway, as well as cell proliferation and development. Furthermore, recent reports suggest the importance of sAC in several pathologies associated with apoptosis as well as in oncogenesis. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
|
16
|
FAN CHANGCHUN, ZHAO XUECHUN, GUO XIAOFAN, CAO XUECHENG, CAI JINFANG. P2X4 promotes interleukin-1β production in osteoarthritis via NLRP1. Mol Med Rep 2013; 9:340-4. [DOI: 10.3892/mmr.2013.1748] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/16/2013] [Indexed: 11/06/2022] Open
|
17
|
Mapp PI, McWilliams DF, Turley MJ, Hargin E, Walsh DA. A role for the sensory neuropeptide calcitonin gene-related peptide in endothelial cell proliferation in vivo. Br J Pharmacol 2012; 166:1261-71. [PMID: 22233274 DOI: 10.1111/j.1476-5381.2012.01848.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE We have tested the hypothesis that calcitonin gene-related peptide (CGRP) is a mediator of capsaicin-induced angiogenesis in vivo. EXPERIMENTAL APPROACH In a series of experiments, the knee joints of rats were injected with CGRP, capsaicin or vehicle control. Groups of animals (n=6) were treated with the CGRP receptor antagonist BIBN4096BS and/or the NK₁ receptor antagonist SR140333. Endothelium, proliferating endothelial cell nuclei and macrophages were identified 24 h later in the synovium by immunohistochemistry and quantified by image analysis. mRNA for the receptors for CGRP and adrenomedullin were sought in normal and inflamed rat and human synovia using RT-PCR. KEY RESULTS Intra-articular CGRP injection increased the endothelial cell proliferation index, whereas macrophage infiltration and knee joint diameters were similar to saline-injected controls. CGRP-induced endothelial cell proliferation was dose-dependently inhibited by BIBN4096BS. mRNA for adrenomedullin and the CGRP receptor subunits were detected in normal and inflamed human and rat synovia. In capsaicin-induced synovitis, the increased endothelial cell proliferation index was partially blocked by administration of NK₁ or CGRP antagonists individually and was reduced to the level of saline controls by coadministration of both receptor antagonists. CONCLUSIONS AND IMPLICATIONS These data support the hypothesis that CGRP stimulates angiogenesis in vivo directly by activating CGRP receptors. Capsaicin-induced endothelial cell proliferation was completely blocked by coadministration of CGRP and NK₁ receptor antagonists, indicating that both CGRP and substance P may contribute to angiogenesis in this model of synovitis.
Collapse
Affiliation(s)
- Paul I Mapp
- Arthritis Research UK Pain Centre, University of Nottingham, City Hospital, Nottingham, UK.
| | | | | | | | | |
Collapse
|
18
|
Rullé S, Ah Kioon MD, Asensio C, Mussard J, Ea HK, Boissier MC, Lioté F, Falgarone G. Adrenomedullin, a neuropeptide with immunoregulatory properties induces semi-mature tolerogenic dendritic cells. Immunology 2012; 136:252-64. [PMID: 22348691 DOI: 10.1111/j.1365-2567.2012.03577.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DC) play a pivotal role in tolerance. Adrenomedullin (AM), a neuropeptide with anti-apoptotic and anti-inflammatory effects, may decrease T helper type 1 effector cells and induce regulatory T (Treg) cells. The aim of this study was to evaluate AM effects on murine dendritic cell (DC) maturation and functions. Bone marrow-derived DC were produced and stimulated with CpG motifs, lipopolysaccharide or AM for 24 hr. Then, DC maturation and expression of AM and AM receptors were evaluated. Compared with lipopolysaccharide-stimulated or CpG-stimulated DC, AM-stimulated DC had lower levels of co-stimulatory molecule expression and pro-inflammatory cytokine release. The AM induced high levels of interferon-γ but not of interleukin-10. Importantly, AM inhibited lipopolysaccharide-induced maturation of DC. However, allogeneic T-cell stimulation and endocytic capacity of AM-stimulated DC were comparable to those of semi-mature and mature DC. Moreover, DC expressed AM and its receptors at a basal level, and AM receptor expression increased with DC maturation. The AM stimulation induced indoleamine 2,3-dioxygenase (IDO) expression, promoting Treg cell expansion. For the first time, we describe the DC maturation phenotype by a neuropeptide (AM). We have demonstrated that AM and its receptors are expressed in DC and that exogenous AM can modify the DC phenotype and functions and can induce a semi-mature DC phenotype with IDO expression. These results indicate close interactions among immune system regulation mechanisms and calcitonin-like peptides.
