1
|
Steier Z, Kim EJY, Aylard DA, Robey EA. The CD4 Versus CD8 T Cell Fate Decision: A Multiomics-Informed Perspective. Annu Rev Immunol 2024; 42:235-258. [PMID: 38271641 DOI: 10.1146/annurev-immunol-083122-040929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The choice of developing thymocytes to become CD8+ cytotoxic or CD4+ helper T cells has been intensely studied, but many of the underlying mechanisms remain to be elucidated. Recent multiomics approaches have provided much higher resolution analysis of gene expression in developing thymocytes than was previously achievable, thereby offering a fresh perspective on this question. Focusing on our recent studies using CITE-seq (cellular indexing of transcriptomes and epitopes) analyses of mouse thymocytes, we present a detailed timeline of RNA and protein expression changes during CD8 versus CD4 T cell differentiation. We also revisit our current understanding of the links between T cell receptor signaling and expression of the lineage-defining transcription factors ThPOK and RUNX3. Finally, we propose a sequential selection model to explain the tight linkage between MHC-I versus MHC-II recognition and T cell lineage choice. This model incorporates key aspects of previously proposed kinetic signaling, instructive, and stochastic/selection models.
Collapse
Affiliation(s)
- Zoë Steier
- Department of Bioengineering and Center for Computational Biology, University of California, Berkeley, California, USA
- Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, Berkeley and San Francisco, California, USA
- Current affiliation: Institute for Medical Engineering and Science, Massachusetts Institute of Technology; Broad Institute of MIT and Harvard; and Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Esther Jeong Yoon Kim
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Dominik A Aylard
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Ellen A Robey
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| |
Collapse
|
2
|
Unique roles of co-receptor-bound LCK in helper and cytotoxic T cells. Nat Immunol 2023; 24:174-185. [PMID: 36564464 PMCID: PMC9810533 DOI: 10.1038/s41590-022-01366-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/20/2022] [Indexed: 12/24/2022]
Abstract
The kinase LCK and CD4/CD8 co-receptors are crucial components of the T cell antigen receptor (TCR) signaling machinery, leading to key T cell fate decisions. Despite decades of research, the roles of CD4-LCK and CD8-LCK interactions in TCR triggering in vivo remain unknown. In this study, we created animal models expressing endogenous levels of modified LCK to resolve whether and how co-receptor-bound LCK drives TCR signaling. We demonstrated that the role of LCK depends on the co-receptor to which it is bound. The CD8-bound LCK is largely dispensable for antiviral and antitumor activity of cytotoxic T cells in mice; however, it facilitates CD8+ T cell responses to suboptimal antigens in a kinase-dependent manner. By contrast, the CD4-bound LCK is required for efficient development and function of helper T cells via a kinase-independent stabilization of surface CD4. Overall, our findings reveal the role of co-receptor-bound LCK in T cell biology, show that CD4- and CD8-bound LCK drive T cell development and effector immune responses using qualitatively different mechanisms and identify the co-receptor-LCK interactions as promising targets for immunomodulation.
Collapse
|
3
|
Viano ME, Baez NS, Savid-Frontera C, Lidon NL, Hodge DL, Herbelin A, Gombert JM, Barbarin A, Rodriguez-Galan MC. Virtual Memory CD8 + T Cells: Origin and Beyond. J Interferon Cytokine Res 2022; 42:624-642. [PMID: 36083273 PMCID: PMC9835308 DOI: 10.1089/jir.2022.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/19/2022] [Indexed: 01/21/2023] Open
Abstract
The presence of CD8+ T cells with a memory phenotype in nonimmunized mice has been noted for decades, but it was not until about 2 decades ago that they began to be studied in greater depth. Currently called virtual memory CD8+ T cells, they consist of a heterogeneous group of cells with memory characteristics, without any previous contact with their specific antigens. These cells were identified in mice, but a few years ago, a cell type with characteristics equivalent to the murine ones was described in healthy humans. In this review, we address the different aspects of its biology mainly developed in murine models and what is currently known about its cellular equivalent in humans.
