1
|
Chen M, Liu Y, Yang Y, Qiu Y, Wang Z, Li X, Zhang W. Emerging roles of activating transcription factor (ATF) family members in tumourigenesis and immunity: Implications in cancer immunotherapy. Genes Dis 2022; 9:981-999. [PMID: 35685455 PMCID: PMC9170601 DOI: 10.1016/j.gendis.2021.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Activating transcription factors, ATFs, are a group of bZIP transcription factors that act as homodimers or heterodimers with a range of other bZIP factors. In general, ATFs respond to extracellular signals, indicating their important roles in maintaining homeostasis. The ATF family includes ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, and ATF7. Consistent with the diversity of cellular processes reported to be regulated by ATFs, the functions of ATFs are also diverse. ATFs play an important role in cell proliferation, apoptosis, differentiation and inflammation-related pathological processes. The expression and phosphorylation status of ATFs are also related to neurodegenerative diseases and polycystic kidney disease. Various miRNAs target ATFs to regulate cancer proliferation, apoptosis, autophagy, sensitivity and resistance to radiotherapy and chemotherapy. Moreover, ATFs are necessary to maintain cell redox homeostasis. Therefore, deepening our understanding of the regulation and function of ATFs will provide insights into the basic regulatory mechanisms that influence how cells integrate extracellular and intracellular signals into genomic responses through transcription factors. Under pathological conditions, especially in cancer biology and response to treatment, the characterization of ATF dysfunction is important for understanding how to therapeutically utilize ATF2 or other pathways controlled by transcription factors. In this review, we will demonstrate how ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, and ATF7 function in promoting or suppressing cancer development and identify their roles in tumour immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenling Zhang
- Corresponding author. Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Tongzipo Road 172, Yuelu District, Changsha, Hunan 410013, PR China.
| |
Collapse
|
2
|
Harnessing the CD1 restricted T cell response for leukemia adoptive immunotherapy. Cytokine Growth Factor Rev 2017; 36:117-123. [PMID: 28712863 DOI: 10.1016/j.cytogfr.2017.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/15/2017] [Indexed: 01/03/2023]
Abstract
Disease recurrence following chemotherapy and allogeneic hematopoietic cell transplantation is the major unmet clinical need of acute leukemia. Adoptive cell therapy (ACT) with allogeneic T lymphocytes can control recurrences at the cost of inducing detrimental GVHD. Targeting T cell recognition on leukemia cells is therefore needed to overcome the problem and ensure safe and durable disease remission. In this review, we discuss adoptive cells therapy based on CD1-restricted T cells specific for tumor associated self-lipid antigens. CD1 molecules are identical in every individual and expressed essentially on mature hematopoietic cells and leukemia blasts, but not by parenchymatous cells, while lipid antigens are enriched in malignant cells and unlike to mutate upon immune-mediated selective pressure. Redirecting T cells against self-lipids presented by CD1 molecules can thus provide an appealing cell therapy strategy for acute leukemia that is patient-unrestricted and can minimize risks for GVHD, implying potential prognostic improvement for this cancer.
Collapse
|
3
|
Mahiddine K, Mallavialle A, Bziouech H, Larbret F, Bernard A, Bernard G. CD99 isoforms regulate CD1a expression in human monocyte-derived DCs through ATF-2/CREB-1 phosphorylation. Eur J Immunol 2016; 46:1460-71. [PMID: 27094031 DOI: 10.1002/eji.201546143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/18/2016] [Accepted: 04/15/2016] [Indexed: 12/21/2022]
Abstract
CD1a expression is considered one of the major characteristics qualifying in vitro human dendritic cells (DCs) during their generation process. Here, we report that CD1A transcription is regulated by a mechanism involving the long and short isoforms of CD99. Using a lentiviral construct encoding for a CD99 short hairpin RNA, we were able to inhibit CD99 expression in human primary DCs. In such cells, CD1a membrane expression increased and CD1A transcripts were much higher in abundance compared to cells expressing CD99 long form (CD99LF). We also show that CD1A transcription is accompanied by a switch in expression from CD99LF to expression at comparable levels of both CD99 isoforms during immature DCs generation in vitro. We demonstrate that CD99LF maintains a lower level of CD1A transcription by up-regulating the phosphorylated form of the ATF-2 transcription factor and that CD99 short form (SF) is required to counteract this regulatory mechanism. Elucidation of the molecular mechanisms related to CD99 alternative splicing will be very helpful to better understand the transcriptional regulatory mechanism of CD1a molecules during DCs differentiation and its involvement in the immune response.
