1
|
van der Horst HJ, Mutis T. Enhancing Fc-mediated effector functions of monoclonal antibodies: The example of HexaBodies. Immunol Rev 2024. [PMID: 39275983 DOI: 10.1111/imr.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
Since the approval of the CD20-targeting monoclonal antibody (mAb) rituximab for the treatment of lymphoma in 1997, mAb therapy has significantly transformed cancer treatment. With over 90 FDA-approved mAbs for the treatment of various hematological and solid cancers, modern cancer treatment relies heavily on these therapies. The overwhelming success of mAbs as cancer therapeutics is attributed to their broad applicability, high safety profile, and precise targeting of cancer-associated surface antigens. Furthermore, mAbs can induce various anti-tumor cytotoxic effector mechanisms including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC), all of which are mediated via their fragment crystallizable (Fc) domain. Over the past decades, these effector mechanisms have been substantially improved through Fc domain engineering. In this review, we will outline the different approaches to enhance Fc effector functions via Fc engineering of mAbs, with a specific emphasis on the so-called "HexaBody" technology, which is designed to enhance the hexamerization of mAbs on the target cell surface, thereby inducing greater complement activation, CDC, and receptor clustering. The review will summarize the development, preclinical, and clinical testing of several HexaBodies designed for the treatment of B-cell malignancies, as well as the potential use of the HexaBody technology beyond Fc-mediated effector functions.
Collapse
Affiliation(s)
- Hilma J van der Horst
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
| | - Tuna Mutis
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Ametrano A, Miranda B, Moretta R, Dardano P, De Stefano L, Oreste U, Coscia MR. A structural peculiarity of Antarctic fish IgM drives the generation of an engineered mAb by CRISPR/Cas9. Front Bioeng Biotechnol 2024; 12:1315633. [PMID: 39119272 PMCID: PMC11306039 DOI: 10.3389/fbioe.2024.1315633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
IgM is the major circulating Ig isotype in teleost fish, showing in Antarctic fish unique features such as an extraordinary long hinge region, which plays a crucial role in antibody structure and function. In this work, we describe the replacement of the hinge region of a murine monoclonal antibody (mAb) with the peculiar hinge from Antarctic fish IgM. We use the CRISPR/Cas9 system as a powerful tool for generating the engineered mAb. Then, we assessed its functionality by using an innovative plasmonic substrate based on bimetallic nanoislands (AgAuNIs). The affinity constant of the modified mAb was 2.5-fold higher than that obtained from wild-type mAb against the specific antigen. Here, we show the suitability of the CRISPR/Cas9 method for modifying a precise region in immunoglobulin gene loci. The overall results could open a frontier in further structural modifications of mAbs for biomedical and diagnostic purposes.
Collapse
Affiliation(s)
- Alessia Ametrano
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Naples, Italy
| | - Bruno Miranda
- Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, Naples, Italy
| | | | - Principia Dardano
- Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, Naples, Italy
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, Naples, Italy
| | - Umberto Oreste
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Naples, Italy
| | - Maria Rosaria Coscia
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Naples, Italy
| |
Collapse
|
3
|
Krishna S, Jung ST, Lee EY. Escherichia coli and Pichia pastoris: microbial cell-factory platform for -full-length IgG production. Crit Rev Biotechnol 2024:1-23. [PMID: 38797692 DOI: 10.1080/07388551.2024.2342969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/18/2024] [Indexed: 05/29/2024]
Abstract
Owing to the unmet demand, the pharmaceutical industry is investigating an alternative host to mammalian cells to produce antibodies for a variety of therapeutic and research applications. Regardless of some disadvantages, Escherichia coli and Pichia pastoris are the preferred microbial hosts for antibody production. Despite the fact that the production of full-length antibodies has been successfully demonstrated in E. coli, which has mostly been used to produce antibody fragments, such as: antigen-binding fragments (Fab), single-chain fragment variable (scFv), and nanobodies. In contrast, Pichia, a eukaryotic microbial host, is mostly used to produce glycosylated full-length antibodies, though hypermannosylated glycan is a major challenge. Advanced strategies, such as the introduction of human-like glycosylation in endotoxin-edited E. coli and cell-free system-based glycosylation, are making progress in creating human-like glycosylation profiles of antibodies in these microbes. This review begins by explaining the structural and functional requirements of antibodies and continues by describing and analyzing the potential of E. coli and P. pastoris as hosts for providing a favorable environment to create a fully functional antibody. In addition, authors compare these microbes on certain features and predict their future in antibody production. Briefly, this review analyzes, compares, and highlights E. coli and P. pastoris as potential hosts for antibody production.