Collapse
Affiliation(s)
- Sandrine Rullé
- Sorbonne Paris Cité, Université Paris 13, Bobigny, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Insel PA, Zhang L, Murray F, Yokouchi H, Zambon AC. Cyclic AMP is both a pro-apoptotic and anti-apoptotic second messenger. Acta Physiol (Oxf) 2012; 204:277-87. [PMID: 21385327 DOI: 10.1111/j.1748-1716.2011.02273.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The second messenger cyclic AMP (cAMP) can either stimulate or inhibit programmed cell death (apoptosis). Here, we review examples of cell types that show pro-apoptotic or anti-apoptotic responses to increases in cAMP. We also show that cells can have both such responses, although predominantly having one or the other. Protein kinase A (PKA)-promoted changes in phosphorylation and gene expression can mediate pro-apoptotic responses, such as in murine S49 lymphoma cells, based on evidence that mutants lacking PKA fail to undergo cAMP-promoted, mitochondria-dependent apoptosis. Mechanisms for the anti-apoptotic response to cAMP likely involve Epac (Exchange protein activated by cAMP), a cAMP-regulated effector that is a guanine nucleotide exchange factor (GEF) for the low molecular weight G-protein, Rap1. Therapeutic approaches that activate PKA-mediated pro-apoptosis or block Epac-mediated anti-apoptotisis may provide a means to enhance cell killing, such as in certain cancers. In contrast, efforts to block PKA or stimulate Epac have the potential to be useful in diseases settings (such as heart failure) associated with cAMP-promoted apoptosis.
Collapse
Affiliation(s)
- P A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, 92093-0636, USA.
| | | | | | | | | |
Collapse
|
20
|
Ah Kioon MD, Asensio C, Ea HK, Velard F, Uzan B, Rullé S, Bazille C, Marty C, Falgarone G, Nguyen C, Collet C, Launay JM, Cohen-Solal M, Lioté F. Adrenomedullin(22-52) combats inflammation and prevents systemic bone loss in murine collagen-induced arthritis. ACTA ACUST UNITED AC 2011; 64:1069-81. [PMID: 22006509 DOI: 10.1002/art.33426] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Adrenomedullin(22-52) is a truncated peptide derived from adrenomedullin, a growth factor with antiapoptotic and immunoregulatory properties. It can act as an agonist or an antagonist depending on cell type. Its in vivo effects are unknown, but adrenomedullin(22-52) could possess immunomodulatory properties. This study was undertaken to evaluate the effect of adrenomedullin(22-52) in a mouse model of arthritis. METHODS DBA/1 mice with collagen-induced arthritis (CIA) were treated with 1.2 μg/gm adrenomedullin(22-52) , adrenomedullin, or saline at arthritis onset. Bone mineral density was measured at the beginning of the experiment and when mice were killed. Mouse joints were processed for histologic analysis and protein studies, and spleens were examined for Treg cell expression. Cytokine expression was studied in mouse joint tissue and serum. RESULTS In mice with CIA, adrenomedullin and adrenomedullin(22-52) reduced clinical and histologic arthritis scores and shifted the pattern of articular and systemic cytokine expression from Th1 to Th2, as compared to untreated mice with CIA (controls). Tumor necrosis factor α, interleukin-6 (IL-6), and IL-17A levels were significantly decreased in the joints of mice with CIA treated with adrenomedullin or adrenomedullin(22-52) as compared to controls, whereas IL-4 and IL-10 levels were increased. Adrenomedullin(22-52) was more effective than adrenomedullin in modulating cytokine content and enhanced Treg cell function without changing Treg cell expression compared to controls. Adrenomedullin receptor binding and transcriptional adrenomedullin receptor expression were markedly increased in joints from controls, whereas adrenomedullin receptor binding was considerably decreased in treated animals. Mice with CIA treated with adrenomedullin or adrenomedullin(22-52) had considerably fewer apoptotic chondrocytes and diminished cartilage degradation. Adrenomedullin(22-52) completely prevented systemic bone loss by preserving osteoblastic activity, but without changes in osteoclastic activity. CONCLUSION Our findings indicate that adrenomedullin(22-52) , which has no vasoactive or tumor-inducing effects, is a potent antiinflammatory and bone-protective agent in this arthritis model.