Collapse
Affiliation(s)
- Maria Estefania Viano
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia Soledad Baez
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Savid-Frontera
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolás Leonel Lidon
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - André Herbelin
- Inserm U1313, Poitiers, France
- Université de Poitiers, Poitiers, France
| | - Jean-Marc Gombert
- Inserm U1313, Poitiers, France
- Université de Poitiers, Poitiers, France
- Service d'Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| | - Alice Barbarin
- Inserm U1313, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | | |
Collapse
|
4
|
Damen H, Tebid C, Viens M, Roy DC, Dave VP. Negative Regulation of Zap70 by Lck Forms the Mechanistic Basis of Differential Expression in CD4 and CD8 T Cells. Front Immunol 2022; 13:935367. [PMID: 35860252 PMCID: PMC9289233 DOI: 10.3389/fimmu.2022.935367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Lck and Zap70, two non-receptor tyrosine kinases, play a crucial role in the regulation of membrane proximal TCR signaling critical for thymic selection, CD4/CD8 lineage choice and mature T cell function. Signal initiation upon TCR/CD3 and peptide/MHC interaction induces Lck-mediated phosphorylation of CD3 ITAMs. This is necessary for Zap70 recruitment and its phosphorylation by Lck leading to full Zap70 activation. In its native state Zap70 maintains a closed conformation creating an auto-inhibitory loop, which is relieved by Lck-mediated phosphorylation of Y315/Y319. Zap70 is differentially expressed in thymic subsets and mature T cells with CD8 T cells expressing the highest amount compared to CD4 T cells. However, the mechanistic basis of differential Zap70 expression in thymic subsets and mature T cells is not well understood. Here, we show that Zap70 is degraded relatively faster in DP and mature CD4 T cells compared to CD8 T cells, and inversely correlated with relative level of activated Zap70. Importantly, we found that Zap70 expression is negatively regulated by Lck activity: augmented Lck activity resulting in severe diminution in total Zap70. Moreover, Lck-mediated phosphorylation of Y315/Y319 was essential for Zap70 degradation. Together, these data shed light on the underlying mechanism of Lck-mediated differential modulation of Zap70 expression in thymic subsets and mature T cells.
Collapse
Affiliation(s)
- Hassan Damen
- Institute for Hematology-Oncology, Cell and Gene Therapy, Hopital Maisonneuve-Rosemont Research Center, Montreal, QC, Canada
| | - Christian Tebid
- Institute for Hematology-Oncology, Cell and Gene Therapy, Hopital Maisonneuve-Rosemont Research Center, Montreal, QC, Canada
| | - Melissa Viens
- Institute for Hematology-Oncology, Cell and Gene Therapy, Hopital Maisonneuve-Rosemont Research Center, Montreal, QC, Canada
| | - Denis-Claude Roy
- Institute for Hematology-Oncology, Cell and Gene Therapy, Hopital Maisonneuve-Rosemont Research Center, Montreal, QC, Canada
- Department of Medicine, University of Montreal, Montreal, QC, Canada
- *Correspondence: Denis-Claude Roy, ; Vibhuti P. Dave,
| | - Vibhuti P. Dave
- Institute for Hematology-Oncology, Cell and Gene Therapy, Hopital Maisonneuve-Rosemont Research Center, Montreal, QC, Canada
- *Correspondence: Denis-Claude Roy, ; Vibhuti P. Dave,
| |
Collapse
|
5
|
Shinzawa M, Moseman EA, Gossa S, Mano Y, Bhattacharya A, Guinter T, Alag A, Chen X, Cam M, McGavern DB, Erman B, Singer A. Reversal of the T cell immune system reveals the molecular basis for T cell lineage fate determination in the thymus. Nat Immunol 2022; 23:731-742. [PMID: 35523960 PMCID: PMC9098387 DOI: 10.1038/s41590-022-01187-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/15/2022] [Indexed: 12/03/2022]
Abstract
T cell specificity and function are linked during development, as MHC-II-specific TCR signals generate CD4 helper T cells and MHC-I-specific TCR signals generate CD8 cytotoxic T cells, but the basis remains uncertain. We now report that switching coreceptor proteins encoded by Cd4 and Cd8 gene loci functionally reverses the T cell immune system, generating CD4 cytotoxic and CD8 helper T cells. Such functional reversal reveals that coreceptor proteins promote the helper-lineage fate when encoded by Cd4, but promote the cytotoxic-lineage fate when encoded in Cd8—regardless of the coreceptor proteins each locus encodes. Thus, T cell lineage fate is determined by cis-regulatory elements in coreceptor gene loci and is not determined by the coreceptor proteins they encode, invalidating coreceptor signal strength as the basis of lineage fate determination. Moreover, we consider that evolution selected the particular coreceptor proteins that Cd4 and Cd8 gene loci encode to avoid generating functionally reversed T cells because they fail to promote protective immunity against environmental pathogens. To determine how T cell lineage fates are determined in the thymus, Singer and colleagues generated ‘FlipFlop’ mice with a functionally reversed T cell immune system that distinguishes TCR signal strength versus TCR signal duration.