Collapse
Affiliation(s)
- Shyam Krishna
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sang Taek Jung
- BK21 Graduate Program, Department of Biomedical Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Damelang T, Brinkhaus M, van Osch TLJ, Schuurman J, Labrijn AF, Rispens T, Vidarsson G. Impact of structural modifications of IgG antibodies on effector functions. Front Immunol 2024; 14:1304365. [PMID: 38259472 PMCID: PMC10800522 DOI: 10.3389/fimmu.2023.1304365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Immunoglobulin G (IgG) antibodies are a critical component of the adaptive immune system, binding to and neutralizing pathogens and other foreign substances. Recent advances in molecular antibody biology and structural protein engineering enabled the modification of IgG antibodies to enhance their therapeutic potential. This review summarizes recent progress in both natural and engineered structural modifications of IgG antibodies, including allotypic variation, glycosylation, Fc engineering, and Fc gamma receptor binding optimization. We discuss the functional consequences of these modifications to highlight their potential for therapeutical applications.
Collapse
Affiliation(s)
- Timon Damelang
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Sanquin Research, Department of Immunopathology, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Maximilian Brinkhaus
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Thijs L. J. van Osch
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Janine Schuurman
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Aran F. Labrijn
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Theo Rispens
- Sanquin Research, Department of Immunopathology, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
5
|
Bergonzo C, Hoopes JT, Kelman Z, Gallagher DT. Effects of glycans and hinge on dynamics in the IgG1 Fc. J Biomol Struct Dyn 2023:1-9. [PMID: 37897185 PMCID: PMC11055941 DOI: 10.1080/07391102.2023.2270749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
The crystallizable fragment (Fc) domain of immunoglobulin subclass IgG1 antibodies is engineered for a wide variety of pharmaceutical applications. Two important structural variables in Fc constructs are the hinge region connecting the Fc to the antigen binding fragments (Fab) and the glycans present in various glycoforms. These components affect receptor binding interactions that mediate immune activation. To design new antibody drugs, a robust in silico method for linking stability to structural changes is necessary. In this work, all-atom simulations were used to compare the dynamic behavior of the four structural variants arising from presence or absence of the hinge and glycans. We expressed the simplest of these constructs, the 'minimal Fc' with no hinge and no glycans, in Escherichia coli and report its crystal structure. The 'maximal Fc' that includes full hinge and G0F/G1F glycans is based on a previously reported structure, Protein Data Bank (PDB) ID: 5VGP. These, along with two intermediate structures (with only the glycans or with only the hinge) were used to independently measure the stability effects of the two structural variables using umbrella sampling simulations. Principal component analysis (PCA) was used to determine free energy effects along the Fc's dominant mode of motion. This work provides a comprehensive picture of the effects of hinge and glycans on Fc dynamics and stability.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Christina Bergonzo
- National Institute of Standards and Technology, 9600 Gudelsky Dr. Rockville, MD, 20850
- The Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr. Rockville, MD, 20850
| | - J. Todd Hoopes
- The Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr. Rockville, MD, 20850
- The Biomolecular Labeling Laboratory, 9600 Gudelsky Dr. Rockville, MD, 20850
| | - Zvi Kelman
- National Institute of Standards and Technology, 9600 Gudelsky Dr. Rockville, MD, 20850
- The Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr. Rockville, MD, 20850
- The Biomolecular Labeling Laboratory, 9600 Gudelsky Dr. Rockville, MD, 20850
| | - D. Travis Gallagher
- National Institute of Standards and Technology, 9600 Gudelsky Dr. Rockville, MD, 20850
- The Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr. Rockville, MD, 20850
| |
Collapse
|
6
|
Wedi B. Inhibition of KIT for chronic urticaria: a status update on drugs in early clinical development. Expert Opin Investig Drugs 2023; 32:1043-1054. [PMID: 37897679 DOI: 10.1080/13543784.2023.2277385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
INTRODUCTION Chronic urticaria (CU), including chronic spontaneous urticaria (CSU) and chronic inducible urticaria (CIndU), is a prevalent, enduring, mast-cell driven condition that presents challenges in its management. There is a clear need for additional approved treatment options beyond H1 receptor antagonists and the anti-IgE monoclonal antibody (mAb), omalizumab. One of the latest therapeutic strategies targets KIT, which is considered the primary master regulator for mast cell-related disorders. AREAS COVERED This review provides a status update on KIT inhibiting drugs in early clinical development for CU. EXPERT OPINION Whereas multi-targeted tyrosine kinase KIT inhibitors carry the risk of off-target toxicities, initial data from anti-KIT mAbs indicate significant potential in CSU and CIndU. The prolonged depletion of mast cells over several weeks by barzolvolimab could effectively control urticarial symptoms. Regarding safety, based on theoretical considerations and the available preliminary results, it is already evident that there may be more side effects compared to omalizumab. However, long-term safety data beyond 12 weeks are still lacking. The outcome of ongoing or planned clinical trials with several anti-KIT mAbs will need to demonstrate benefits compared to anti-IgE in CU or whether one approach is better suited for specific urticaria endotypes.