Collapse
|
21
|
Ah Kioon MD, Asensio C, Ea HK, Uzan B, Cohen-Solal M, Lioté F. Adrenomedullin increases fibroblast-like synoviocyte adhesion to extracellular matrix proteins by upregulating integrin activation. Arthritis Res Ther 2010; 12:R190. [PMID: 20942979 PMCID: PMC2991025 DOI: 10.1186/ar3160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 07/23/2010] [Accepted: 10/14/2010] [Indexed: 11/17/2022] Open
Abstract
Introduction Rheumatoid arthritis (RA) is characterized by bone and cartilage invasion by fibroblast-like synoviocytes (FLSs). Adrenomedullin, a peptide with anabolic and antiapoptotic properties, is secreted by rheumatoid FLSs. Adrenomedullin also increases the expression of adhesion molecules in endothelial cells and keratinocytes. Here, we investigated whether adrenomedullin mediated FLS adhesion to extracellular matrix (ECM) proteins. Methods FLSs were isolated from synovial tissues from RA and osteoarthritis (OA) patients. Plates were coated overnight with the ECM proteins vitronectin, fibronectin, and type I collagen (Coll.I). Adrenomedullin was used as a soluble FLS ligand before plating. We tested interactions with the adrenomedullin receptor antagonist (22-52)adrenomedullin and with the protein kinase A (PKA) inhibitor H-89, and inhibition of co-receptor RAMP-2 by siRNA. Cell adhesion was measured by using color densitometry. Activation of α2 and β1 integrins was evaluated by fluorescent microscopy; integrin inhibition, by RGD peptides; and the talin-integrin interaction, by immunoprecipitation (IP). Results Adrenomedullin specifically increased RA-FLS adhesion to vitronectin, fibronectin, and Coll.I; no such effect was found for OA-FLS adhesion. Basal or adrenomedullin-stimulated RA-FLS adhesion was inhibited by (22-52)adrenomedullin, H-89, and RAMP-2 siRNA. Adrenomedullin-stimulated adhesion was inhibited by RGD peptides, and associated with α2 and β1 integrin activation. This activation was shown with IP to be related to an integrin-talin interaction and was significantly decreased by (22-52)adrenomedullin. Conclusions Adrenomedullin-stimulated RA-FLS adhesion was specific for ECM proteins and mediated by α2 and β1 integrins. This effect of adrenomedullin was dependent on adrenomedullin receptors. These results support a new role for adrenomedullin in rheumatoid synovial fibroblast pathobiology.