Collapse
Affiliation(s)
- Karim Mahiddine
- INSERM U 576-Nice, France.,Université de Nice Sophia Antipolis, Nice, France.,INSERM U1043, CNRS, UMR5282 Centre de Physiopathologie de Toulouse Purpan, Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Aude Mallavialle
- INSERM U 576-Nice, France.,Université de Nice Sophia Antipolis, Nice, France.,INSERM, U1065 Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Hanen Bziouech
- INSERM U 576-Nice, France.,Université de Nice Sophia Antipolis, Nice, France
| | - Frédéric Larbret
- INSERM U 576-Nice, France.,Université de Nice Sophia Antipolis, Nice, France.,EA 6302, Tolérance Immunitaire Université de Nice Hôpital de l'Archet, Nice cedex 3, France
| | - Alain Bernard
- INSERM U 576-Nice, France.,Université de Nice Sophia Antipolis, Nice, France.,Laboratoire d'Immunologie CHU de Nice, Nice, France
| | - Ghislaine Bernard
- INSERM U 576-Nice, France.,Université de Nice Sophia Antipolis, Nice, France.,Laboratoire d'Immunologie CHU de Nice, Nice, France
| |
Collapse
|
4
|
Nguyen N, Bellile E, Thomas D, McHugh J, Rozek L, Virani S, Peterson L, Carey TE, Walline H, Moyer J, Spector M, Perim D, Prince M, McLean S, Bradford CR, Taylor JMG, Wolf GT. Tumor infiltrating lymphocytes and survival in patients with head and neck squamous cell carcinoma. Head Neck 2016; 38:1074-84. [PMID: 26879675 DOI: 10.1002/hed.24406] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Because immune responses within the tumor microenvironment are important predictors of tumor biology, correlations of types of tumor infiltrating lymphocytes (TILs) with clinical outcomes were determined in 278 patients with head and neck squamous cell carcinoma (HNSCC). METHODS Infiltrating levels of CD4 (helper T cells), CD8 (cytotoxic/suppressor T cells), FoxP3 (regulatory T cells), CD68 (myeloid-derived suppressor cells,) and CD1a (Langerhans) cells were measured in tissue microarrays (TMAs). Cox models tested associations with patient outcomes after adjusting for all known prognostic factors. Median follow-up was 36.6 months. RESULTS Higher CD4 and CD8 TIL levels were associated with improved overall survival (OS; hazard ratio [HR] = 0.77; 95% confidence interval [CI] = 0.65-0.93; p = .005 and HR = 0.77; 95% CI = 0.64-0.94; p = .008, respectively), and relapse-free survival (RFS; p = .03 and .05, respectively). After controlling for prognostic factors, higher CD4 levels predicted improved OS and disease-specific survival (DSS; p = .003 and p = .004, respectively). CONCLUSION The findings suggest that TILs are a significant independent prognostic factor for HNSCC that differ by treatment. © 2016 Wiley Periodicals, Inc. Head Neck 38: 1074-1084, 2016.