Collapse
Affiliation(s)
- Miho Shinzawa
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - E Ashley Moseman
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Selamawit Gossa
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Yasuko Mano
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Abhisek Bhattacharya
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Terry Guinter
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amala Alag
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiongfong Chen
- Office of Science and Technology Resources, Office of the Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,CCR-SF Bioinformatics Group, Advanced Biomedical Computational Science, Biomedical Informatics and Data Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Maggie Cam
- Office of Science and Technology Resources, Office of the Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Batu Erman
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Horkova V, Stepanek O. A LoCK at the T cell dock. Science 2021; 372:1038-1039. [PMID: 34083474 DOI: 10.1126/science.abj2937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Veronika Horkova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic.
| |
Collapse
|
7
|
Classical MHC expression by DP thymocytes impairs the selection of non-classical MHC restricted innate-like T cells. Nat Commun 2021; 12:2308. [PMID: 33863906 PMCID: PMC8052364 DOI: 10.1038/s41467-021-22589-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 03/10/2021] [Indexed: 02/02/2023] Open
Abstract
Conventional T cells are selected by peptide-MHC expressed by cortical epithelial cells in the thymus, and not by cortical thymocytes themselves that do not express MHC I or MHC II. Instead, cortical thymocytes express non-peptide presenting MHC molecules like CD1d and MR1, and promote the selection of PLZF+ iNKT and MAIT cells, respectively. Here, we report an inducible class-I transactivator mouse that enables the expression of peptide presenting MHC I molecules in different cell types. We show that MHC I expression in DP thymocytes leads to expansion of peptide specific PLZF+ innate-like (PIL) T cells. Akin to iNKT cells, PIL T cells differentiate into three functional effector subsets in the thymus, and are dependent on SAP signaling. We demonstrate that PIL and NKT cells compete for a narrow niche, suggesting that the absence of peptide-MHC on DP thymocytes facilitates selection of non-peptide specific lymphocytes.
Collapse
|
8
|
Horkova V, Drobek A, Mueller D, Gubser C, Niederlova V, Wyss L, King CG, Zehn D, Stepanek O. Dynamics of the Coreceptor-LCK Interactions during T Cell Development Shape the Self-Reactivity of Peripheral CD4 and CD8 T Cells. Cell Rep 2021; 30:1504-1514.e7. [PMID: 32023465 PMCID: PMC7003063 DOI: 10.1016/j.celrep.2020.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/31/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Overtly self-reactive T cells are removed during thymic selection. However, it has been recently established that T cell self-reactivity promotes protective immune responses. Apparently, the level of self-reactivity of mature T cells must be tightly balanced. Our mathematical model and experimental data show that the dynamic regulation of CD4- and CD8-LCK coupling establish the self-reactivity of the peripheral T cell pool. The stoichiometry of the interaction between CD8 and LCK, but not between CD4 and LCK, substantially increases upon T cell maturation. As a result, peripheral CD8+ T cells are more self-reactive than CD4+ T cells. The different levels of self-reactivity of mature CD8+ and CD4+ T cells likely reflect the unique roles of these subsets in immunity. These results indicate that the evolutionary selection pressure tuned the CD4-LCK and CD8-LCK stoichiometries, as they represent the unique parts of the proximal T cell receptor (TCR) signaling pathway, which differ between CD4+ and CD8+ T cells. Coupling of CD8-LCK but not CD4-LCK increases upon T cell maturation Dynamics of coreceptor-LCK coupling stoichiometry establish T cell self-reactivity CD8+ T cells are more self-reactive than CD4+ T cells
Collapse
Affiliation(s)
- Veronika Horkova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Ales Drobek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Daniel Mueller
- Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - Celine Gubser
- Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland; Peter Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Lena Wyss
- Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland; Institute for Immunology, Biomedical Center (BMC) Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Carolyn G King
- Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic.