Collapse
|
22
|
Xiao S, Mo D, Wang Q, Jia J, Qin L, Yu X, Niu Y, Zhao X, Liu X, Chen Y. Aberrant host immune response induced by highly virulent PRRSV identified by digital gene expression tag profiling. BMC Genomics 2010; 11:544. [PMID: 20929578 PMCID: PMC3091693 DOI: 10.1186/1471-2164-11-544] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 10/07/2010] [Indexed: 11/10/2022] Open
Abstract
Background There was a large scale outbreak of the highly pathogenic porcine reproductive and respiratory syndrome (PRRS) in China and Vietnam during 2006 and 2007 that resulted in unusually high morbidity and mortality among pigs of all ages. The mechanisms underlying the molecular pathogenesis of the highly virulent PRRS virus (H-PRRSV) remains unknown. Therefore, the relationship between pulmonary gene expression profiles after H-PRRSV infection and infection pathology were analyzed in this study using high-throughput deep sequencing and histopathology. Results H-PRRSV infection resulted in severe lung pathology. The results indicate that aberrant host innate immune responses to H-PRRSV and induction of an anti-apoptotic state could be responsible for the aggressive replication and dissemination of H-PRRSV. Prolific rapid replication of H-PRRSV could have triggered aberrant sustained expression of pro-inflammatory cytokines and chemokines leading to a markedly robust inflammatory response compounded by significant cell death and increased oxidative damage. The end result was severe tissue damage and high pathogenicity. Conclusions The systems analysis utilized in this study provides a comprehensive basis for better understanding the pathogenesis of H-PRRSV. Furthermore, it allows the genetic components involved in H-PRRSV resistance/susceptibility in swine populations to be identified.
Collapse
Affiliation(s)
- Shuqi Xiao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hsiao CJJ, Stapleton SR. Early sensing and gene expression profiling under a low dose of cadmium exposure. Biochimie 2009; 91:329-43. [DOI: 10.1016/j.biochi.2008.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 10/16/2008] [Indexed: 02/07/2023]
|
24
|
Yun HJ, Lee EG, Lee SI, Chae HJ, Yoo WH. Adrenomedullin inhibits MAPK pathway-dependent rheumatoid synovial fibroblast-mediated osteoclastogenesis by IL-1 and TNF-alpha. Rheumatol Int 2008; 29:1161-8. [PMID: 19116717 DOI: 10.1007/s00296-008-0832-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 12/12/2008] [Indexed: 01/30/2023]
Abstract
The objective of this study is to determine the effects of adrenomedullin (AM) on IL-1- and TNF-alpha-induced rheumatoid synovial fibroblasts (RASFs)-mediated osteoclastogenesis. The formation of osteoclasts in co-cultures of RASFs and peripheral blood mononuclear cells was evaluated by tartrate-resistant acid phosphatase and resorption pit formation assay. The expression of RANKL, OPG, p-ERK, p-p38, and p-JNK was examined by immunoblotting and quantitative reverse transcription-polymerase chain reaction. AM (1-52) inhibits IL-1- and TNF-alpha-induced RASFs-mediated osteoclastogenesis. AM affected IL-1-, TNF-alpha-induced RANKL and OPG expression in RASFs. AM also inhibits IL-1 and TNF-alpha-induced phosphorylation of ERK-1/2, p38 MAPK, and JNK. Inhibitor of AM (AM 22-52) inhibits the effects of AM on the osteoclastogenesis. These results suggest that AM might be involved in the inflammatory cytokines-mediated osteoclastogenesis and thus bone damage, and indicate that it can be a new therapeutic strategy against joint destruction in RA.
Collapse
Affiliation(s)
- Hee-Jin Yun
- Division of Rheumatology, Department of Internal Medicine, Chonbuk National University Medical School and Research Institute of Clinical Medicine, Chonju, Jeonbuk, 561-712, South Korea
| | | | | | | | | |
Collapse
|
25
|
Chen XY, Li J, Cheng WM, Jiang H, Xie XF, Hu R. Effect of total flavonoids of Chrysanthemum indicum on the apoptosis of synoviocytes in joint of adjuvant arthritis rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2008; 36:695-704. [PMID: 18711767 DOI: 10.1142/s0192415x08006168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chrysanthemum is a traditional Chinese medicine used in China to treat inflammatory diseases. The total flavonoids Chrysanthemum indicum (TFC) were extracted from the dried bud of Chrysanthemum indicum. Our previous study had demonstrated that TFC was a new class of effective anti-inflammation, analgesia and immunoloregulation agents. In this study, we established an adjuvant arthritis (AA) model by injection of Freund's Complete Adjuvant (FCA) to investigate the effect of TFC on the apoptosis of synoviocytes in AA Rats. Synoviocytes isolated from knee joint of rats were treated with different doses of TFC in vitro. Synoviocytes proliferation was measured by MTT assay, and DNA fragmentations were evaluated on agarose gel electrophoresis. The levels of caspase-3 cleaved fragments were analyzed by Western blot. The annexin V stain assay was used to explore the inhibition of caspase-3 on the amelioration of synoviocytes apoptosis. The results showed that TFC inhibited the proliferation of synoviocytes. Electrophoresis showed higher ladders of DNA bands in the TFC group. Cleaved fragments of caspase-3 were increased significantly. Furthermore, the apoptotic synoviocytes were markedly decreased by the caspase-3 specific inhibitor. These results suggest that TFC could induce synoviocytes apoptosis and suppress proliferation of synoviocytes in adjuvant-induced arthritis rats.