Collapse
Affiliation(s)
- Nghia Nguyen
- Department of Otolaryngology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Emily Bellile
- Center for Cancer Biostatistics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Daffyd Thomas
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jonathan McHugh
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Laura Rozek
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Shama Virani
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Lisa Peterson
- Department of Otolaryngology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Thomas E Carey
- Department of Otolaryngology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Heather Walline
- Department of Otolaryngology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jeffery Moyer
- Department of Otolaryngology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Matthew Spector
- Department of Otolaryngology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Daniel Perim
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Mark Prince
- Department of Otolaryngology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Scott McLean
- Department of Otolaryngology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Carol R Bradford
- Department of Otolaryngology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jeremy M G Taylor
- Center for Cancer Biostatistics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Gregory T Wolf
- Department of Otolaryngology, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
5
|
Zhang X, He X, Liu C, Liu J, Hu Q, Pan T, Duan X, Liu B, Zhang Y, Chen J, Ma X, Zhang X, Luo H, Zhang H. IL-4 Inhibits the Biogenesis of an Epigenetically Suppressive PIWI-Interacting RNA To Upregulate CD1a Molecules on Monocytes/Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:1591-603. [PMID: 26755820 DOI: 10.4049/jimmunol.1500805] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/09/2015] [Indexed: 12/22/2022]
Abstract
The discovery of PIWI-interacting RNAs (piRNAs) revealed the complexity of the RNA world. Although piRNAs were first deemed to be germline specific, substantial evidence shows their various roles in somatic cells; however, their function in highly differentiated immune cells remains elusive. In this study, by initially screening with a small RNA deep-sequencing analysis, we found that a piRNA, tRNA-Glu-derived piRNA [td-piR(Glu)], was expressed much more abundantly in human monocytes than in dendritic cells. By regulating the polymerase III activity, IL-4 potently decreased the biogenesis of tRNA-Glu and, subsequently, td-piR(Glu). Further, we revealed that the td-piR(Glu)/PIWIL4 complex recruited SETDB1, SUV39H1, and heterochromatin protein 1β to the CD1A promoter region and facilitated H3K9 methylation. As a result, the transcription of CD1A was significantly inhibited. Collectively, we demonstrated that a piRNA acted as the signal molecule for a cytokine to regulate the expression of an important membrane protein for lipid Ag presentation.
Collapse
Affiliation(s)
- Xue Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xin He
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jun Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Qifei Hu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ting Pan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiaobing Duan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Bingfeng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yiwen Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jingliang Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xingru Ma
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xu Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Haihua Luo
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
6
|
Dellabona P, Consonni M, de Lalla C, Casorati G. Group 1 CD1-restricted T cells and the pathophysiological implications of self-lipid antigen recognition. ACTA ACUST UNITED AC 2015; 86:393-405. [PMID: 26514448 DOI: 10.1111/tan.12689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
T cell responses are generally regarded as specific for protein-derived peptide antigens. This is based on the molecular paradigm dictated by the T cell receptor (TCR) recognition of peptide-major histocompatibility complexs, which provides the molecular bases of the specificity and restriction of the T cell responses. An increasing number of findings in the last 20 years have challenged this paradigm, by showing the existence of T cells specific for lipid antigens presented by CD1 molecules. CD1-restricted T cells have been proven to be frequent components of the immune system and to recognize exogenous lipids, derived from pathogenic bacteria, as well as cell-endogenous self-lipids. This represents a young and exciting area of research in immunology with intriguing biological bases and a potential direct impact on human health.