Collapse
Affiliation(s)
- Bettina Wedi
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
8
|
Shabani S, Rashidi M, Radgoudarzi S, Jebali A. The validation of artificial anti-monkeypox antibodies by in silico and experimental approaches. Immun Inflamm Dis 2023; 11:e834. [PMID: 37102640 PMCID: PMC10091375 DOI: 10.1002/iid3.834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/06/2023] [Accepted: 03/25/2023] [Indexed: 04/28/2023] Open
Abstract
As a result of smallpox immunization programs that ended more than 40 years ago, a significant portion of the world's population is not immune. Moreover, due to the lack of anti-monkeypox drugs and vaccines against monkeypox, the spread of this virus may be the beginning of another challenge. In this study, novel antibodies against monkeypox virus were modeled based on a heavy chain of human antibody and a small peptide fragment. Docking of modeled antibodies with C19L protein showed the range of docking energy, and root-mean-square deviation (RMSD) was from -124 to -154 kcal/mL and 4-6 angstrom, respectively. Also, docking of modeled antibodies-C19L complex with gamma Fc receptor type I illustrated the range of docking energy, and RMSD was from -132 to -155 kcal/ml and 5-7 angstrom, respectively. Moreover, molecular dynamics simulation showed that antibody 62 had the highest stability with the lowest energy level and RMSD. Interestingly, no modeled antibodies had immunogenicity, allergenicity, and toxicity. Although all of them had good stability, only antibodies 25, 28, 54, and 62 had a half-life of >10 h. Moreover, the interaction between C19L protein and anti-C19L antibodies (wild-type and synthetic) was evaluated by the SPR method. We found that KD in synthetic antibodies was lower than wild antibody. In terms of δH°, TδS°, and δG°, the results were consistent with binding parameters. Here, the lowest value of thermodynamic parameters was obtained for antibody 62. These data show that the synthetic antibodies, especially antibody 62, had a higher affinity than the wild-type antibody.
Collapse
Affiliation(s)
- Sadeq Shabani
- Department of Biological SciencesFlorida International UniversityMiamiFloridaUSA
- Biomolecular Science InstituteFlorida International UniversityMiamiFloridaUSA
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of MedicineMazandaran University of Medical SciencesSariIran
- The Health of Plant and Livestock Products Research CenterMazandaran University of Medical SciencesSariIran
| | - Shakila Radgoudarzi
- I.M. Sechenov First Moscow State Medical University (Первый МГМУ им)MoscowRussia
| | - Ali Jebali
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical ScienceIslamic Azad UniversityTehranIran
| |
Collapse
|
9
|
Abstract
As a natural function, antibodies defend the host from infected cells and pathogens by recognizing their pathogenic determinants. Antibodies (Abs) gained wide acceptance with an enormous impact on human health and have predominantly captured the arena of bio-therapeutics and bio-diagnostics. The scope of Ab-based biologics is vast, and it is likely to solve many unmet clinical needs in future. The majority of attention is now devoted to developing innovative technologies for manufacturing and engineering Abs, better suited to satisfy human needs. The advent of Ab engineering technologies (AET) led to phenomenal developments leading to the generation of Abs-/Ab-derived molecules with desirable functional properties proportional to their expanding requirements. Evolution brought by AET, from the naturally occurring Ab forms to several advanced Ab formats and derivatives, was much needed as it is of great interest to the pharmaceutical industry. Thus, numerous advancements in AET have propelled success in therapeutic Ab development, along with the potential for ever-increasing improvements. Unique characteristics of Abs, such as its diversity, specificity, structural integrity and an array of possible applications, together inspire continuous innovation in the field. Overall, the AET could assist in conquer of several limitations of Abs in terms of their applicability in the field of therapeutics, diagnostics and research; AET has so far led to the production of next-generation Abs, which have revolutionized these arenas. Here in this review, we discuss the various distinguished engineering platforms for Ab development and the progress in modern therapeutics by the so-called "next-generation Abs."