| |
Collapse
|
9
|
Karimi MM, Guo Y, Cui X, Pallikonda HA, Horková V, Wang YF, Gil SR, Rodriguez-Esteban G, Robles-Rebollo I, Bruno L, Georgieva R, Patel B, Elliott J, Dore MH, Dauphars D, Krangel MS, Lenhard B, Heyn H, Fisher AG, Štěpánek O, Merkenschlager M. The order and logic of CD4 versus CD8 lineage choice and differentiation in mouse thymus. Nat Commun 2021; 12:99. [PMID: 33397934 PMCID: PMC7782583 DOI: 10.1038/s41467-020-20306-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022] Open
Abstract
CD4 and CD8 mark helper and cytotoxic T cell lineages, respectively, and serve as coreceptors for MHC-restricted TCR recognition. How coreceptor expression is matched with TCR specificity is central to understanding CD4/CD8 lineage choice, but visualising coreceptor gene activity in individual selection intermediates has been technically challenging. It therefore remains unclear whether the sequence of coreceptor gene expression in selection intermediates follows a stereotypic pattern, or is responsive to signaling. Here we use single cell RNA sequencing (scRNA-seq) to classify mouse thymocyte selection intermediates by coreceptor gene expression. In the unperturbed thymus, Cd4+Cd8a- selection intermediates appear before Cd4-Cd8a+ selection intermediates, but the timing of these subsets is flexible according to the strength of TCR signals. Our data show that selection intermediates discriminate MHC class prior to the loss of coreceptor expression and suggest a model where signal strength informs the timing of coreceptor gene activity and ultimately CD4/CD8 lineage choice.
Collapse
Affiliation(s)
- Mohammad M Karimi
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Ya Guo
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaokai Cui
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Husayn A Pallikonda
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Veronika Horková
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Yi-Fang Wang
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Sara Ruiz Gil
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Gustavo Rodriguez-Esteban
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Irene Robles-Rebollo
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Ludovica Bruno
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Radina Georgieva
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Bhavik Patel
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - James Elliott
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Marian H Dore
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Danielle Dauphars
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Amanda G Fisher
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Ondřej Štěpánek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Matthias Merkenschlager
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
10
|
Paprckova D, Stepanek O. Narcissistic T cells: reactivity to self makes a difference. FEBS J 2020; 288:1778-1788. [PMID: 32738029 DOI: 10.1111/febs.15498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/22/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022]
Abstract
It has been appreciated for more than three decades that the interactions between the T-cell antigen receptor and self-antigens are the major determinants of the cell fates of developing thymocytes and the establishment of central tolerance. However, recent evidence shows that the level of self-reactivity substantially contributes to fate choices of positively selected mature T cells in homeostasis, as well as during immune responses. This implies that individual clones of peripheral T cells are predisposed to specific functional properties based on the self-reactivity of their antigen receptors. Overall, the relative difference in the self-reactivity among peripheral T cells is an important factor contributing to the diversity of T-cell responses to foreign antigens.
Collapse
Affiliation(s)
- Darina Paprckova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Rushdi M, Li K, Yuan Z, Travaglino S, Grakoui A, Zhu C. Mechanotransduction in T Cell Development, Differentiation and Function. Cells 2020; 9:E364. [PMID: 32033255 PMCID: PMC7072571 DOI: 10.3390/cells9020364] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023] Open
Abstract
Cells in the body are actively engaging with their environments that include both biochemical and biophysical aspects. The process by which cells convert mechanical stimuli from their environment to intracellular biochemical signals is known as mechanotransduction. Exemplifying the reliance on mechanotransduction for their development, differentiation and function are T cells, which are central to adaptive immune responses. T cell mechanoimmunology is an emerging field that studies how T cells sense, respond and adapt to the mechanical cues that they encounter throughout their life cycle. Here we review different stages of the T cell's life cycle where existing studies have shown important effects of mechanical force or matrix stiffness on a T cell as sensed through its surface molecules, including modulating receptor-ligand interactions, inducing protein conformational changes, triggering signal transduction, amplifying antigen discrimination and ensuring directed targeted cell killing. We suggest that including mechanical considerations in the immunological studies of T cells would inform a more holistic understanding of their development, differentiation and function.
Collapse
Affiliation(s)
- Muaz Rushdi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.R.); (K.L.); (S.T.)
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Kaitao Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.R.); (K.L.); (S.T.)
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Zhou Yuan
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30313, USA
| | - Stefano Travaglino
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.R.); (K.L.); (S.T.)
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Arash Grakoui
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes Research Primate Center, Emory University School of Medicine, Atlanta, GA 30329, USA;
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.R.); (K.L.); (S.T.)