Collapse
Affiliation(s)
- P Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - M Consonni
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - C de Lalla
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - G Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
7
|
Tanabe A, Konno J, Tanikawa K, Sahara H. Transcriptional machinery of TNF-α-inducible YTH domain containing 2 (YTHDC2) gene. Gene 2013; 535:24-32. [PMID: 24269672 DOI: 10.1016/j.gene.2013.11.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/01/2013] [Accepted: 11/08/2013] [Indexed: 12/14/2022]
Abstract
We previously demonstrated that a cellular factor, cyclosporin A (CsA) associated helicase-like protein (CAHL) that is identical to YTH domain containing 2 (YTHDC2), forms trimer complex with cyclophilin B and NS5B of hepatitis C virus (HCV) and facilitates HCV genome replication. Gene expression of YTHDC2 was shown in tumor cell lines and tumor necrosis factor (TNF)-α-treated hepatocytes, but not in untreated. However, the function of YTHDC2 in the tumor cells and the mechanism by which the YTHDC2 gene is transcribed in these cells is largely unknown. We first evaluated that the role of YTHDC2 in the proliferation of hepatocellular carcinoma (HCC) cell line Huh7 using RNA interference and found that YTHDC2-downregulated Huh7 were significantly decreased cell growth as compared to control. We next demonstrated that the cAMP response element (CRE) site in the promoter region of the YTHDC2 gene is critical for YTHDC2 transcription. To further investigate the transcription factors bound to the CRE site, we performed chromatin immunoprecipitation assays. Our findings demonstrate that c-Jun and ATF-2 bind to the CRE site in Huh7, and that TNF-α induces the biological activity of these transcription factors in hepatocytes as well as Huh7. Moreover, treatment with the HDAC inhibitor, trichostatin A (TSA), reduces YTHDC2 expression in Huh7 and in TNF-α-stimulated hepatocytes. Collectively, these data show that YTHDC2 plays an important role in tumor cells growth and activation/recruitment of c-Jun and ATF-2 to the YTHDC2 promoter is necessary for the transcription of YTHDC2, and that HDAC activity is required for the efficient expression of YTHDC2 in both of hepatocyte and HCC cells.
Collapse
Affiliation(s)
- Atsushi Tanabe
- Laboratory of Biology, Azabu University School of Veterinary Medicine, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Junpei Konno
- Laboratory of Biology, Azabu University School of Veterinary Medicine, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Kenya Tanikawa
- Laboratory of Biology, Azabu University School of Veterinary Medicine, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Hiroeki Sahara
- Laboratory of Biology, Azabu University School of Veterinary Medicine, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| |
Collapse
|
8
|
Seshadri C, Shenoy M, Wells RD, Hensley-McBain T, Andersen-Nissen E, McElrath MJ, Cheng TY, Moody DB, Hawn TR. Human CD1a deficiency is common and genetically regulated. THE JOURNAL OF IMMUNOLOGY 2013; 191:1586-93. [PMID: 23858036 DOI: 10.4049/jimmunol.1300575] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CD1 proteins evolved to present diverse lipid Ags to T cells. In comparison with MHC proteins, CD1 proteins exhibit minimal allelic diversity as a result of nonsynonymous single nucleotide polymorphisms (SNPs). However, it is unknown if common SNPs in gene regulatory regions affect CD1 expression and function. We report surprising diversity in patterns of inducible CD1a expression on human dendritic cells (DCs), spanning the full range from undetectable to high density, a finding not seen with other CD1 isoforms. CD1a-deficient DCs failed to present mycobacterial lipopeptide to T cells but had no defects in endocytosis, cytokine secretion, or expression of costimulatory molecules after LPS treatment. We identified an SNP in the 5' untranslated region (rs366316) that was common and strongly associated with low CD1a surface expression and mRNA levels (p = 0.03 and p = 0.001, respectively). Using a CD1a promoter-luciferase system in combination with mutagenesis studies, we found that the polymorphic allele reduced luciferase expression by 44% compared with the wild-type variant (p < 0.001). Genetic regulation of lipid Ag presentation by varying expression on human DCs provides a mechanism for achieving population level differences in immune responses despite limited structural variation in CD1a proteins.