Collapse
Affiliation(s)
- Xiao-Yu Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | | | | | | | | | | |
Collapse
|
26
|
Genini S, Delputte PL, Malinverni R, Cecere M, Stella A, Nauwynck HJ, Giuffra E. Genome-wide transcriptional response of primary alveolar macrophages following infection with porcine reproductive and respiratory syndrome virus. J Gen Virol 2008; 89:2550-2564. [PMID: 18796724 PMCID: PMC2885007 DOI: 10.1099/vir.0.2008/003244-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Porcine reproductive and respiratory syndrome is a major cause of economic loss for the swine industry worldwide. Porcine reproductive and respiratory syndrome virus (PRRSV) triggers weak and atypical innate immune responses, but key genes and mechanisms by which the virus interferes with the host innate immunity have not yet been elucidated. In this study, genes that control the response of the main target of PRRSV, porcine alveolar macrophages (PAMs), were profiled in vitro with a time-course experiment spanning the first round of virus replication. PAMs were obtained from six piglets and challenged with the Lelystad PRRSV strain, and gene expression was investigated using Affymetrix microarrays and real-time PCR. Of the 1409 differentially expressed transcripts identified by analysis of variance, two, five, 25, 16 and 100 differed from controls by a minimum of 1.5-fold at 1, 3, 6, 9 and 12 h post-infection (p.i.), respectively. A PRRSV infection effect was detectable between 3 and 6 h p.i., and was characterized by a consistent downregulation of gene expression, followed by the start of the host innate immune response at 9 h p.i. The expression of beta interferon 1 (IFN-β), but not of IFN-α, was strongly upregulated, whilst few genes commonly expressed in response to viral infections and/or induced by interferons were found to be differentially expressed. A predominance of anti-apoptotic transcripts (e.g. interleukin-10), a shift towards a T-helper cell type 2 response and a weak upregulation of tumour necrosis factor-α expression were observed within 12 h p.i., reinforcing the hypotheses that PRRSV has developed sophisticated mechanisms to escape the host defence.