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30313, USA
| |
Collapse
|
12
|
Hong J, Ge C, Jothikumar P, Yuan Z, Liu B, Bai K, Li K, Rittase W, Shinzawa M, Zhang Y, Palin A, Love P, Yu X, Salaita K, Evavold BD, Singer A, Zhu C. A TCR mechanotransduction signaling loop induces negative selection in the thymus. Nat Immunol 2018; 19:1379-1390. [PMID: 30420628 PMCID: PMC6452639 DOI: 10.1038/s41590-018-0259-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 10/17/2018] [Indexed: 12/18/2022]
Abstract
The T cell antigen receptor (TCR) expressed on thymocytes interacts with self-peptide major histocompatibility complex (pMHC) ligands to signal apoptosis or survival. Here, we found that negative-selection ligands induced thymocytes to exert forces on the TCR and the co-receptor CD8 and formed cooperative TCR-pMHC-CD8 trimolecular 'catch bonds', whereas positive-selection ligands induced less sustained thymocyte forces on TCR and CD8 and formed shorter-lived, independent TCR-pMHC and pMHC-CD8 bimolecular 'slip bonds'. Catch bonds were not intrinsic to either the TCR-pMHC or the pMHC-CD8 arm of the trans (cross-junctional) heterodimer but resulted from coupling of the extracellular pMHC-CD8 interaction to the intracellular interaction of CD8 with TCR-CD3 via associated kinases to form a cis (lateral) heterodimer capable of inside-out signaling. We suggest that the coupled trans-cis heterodimeric interactions form a mechanotransduction loop that reinforces negative-selection signaling that is distinct from positive-selection signaling in the thymus.
Collapse
Affiliation(s)
- Jinsung Hong
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,Vaccine Production Program Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institute of Health, Gaithersburg, MD, USA
| | - Chenghao Ge
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Prithiviraj Jothikumar
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zhou Yuan
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Baoyu Liu
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ke Bai
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Kaitao Li
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - William Rittase
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Miho Shinzawa
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yun Zhang
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Amy Palin
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD, USA.,Experimental Immunology Branch, National Cancer Institute National Institutes of Health, Bethesda, MD, USA
| | - Paul Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD, USA
| | - Xinhua Yu
- Division of Epidemiology, Biostatistics and Environment Health, University of Memphis, Memphis, TN, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Brian D Evavold
- Department of Immunology and Microbiology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA. .,Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA. .,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
13
|
Drobek A, Moudra A, Mueller D, Huranova M, Horkova V, Pribikova M, Ivanek R, Oberle S, Zehn D, McCoy KD, Draber P, Stepanek O. Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells. EMBO J 2018; 37:embj.201798518. [PMID: 29752423 PMCID: PMC6043851 DOI: 10.15252/embj.201798518] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/11/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
Virtual memory T cells are foreign antigen‐inexperienced T cells that have acquired memory‐like phenotype and constitute 10–20% of all peripheral CD8+ T cells in mice. Their origin, biological roles, and relationship to naïve and foreign antigen‐experienced memory T cells are incompletely understood. By analyzing T‐cell receptor repertoires and using retrogenic monoclonal T‐cell populations, we demonstrate that the virtual memory T‐cell formation is a so far unappreciated cell fate decision checkpoint. We describe two molecular mechanisms driving the formation of virtual memory T cells. First, virtual memory T cells originate exclusively from strongly self‐reactive T cells. Second, the stoichiometry of the CD8 interaction with Lck regulates the size of the virtual memory T‐cell compartment via modulating the self‐reactivity of individual T cells. Although virtual memory T cells descend from the highly self‐reactive clones and acquire a partial memory program, they are not more potent in inducing experimental autoimmune diabetes than naïve T cells. These data underline the importance of the variable level of self‐reactivity in polyclonal T cells for the generation of functional T‐cell diversity.
Collapse
Affiliation(s)
- Ales Drobek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Moudra
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Mueller
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Martina Huranova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Veronika Horkova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Pribikova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Robert Ivanek
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Susanne Oberle
- Swiss Vaccine Research Institute, Epalinges, Switzerland
| | - Dietmar Zehn
- Swiss Vaccine Research Institute, Epalinges, Switzerland.,Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Kathy D McCoy
- Department of Clinical Research (DKF), Inselspital, University of Bern, Bern, Switzerland
| | - Peter Draber
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic .,Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| |
Collapse
|
14
|
Kimura MY, Thomas J, Tai X, Guinter TI, Shinzawa M, Etzensperger R, Li Z, Love P, Nakayama T, Singer A. Timing and duration of MHC I positive selection signals are adjusted in the thymus to prevent lineage errors. Nat Immunol 2016; 17:1415-1423. [PMID: 27668801 DOI: 10.1038/ni.3560] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
Abstract
Major histocompatibility complex class I (MHC I) positive selection of CD8+ T cells in the thymus requires that T cell antigen receptor (TCR) signaling end in time for cytokines to induce Runx3d, the CD8-lineage transcription factor. We examined the time required for these events and found that the overall duration of positive selection was similar for all CD8+ thymocytes in mice, despite markedly different TCR signaling times. Notably, prolonged TCR signaling times were counter-balanced by accelerated Runx3d induction by cytokines and accelerated differentiation into CD8+ T cells. Consequently, lineage errors did not occur except when MHC I-TCR signaling was so prolonged that the CD4-lineage-specifying transcription factor ThPOK was expressed, preventing Runx3d induction. Thus, our results identify a compensatory signaling mechanism that prevents lineage-fate errors by dynamically modulating Runx3d induction rates during MHC I positive selection.