Collapse
Affiliation(s)
- Chetan Seshadri
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Exogenous control of the expression of Group I CD1 molecules competent for presentation of microbial nonpeptide antigens to human T lymphocytes. Clin Dev Immunol 2011; 2011:790460. [PMID: 21603161 PMCID: PMC3095450 DOI: 10.1155/2011/790460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/12/2011] [Accepted: 01/19/2011] [Indexed: 12/21/2022]
Abstract
Group I CD1 (CD1a, CD1b, and CD1c) glycoproteins expressed on immature and mature dendritic cells present nonpeptide antigens (i.e., lipid or glycolipid molecules mainly of microbial origin) to T cells. Cytotoxic CD1-restricted T lymphocytes recognizing mycobacterial lipid antigens were found in tuberculosis patients. However, thanks to a complex interplay between mycobacteria and CD1 system, M. tuberculosis possesses a successful tactic based, at least in part, on CD1 downregulation to evade CD1-dependent immunity. On the ground of these findings, it is reasonable to hypothesize that modulation of CD1 protein expression by chemical, biological, or infectious agents could influence host's immune reactivity against M. tuberculosis-associated lipids, possibly affecting antitubercular resistance. This scenario prompted us to perform a detailed analysis of the literature concerning the effect of external agents on Group I CD1 expression in order to obtain valuable information on the possible strategies to be adopted for driving properly CD1-dependent immune functions in human pathology and in particular, in human tuberculosis.
Collapse
|
10
|
Felio K, Nguyen H, Dascher CC, Choi HJ, Li S, Zimmer MI, Colmone A, Moody DB, Brenner MB, Wang CR. CD1-restricted adaptive immune responses to Mycobacteria in human group 1 CD1 transgenic mice. ACTA ACUST UNITED AC 2009; 206:2497-509. [PMID: 19808251 PMCID: PMC2768849 DOI: 10.1084/jem.20090898] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Group 1 CD1 (CD1a, CD1b, and CD1c)–restricted T cells recognize mycobacterial lipid antigens and are found at higher frequencies in Mycobacterium tuberculosis (Mtb)–infected individuals. However, their role and dynamics during infection remain unknown because of the lack of a suitable small animal model. We have generated human group 1 CD1 transgenic (hCD1Tg) mice that express all three human group 1 CD1 isoforms and support the development of group 1 CD1–restricted T cells with diverse T cell receptor usage. Both mycobacterial infection and immunization with Mtb lipids elicit group 1 CD1–restricted Mtb lipid–specific T cell responses in hCD1Tg mice. In contrast to CD1d-restricted NKT cells, which rapidly respond to initial stimulation but exhibit anergy upon reexposure, group 1 CD1–restricted T cells exhibit delayed primary responses and more rapid secondary responses, similar to conventional T cells. Collectively, our data demonstrate that group 1 CD1–restricted T cells participate in adaptive immune responses upon mycobacterial infection and could serve as targets for the development of novel Mtb vaccines.
Collapse
Affiliation(s)
- Kyrie Felio
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mycobacteria exploit p38 signaling to affect CD1 expression and lipid antigen presentation by human dendritic cells. Infect Immun 2009; 77:4947-52. [PMID: 19720761 DOI: 10.1128/iai.00607-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group I CD1 proteins are specialized antigen-presenting molecules that present both microbial and self lipid antigens to CD1-restricted alpha/beta T lymphocytes. The production of high levels of gamma interferon and lysis of infected macrophages by lipid-specific T lymphocytes are believed to play pivotal roles mainly in the defense against mycobacterial infections. We previously demonstrated that Mycobacterium tuberculosis and bacillus Calmette-Guérin (Mycobacterium bovis BCG) induce human monocytes to differentiate into CD1- dendritic cells (DC), which cannot present lipid antigens to specific T cells. Here, we show that in human monocytes mycobacteria trigger phosphorylation of p38 mitogen-activated protein kinase to inhibit CD1 expression in DC derived from infected monocytes. Pretreatment with a specific p38 inhibitor renders monocytes insensitive to mycobacterial subversion and allows them to differentiate into CD1+ DC, which are fully capable of presenting lipid antigens to specific T cells. We also report that one of the pathogen recognition receptors triggered by BCG to activate p38 is complement receptor 3 (CR3), as shown by reduced p38 phosphorylation and partial reestablishment of CD1 membrane expression obtained by CR3 blockade before infection. In conclusion, we propose that p38 signaling is a novel pathway exploited by mycobacteria to affect the expression of CD1 antigen-presenting cells and avoid immune recognition.