Collapse
Affiliation(s)
- Sem Genini
- Parco Tecnologico Padano - CERSA, Via A. Einstein, 26900 Lodi, Italy
| | - Peter L Delputte
- Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Maria Cecere
- Parco Tecnologico Padano - CERSA, Via A. Einstein, 26900 Lodi, Italy
| | - Alessandra Stella
- Parco Tecnologico Padano - CERSA, Via A. Einstein, 26900 Lodi, Italy
| | - Hans J Nauwynck
- Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | |
Collapse
|
27
|
Hosokawa I, Hosokawa Y, Ozaki K, Nakae H, Matsuo T. Adrenomedullin suppresses tumour necrosis factor alpha-induced CXC chemokine ligand 10 production by human gingival fibroblasts. Clin Exp Immunol 2008; 152:568-75. [PMID: 18435806 DOI: 10.1111/j.1365-2249.2008.03647.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Periodontal disease is an inflammatory disorder characterized by the involvement of chemokines that are important for the recruitment of leucocytes. Several cytokines, including tumour necrosis factor alpha (TNF-alpha), are involved in regulating levels of chemokines in periodontal disease. CXC chemokine ligand 10 (CXCL10) is a chemokine related to the migration of T helper 1 cells. In this study, we examined CXCL10 expression in human gingival fibroblasts (HGFs). Moreover, we investigated the effects of adrenomedullin (AM), which is a multi-functional regulatory peptide, on the production of CXCL10 by HGFs. We revealed that TNF-alpha stimulation induced CXCL10 production by HGFs. HGFs expressed AM and AM receptors, calcitonin-receptor-like receptor (CRLR) and receptor-activity-modifying protein (RAMP) 2, mRNAs constitutively. AM treatment supressed CXCL10 production by TNF-alpha-stimulated HGFs. Moreover, we elucidated that AM produced by HGFs inhibited CXCL10 production by HGFs, because AM antagonist enhanced CXCL10 production by HGFs. TNF-alpha treatment enhanced CRLR and RAMP2 mRNA expression in HGFs. Furthermore, AM is expressed in human periodontal tissues, including both inflamed and clinically healthy tissues. These results suggest that the CXCL10 produced by HGFs may be involved in the migration of leucocytes into inflamed tissues and related to exacerbation of periodontal disease. AM might be a therapeutic target of periodontal disease, because AM can inhibit CXCL10 production by HGFs.
Collapse
Affiliation(s)
- I Hosokawa
- Department of Conservative Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan.
| | | | | | | | | |
Collapse
|
28
|
Ureten K, Ozbek M, Oztürk MA, Dogru I, Dogru A, Yürekli M, Karakurt F, Onat AM. Circulating adrenomedullin levels in ankylosing spondylitis and Familial Mediterranean Fever. Joint Bone Spine 2008; 75:295-8. [PMID: 18394945 DOI: 10.1016/j.jbspin.2007.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Accepted: 09/25/2007] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Adrenomedullin (AM) is a 52-amino acid peptide with vasorelaxant properties. Apart from its roles on vascular tonus, AM can also contribute to inflammatory events. Plasma AM levels were elevated in connective tissue diseases and vasculitic disorders. Ankylosing spondylitis (AS) is a chronic inflammatory disease of the spine initiating in the sacroiliac joints. Familial Mediterranean Fever (FMF) is a hereditary disorder characterized by self-limiting acute attacks of fever and the presence of sustained subclinical inflammation in the attack-free periods. In this study, we investigated plasma AM levels in patients with AS and patients with FMF. METHODS Twenty AS patients with active disease manifestations (mean age: 41.6+/-10.9 years, female/male: 7/13), 28 FMF patients with acute attack (mean age: 27.4+/-10.7 years, female/male: 17/11), and 26 healthy controls (mean age: 39.9+/-5.5 years, female/male: 16/10) were enrolled in this study. AM levels were also measured in 11 FMF patients 2 months after the cessation of their attacks. AM levels of those 11 patients during their FMF attacks and attack-free periods were also compared. RESULTS Median plasma AM levels were 23.86 (17.24-40.09) pmol/mL, 27.33 (17.24-38.52) pmol/mL, and 26.11 (17.05-37.42) pmol/mL in AS patients, FMF patients with acute attack, and healthy controls, respectively (p>0.05). AM levels were also similar in the attack-free periods of FMF patients [26.35 (24.35-34.14) pmol/mL]. There was no correlation between plasma AM levels and C-reactive protein, or between plasma AM levels and erythrocyte sedimentation rate. CONCLUSIONS AM does not seem to have any role in the pathogenesis of AS and FMF. Previous reports of elevated levels of AM in connective tissue disorders and vasculitic diseases are probably disease specific, and AM does not seem to be a common component of inflammatory rheumatic disorders.