Collapse
Affiliation(s)
- Motoko Y Kimura
- Experimental Immunology Branch, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Julien Thomas
- Experimental Immunology Branch, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Xuguang Tai
- Experimental Immunology Branch, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Terry I Guinter
- Experimental Immunology Branch, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Miho Shinzawa
- Experimental Immunology Branch, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Ruth Etzensperger
- Experimental Immunology Branch, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Zhenhu Li
- Laboratory of Mammalian Genes and Development, Eunice Kennedy Schriver National Institute of Child Health and Human Development, US National Institutes of Health, Bethesda, Maryland, USA
| | - Paul Love
- Laboratory of Mammalian Genes and Development, Eunice Kennedy Schriver National Institute of Child Health and Human Development, US National Institutes of Health, Bethesda, Maryland, USA
| | | | - Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Abstract
The proliferation of specific lymphocytes is the central tenet of the clonal selection paradigm. Antigen recognition by T cells triggers a series of events that produces expanded clones of differentiated effector cells. TCR signaling events are detectable within seconds and minutes and are likely to continue for hours and days in vivo. Here, I review the work done on the importance of TCR signals in the later part of the expansion phase of the primary T cell response, primarily regarding the regulation of the cell cycle in CD4(+) and CD8(+) cells. The results suggest a degree of programing by early signals for effector differentiation, particularly in the CD8(+) T cell compartment, with optimal expansion supported by persistent antigen presentation later on. Differences to CD4(+) T cell expansion and new avenues toward a molecular understanding of cell cycle regulation in lymphocytes are discussed.
Collapse
Affiliation(s)
- Reinhard Obst
- Institute for Immunology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
16
|
Stepanek O, Prabhakar AS, Osswald C, King CG, Bulek A, Naeher D, Beaufils-Hugot M, Abanto ML, Galati V, Hausmann B, Lang R, Cole DK, Huseby ES, Sewell AK, Chakraborty AK, Palmer E. Coreceptor scanning by the T cell receptor provides a mechanism for T cell tolerance. Cell 2014; 159:333-45. [PMID: 25284152 PMCID: PMC4304671 DOI: 10.1016/j.cell.2014.08.042] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/14/2014] [Accepted: 08/29/2014] [Indexed: 12/11/2022]
Abstract
In the thymus, high-affinity, self-reactive thymocytes are eliminated from the pool of developing T cells, generating central tolerance. Here, we investigate how developing T cells measure self-antigen affinity. We show that very few CD4 or CD8 coreceptor molecules are coupled with the signal-initiating kinase, Lck. To initiate signaling, an antigen-engaged T cell receptor (TCR) scans multiple coreceptor molecules to find one that is coupled to Lck; this is the first and rate-limiting step in a kinetic proofreading chain of events that eventually leads to TCR triggering and negative selection. MHCII-restricted TCRs require a shorter antigen dwell time (0.2 s) to initiate negative selection compared to MHCI-restricted TCRs (0.9 s) because more CD4 coreceptors are Lck-loaded compared to CD8. We generated a model (Lck come&stay/signal duration) that accurately predicts the observed differences in antigen dwell-time thresholds used by MHCI- and MHCII-restricted thymocytes to initiate negative selection and generate self-tolerance.
Collapse
Affiliation(s)
- Ondrej Stepanek
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland.