Collapse
|
12
|
Integrative decomposition procedure and Kappa statistics set up ATF2 ion binding module in malignant pleural mesothelioma (MPM). ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s11460-008-0086-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Samten B, Townsend JC, Weis SE, Bhoumik A, Klucar P, Shams H, Barnes PF. CREB, ATF, and AP-1 transcription factors regulate IFN-gamma secretion by human T cells in response to mycobacterial antigen. THE JOURNAL OF IMMUNOLOGY 2008; 181:2056-64. [PMID: 18641343 DOI: 10.4049/jimmunol.181.3.2056] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IFN-gamma production by T cells is pivotal for defense against many pathogens, and the proximal promoter of IFN-gamma, -73 to -48 bp upstream of the transcription start site, is essential for its expression. However, transcriptional regulation mechanisms through this promoter in primary human cells remain unclear. We studied the effects of cAMP response element binding protein/activating transcription factor (CREB/ATF) and AP-1 transcription factors on the proximal promoter of IFN-gamma in human T cells stimulated with Mycobacterium tuberculosis. Using EMSA, supershift assays, and promoter pulldown assays, we demonstrated that CREB, ATF-2, and c-Jun, but not cyclic AMP response element modulator, ATF-1, or c-Fos, bind to the proximal promoter of IFN-gamma upon stimulation, and coimmunoprecipitation indicated the possibility of interaction among these transcription factors. Chromatin immunoprecipitation confirmed the recruitment of these transcription factors to the IFN-gamma proximal promoter in live Ag-activated T cells. Inhibition of ATF-2 activity in T cells with a dominant-negative ATF-2 peptide or with small interfering RNA markedly reduced the expression of IFN-gamma and decreased the expression of CREB and c-Jun. These findings suggest that CREB, ATF-2, and c-Jun are recruited to the IFN-gamma proximal promoter and that they up-regulate IFN-gamma transcription in response to microbial Ag. Additionally, ATF-2 controls expression of CREB and c-Jun during T cell activation.
Collapse
Affiliation(s)
- Buka Samten
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Center, Tyler, TX 75708, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Manu KA, Kuttan G. Ursolic acid induces apoptosis by activating p53 and caspase-3 gene expressions and suppressing NF-kappaB mediated activation of bcl-2 in B16F-10 melanoma cells. Int Immunopharmacol 2008; 8:974-81. [PMID: 18486908 DOI: 10.1016/j.intimp.2008.02.013] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 02/28/2008] [Accepted: 02/28/2008] [Indexed: 11/22/2022]
Abstract
The objective of this study was to assess the effect of ursolic acid, a triterpene on inducing apoptosis in B16F-10 melanoma cells. Treatment of B16F-10 cells with nontoxic concentration of ursolic acid showed the presence of apoptotic bodies and induced DNA fragmentation in a dose depended manner. The apoptotic genes p53 and caspase-3 were found to be upregulated while the anti-apoptotic gene bcl-2 was down regulated in ursolic acid treated cells. The transcription factors NF-kappaBp65, NF-kappaBp50, NF-kappaBc-Rel, c-FOS, ATF-2 and CREB-1 were found to be inhibited significantly (p<0.001) in ursolic acid treated cells compared to untreated control. The pro-inflammatory cytokine production and gene expression of TNF-alpha, IL-1beta, IL-6 and GM-CSF were down regulated in ursolic acid treated cells compared to nontreated B16F-10 metastatic melanoma cells. All these results demonstrate that ursolic acid induce apoptosis via inhibition of NF-kappaB induced bcl-2 mediated anti-apoptotic pathway and subsequent activation of p53 mediated and TNF-alpha induced caspase-3 mediated pro-apoptotic pathways.