Collapse
Affiliation(s)
- Kemal Ureten
- Department of Rheumatology, Saglik Bakanligi Ankara Egitim ve Arastirma Hastanesi, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Uzan B, Villemin A, Garel JM, Cressent M. Adrenomedullin is anti-apoptotic in osteoblasts through CGRP1 receptors and MEK-ERK pathway. J Cell Physiol 2008; 215:122-8. [PMID: 17941085 DOI: 10.1002/jcp.21294] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Adrenomedullin (ADM) has been shown to mediate multifunctional responses in cell culture and animal system such as regulation of growth and apoptosis. ADM stimulates the proliferation of osteoblasts in vitro and promotes bone growth in vivo. The ability of ADM to influence osteoblastic cell number through inhibition of apoptosis has not yet been studied. To address this question we have investigated its effect on the apoptosis of serum-deprived osteoblastic cells using mouse MC3T3-E1 cells which express both ADM and ADM receptors. Treatment with ADM significantly blunted apoptosis, evaluated by caspase-3 activity, DNA fragmentation quantification and annexin V-FITC labeling. This effect was abolished by the subtype-1 CGRP receptor antagonist, CGRP(8-37). Both ADM and its specific receptor antagonist, the (22-52) ADM fragment exhibited a similar anti-apoptotic effect. Thus, our data suggest that ADM exerts anti-apoptotic effects through CGRP1 receptors. This was substantiated by a similar protective effect of CGRP on MC3T3-E1 cells apoptosis. Accordingly, neutralization of endogenous ADM by a specific antibody enhanced apoptosis. Finally, the selective inhibitor of MAPK kinase (MEK), PD98059, abolished the apoptosis protective effect of ADM and prevented ADM activation of ERK1/2. These data show that ADM acts as a survival factor in osteoblastic cells via a CGRP1 receptor-MEK-ERK pathway, which provides further understanding on the physiological function of ADM in osteoblasts.
Collapse
|
30
|
Sawai H, Park YW, He X, Goronzy JJ, Weyand CM. Fractalkine mediates T cell-dependent proliferation of synovial fibroblasts in rheumatoid arthritis. ACTA ACUST UNITED AC 2007; 56:3215-25. [PMID: 17907166 DOI: 10.1002/art.22919] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE In rheumatoid arthritis (RA), synovial fibroblasts proliferate excessively, eventually eroding bone and cartilage. The aim of this study was to examine the mechanisms through which CD4 T cells, the dominant lymphocyte population in patients with rheumatoid synovitis, regulate synoviocyte proliferation. METHODS Fibroblast-like synoviocyte (FLS) lines were established from rheumatoid synovium. CD4 T cells from patients with RA and age-matched control subjects were cultured on FLS monolayers. FLS proliferation was quantified by cytometry, using carboxyfluorescein succinimidyl ester staining or microscopic enumeration of PKH26-stained FLS. Surface expression of the fractalkine (FKN) receptor CX(3)CR1 was monitored by fluorescence-activated cell sorting. The induction of CX(3)CR1 and its ligand FKN in FLS was quantified by real-time polymerase chain reaction. RESULTS The proliferation of FLS was significantly increased in the presence of CD4 T cells from patients with RA compared with control T cells. CD4+,CD28- T cells were particularly effective in supporting FLS growth, inducing a 25-fold expansion compared with a 5-fold expansion induced by CD4+,CD28+ T cells. The growth-promoting activity of CD4+,CD28- T cells was mediated through CX(3)CR1, a chemokine receptor expressed on both T cells and FLS. Anti-CX(3)CR1 antibodies inhibited T cell production of tumor necrosis factor alpha (TNFalpha) and suppressed FLS proliferation. TNFalpha amplified the expansion of FLS by enhancing their expression of CX(3)CR1 and FKN. CONCLUSION FKN-CX(3)CR1 receptor-ligand interactions regulate FLS growth and FLS-dependent T cell function. FLS stimulate autocrine growth by releasing FKN and triggering the activity of their own CX(3)CR1. This growth-promotion loop is amplified by TNFalpha produced by CX(3)CR1-expressing T cells upon stimulation by FKN-expressing FLS. These data assign a critical role to FKN and its receptor in fibroblast proliferation and pannus formation in RA.
Collapse
Affiliation(s)
- Hirokazu Sawai
- Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|