| | - Arvind S Prabhakar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Celine Osswald
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Carolyn G King
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Anna Bulek
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Dieter Naeher
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Marina Beaufils-Hugot
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Michael L Abanto
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Virginie Galati
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Barbara Hausmann
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Rosemarie Lang
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - David K Cole
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Eric S Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Andrew K Sewell
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Arup K Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Departments of Physics, Chemistry, and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA 02139, USA
| | - Ed Palmer
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
17
|
Kimura MY, Pobezinsky LA, Guinter TI, Thomas J, Adams A, Park JH, Tai X, Singer A. IL-7 signaling must be intermittent, not continuous, during CD8⁺ T cell homeostasis to promote cell survival instead of cell death. Nat Immunol 2012; 14:143-51. [PMID: 23242416 PMCID: PMC3552087 DOI: 10.1038/ni.2494] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/14/2012] [Indexed: 12/11/2022]
Abstract
The maintenance of naive CD8(+) T cells is necessary for lifelong immunocompetence but for unknown reasons requires signaling via both interleukin 7 (IL-7) and the T cell antigen receptor (TCR). We now report that naive CD8(+) T cells required IL-7 signaling to be intermittent, not continuous, because prolonged IL-7 signaling induced naive CD8(+) T cells to proliferate, produce interferon-γ (IFN-γ) and undergo IFN-γ-triggered cell death. Homeostatic engagement of the TCR interrupted IL-7 signaling and thereby supported the survival and quiescence of CD8(+) T cells. However, CD8(+) T cells with insufficient TCR affinity for self ligands received prolonged IL-7 signaling and died during homeostasis. In this study we identified regulation of the duration of IL-7 signaling by homeostatic engagement of the TCR as the basis for in vivo CD8(+) T cell homeostasis.
Collapse
Affiliation(s)
- Motoko Y Kimura
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Cevik SI, Keskin N, Belkaya S, Ozlu MI, Deniz E, Tazebay UH, Erman B. CD81 interacts with the T cell receptor to suppress signaling. PLoS One 2012; 7:e50396. [PMID: 23226274 PMCID: PMC3511562 DOI: 10.1371/journal.pone.0050396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/19/2012] [Indexed: 01/29/2023] Open
Abstract
CD81 (TAPA-1) is a ubiquitously expressed tetraspanin protein identified as a component of the B lymphocyte receptor (BCR) and as a receptor for the Hepatitis C Virus. In an effort to identify trans-membrane proteins that interact with the T-cell antigen receptor (TCR), we performed a membrane yeast two hybrid screen and identified CD81 as an interactor of the CD3delta subunit of the TCR. We found that in the absence of CD81, in thymocytes from knockout mice, TCR engagement resulted in stronger signals. These results were recapitulated in T cell lines that express low levels of CD81 through shRNA mediated silencing. Increased signaling did not result from alterations in the levels of TCR on the surface of T lymphocytes. Although CD81 is not essential for normal T lymphocyte development, it plays an important role in regulating TCR and possibly pre-TCR signal transduction by controlling the strength of signaling. CD81 dependent alterations in thymocyte signaling are evident in increased CD5 expression on CD81 deficient double positive (DP) thymocytes. We conclude that CD81 interacts with the T cell receptor to suppress signaling.
Collapse
Affiliation(s)
- Safak Isil Cevik
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Nazli Keskin
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center- SUNUM, Istanbul, Turkey
| | - Serkan Belkaya
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Meral Ilcim Ozlu
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Emre Deniz
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center- SUNUM, Istanbul, Turkey
| | - Uygar Halis Tazebay
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Batu Erman
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center- SUNUM, Istanbul, Turkey
| |
Collapse
|
19
|
Klinger M, Kim JK, Chmura SA, Barczak A, Erle DJ, Killeen N. Thymic OX40 expression discriminates cells undergoing strong responses to selection ligands. THE JOURNAL OF IMMUNOLOGY 2009; 182:4581-9. [PMID: 19342632 DOI: 10.4049/jimmunol.0900010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OX40 is a member of the TNF receptor family expressed on activated and regulatory T (Treg) cells. Using an Ox40-cre allele for lineage marking, we found that a subpopulation of naive T cells had also previously expressed OX40 in the thymus. Ox40-cre was induced in a small fraction of thymocytes that were OX40(+), some of which were CD25(high) Treg cell precursors. Thymic OX40 expression distinguished cells experiencing a strong signaling response to positive selection. Naive T cells that had previously expressed OX40 demonstrated a partially activated phenotype that was distinct from that of most naive T cells. The results are consistent with the selection of Treg cells and a minor subpopulation of naive T cells being dependent on strong signaling responses to thymic self ligands.
Collapse
|
20
|
Komaniwa S, Hayashi H, Kawamoto H, Sato SB, Ikawa T, Katsura Y, Udaka K. Lipid-mediated presentation of MHC class II molecules guides thymocytes to the CD4 lineage. Eur J Immunol 2008; 39:96-112. [DOI: 10.1002/eji.200838796] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Singer A, Adoro S, Park JH. Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nat Rev Immunol 2008; 8:788-801. [PMID: 18802443 DOI: 10.1038/nri2416] [Citation(s) in RCA: 347] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Following successful gene rearrangement at alphabeta T-cell receptor (TCR) loci, developing thymocytes express both CD4 and CD8 co-receptors and undergo a life-or-death selection event, which is known as positive selection, to identify cells that express TCRs with potentially useful ligand specificities. Positively selected thymocytes must then differentiate into either CD4(+) helper T cells or CD8(+) cytotoxic T cells, a crucial decision known as CD4/CD8-lineage choice. In this Review, we summarize recent advances in our understanding of the cellular and molecular events involved in lineage-fate decision and discuss them in the context of the major models of CD4/CD8-lineage choice.