Collapse
Affiliation(s)
- K A Manu
- Amala Cancer Research Centre, Amala Nagar, Thrissur-680555, Kerala State, India
| | | |
Collapse
|
15
|
Moeenrezakhanlou A, Nandan D, Reiner NE. Identification of a calcitriol-regulated Sp-1 site in the promoter of human CD14 using a combined western blotting electrophoresis mobility shift assay (WEMSA). Biol Proced Online 2008; 10:29-35. [PMID: 18385805 PMCID: PMC2275043 DOI: 10.1251/bpo140] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 11/23/2022] Open
Abstract
Calcitriol (1α, 25-dihydroxyvitamin D3) induces the expression of CD14 in mononuclear phagocytes. The mechanisms accounting for this have been unclear since the promoter of CD14 does not contain a canonical vitamin D response element (VDRE). Calcitriol has been shown to regulate the activity of the transcription factor Sp-1 and our analysis of the proximal promoter of CD14 indicated the presence of four Sp-1-like binding sequences. To identify which of these sites might be involved in the response to calcitriol, we used a system incorporating an electrophoretic mobility shift assay (EMSA) coupled to Western blot analysis (WEMSA). Using WEMSA, we found that only one of the Sp-1-like binding sequences, located at position -91 to -79 (relative to the transcription start site), bound the transcription factor Sp1. Sp-1 binding to this site was demonstrable using nuclear extracts from control cells. Notably, binding activity was attenuated in nuclear extracts prepared from cells that had been incubated with calcitriol, thus suggesting Sp-1 involvement in calcitriol induction of CD14 expression. Notably, these results show that like EMSA, WEMSA can be broadly applied to aid in the identification of transcription factors involved in regulating gene expression. WEMSA, however, offers a number of distinct advantages when compared with conventional EMSA. Antibodies used for WEMSA often provide less ambiguous signals than those used in EMSA, and these do not have to recognize epitopes under native conditions. In addition, WEMSA does not require the use of labeled oligos, thus eliminating a significant expense associated with EMSA.
Collapse
Affiliation(s)
- Alireza Moeenrezakhanlou
- Department of Microbiology and Immunology, University of British Columbia, Faculties of Medicine and Science, and Vancouver Coastal Health Research Institute (VCHRI), Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
16
|
Donovan MJ, Jayakumar A, McDowell MA. Inhibition of groups 1 and 2 CD1 molecules on human dendritic cells by Leishmania species. Parasite Immunol 2007; 29:515-24. [PMID: 17883454 DOI: 10.1111/j.1365-3024.2007.00970.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dendritic cells are potent immune-activating cells, which traditionally are thought of as presenters of protein antigen to lymphocytes to initiate an immune response. Recently, another mechanism of immune surveillance, the detection of lipid antigens, has been found to be mediated by the nonpolymorphic family of CD1 molecules. There are two different CD1 families, Group 1 consisting of CD1a, CD1b and CD1c, and Group 2 consisting only of CD1d. Leishmania donovani-infected dendritic cells have previously been demonstrated to exhibit decreased surface levels of Group 1 CD1 molecules and are no longer able to initiate a CD1b-restricted T cell response. In contrast to L. donovani, which disseminates to the visceral organs, L. major remains localized, forming a cutaneous lesion. We investigate here whether L. major, the aetiological agent of cutaneous leishmaniasis, also inhibits CD1 expression. We demonstrate that infection of human monocyte-derived dendritic cells with either L. major or L. donovani results in transcriptional down-regulation of both Groups 1 and 2 CD1 molecules. Furthermore, infection of monocytes during differentiation results in a cell phenotype similar to undifferentiated monocytes. Finally, we demonstrate that this down-regulation is not mediated by lipophosphoglycan or other phosphoglycans.
Collapse
Affiliation(s)
- M J Donovan
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46656, USA
| | | | | |
Collapse
|