Collapse
Affiliation(s)
- Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
22
|
Ramsey K, Luckashenak N, Koretzky GA, Clements JL. Impaired thymic selection in mice expressing altered levels of the SLP-76 adaptor protein. J Leukoc Biol 2007; 83:419-29. [PMID: 17965338 DOI: 10.1189/jlb.0507297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intracellular signaling initiated by ligation of the TCR influences cell fate at multiple points during the lifespan of a T cell. This is especially evident during thymic selection, where the nature of TCR-dependent signaling helps to establish a MHC-restricted, self-tolerant T cell repertoire. The Src homology 2 domain-containing leukocyte-specific phosphoprotein of 76 kDa (SLP-76) adaptor protein is a required intermediate in multiple signaling pathways triggered by TCR engagement, several of which have been implicated in dictating the outcome of thymic selection (e.g., intracellular calcium flux and activation of ERK family MAPKs). To determine if thymocyte maturation and selection at later stages of development are sensitive to perturbations in SLP-76 levels, we analyzed these crucial events using several transgenic (Tg) lines of mice expressing altered levels of SLP-76 in the thymus. In Tg mice expressing low levels of SLP-76 in preselection thymocytes, the CD4:CD8 ratio in the thymus and spleen was skewed in a manner consistent with impaired selection and/or maturation of CD4+ thymocytes. Low SLP-76 expression also correlated with reduced CD5 expression on immature thymocytes, consistent with reduced TCR signaling potential. In contrast, reconstitution of SLP-76 at higher levels resulted in normal thymic CD5 expression and CD4:CD8 ratios in the thymus and periphery. It is curious that thymic deletion of TCR-Tg (HY) thymocytes was markedly impaired in both lines of Tg-reconstituted SLP-76-/- mice. Studies using chimeric mice indicate that the defect in deletion of HY+ thymocytes is intrinsic to the developing thymocyte, suggesting that maintenance of sufficient SLP-76 expression from the endogenous locus is a key element in the selection process.
Collapse
Affiliation(s)
- Kimberley Ramsey
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
23
|
Park JH, Adoro S, Lucas PJ, Sarafova SD, Alag AS, Doan LL, Erman B, Liu X, Ellmeier W, Bosselut R, Feigenbaum L, Singer A. 'Coreceptor tuning': cytokine signals transcriptionally tailor CD8 coreceptor expression to the self-specificity of the TCR. Nat Immunol 2007; 8:1049-59. [PMID: 17873878 DOI: 10.1038/ni1512] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 08/16/2007] [Indexed: 02/06/2023]
Abstract
T cell immunity requires the long-term survival of T cells that are capable of recognizing self antigens but are not overtly autoreactive. How this balance is achieved remains incompletely understood. Here we identify a homeostatic mechanism that transcriptionally tailors CD8 coreceptor expression in individual CD8+ T cells to the self-specificity of their clonotypic T cell receptor (TCR). 'Coreceptor tuning' results from interplay between cytokine and TCR signals, such that signals from interleukin 7 and other common gamma-chain cytokines transcriptionally increase CD8 expression and thereby promote TCR engagement of self ligands, whereas TCR signals impair common gamma-chain cytokine signaling and thereby decrease CD8 expression. This dynamic interplay induces individual CD8+ T cells to express CD8 in quantities appropriate for the self-specificity of their TCR, promoting the engagement of self ligands, yet avoiding autoreactivity.
Collapse
Affiliation(s)
- Jung-Hyun Park
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
MHC-encoded molecules govern adaptive immune responses by presenting peptides to T cell receptors (TCRs). Based on TCR-MHC crystal structures, we revisit the extent of TCR binding degeneracy, a property with important biological consequences because the diversity of TCR ligands that can be encountered exceeds the number of T cell clones present in a person at any one time. We also discuss whether the approximate diagonal binding of TCR on MHC molecules is due to an intrinsic property of the TCR variable regions, or results from the action of the CD4 and CD8 coreceptors during intrathymic T cell selection. Finally, we discuss how MHC restriction of antigen recognition might have emerged during evolution.
Collapse
Affiliation(s)
- Catherine Mazza
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, 13288 Marseille Cedex 9, France
| | | |
Collapse
|