Collapse
Affiliation(s)
- Divya Kandari
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Banaras Hindu University, Varanasi, India.,Amity University Rajasthan, Jaipur, India
| |
Collapse
|
10
|
Design, construction and in vivo functional assessment of a hinge truncated sFLT01. Gene Ther 2022; 30:347-361. [PMID: 36114375 DOI: 10.1038/s41434-022-00362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/05/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022]
Abstract
Gene therapy for the treatment of ocular neovascularization has reached clinical trial phases. The AAV2-sFLT01 construct was already evaluated in a phase 1 open-label trial administered intravitreally to patients with advanced neovascular age-related macular degeneration. SFLT01 protein functions by binding to VEGF and PlGF molecules and inhibiting their activities simultaneously. It consists of human VEGFR1/Flt-1 (hVEGFR1), a polyglycine linker, and the Fc region of human IgG1. The IgG1 upper hinge region of the sFLT01 molecule makes it vulnerable to radical attacks and prone to causing immune reactions. This study pursued two goals: (i) minimizing the immunogenicity and vulnerability of the molecule by designing a truncated molecule called htsFLT01 (hinge truncated sFLT01) that lacked the IgG1 upper hinge and lacked 2 amino acids from the core hinge region; and (ii) investigating the structural and functional properties of the aforesaid chimeric molecule at different levels (in silico, in vitro, and in vivo). Molecular dynamics simulations and molecular mechanics energies combined with Poisson-Boltzmann and surface area continuum solvation calculations revealed comparable free energy of binding and binding affinity for sFLT01 and htsFLT01 to their cognate ligands. Conditioned media from human retinal pigment epithelial (hRPE) cells that expressed htsFLT01 significantly reduced tube formation in HUVECs. The AAV2-htsFLT01 virus suppressed vascular development in the eyes of newborn mice. The htsFLT01 gene construct is a novel anti-angiogenic tool with promising improvements compared to existing treatments.
Collapse
|
11
|
Oostindie SC, Lazar GA, Schuurman J, Parren PWHI. Avidity in antibody effector functions and biotherapeutic drug design. Nat Rev Drug Discov 2022; 21:715-735. [PMID: 35790857 PMCID: PMC9255845 DOI: 10.1038/s41573-022-00501-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/16/2022]
Abstract
Antibodies are the cardinal effector molecules of the immune system and are being leveraged with enormous success as biotherapeutic drugs. A key part of the adaptive immune response is the production of an epitope-diverse, polyclonal antibody mixture that is capable of neutralizing invading pathogens or disease-causing molecules through binding interference and by mediating humoral and cellular effector functions. Avidity - the accumulated binding strength derived from the affinities of multiple individual non-covalent interactions - is fundamental to virtually all aspects of antibody biology, including antibody-antigen binding, clonal selection and effector functions. The manipulation of antibody avidity has since emerged as an important design principle for enhancing or engineering novel properties in antibody biotherapeutics. In this Review, we describe the multiple levels of avidity interactions that trigger the overall efficacy and control of functional responses in both natural antibody biology and their therapeutic applications. Within this framework, we comprehensively review therapeutic antibody mechanisms of action, with particular emphasis on engineered optimizations and platforms. Overall, we describe how affinity and avidity tuning of engineered antibody formats are enabling a new wave of differentiated antibody drugs with tailored properties and novel functions, promising improved treatment options for a wide variety of diseases.
Collapse
Affiliation(s)
- Simone C Oostindie
- Genmab, Utrecht, Netherlands.,Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Greg A Lazar
- Department of Antibody Engineering, Genentech, San Francisco, CA, USA
| | | | - Paul W H I Parren
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands. .,Sparring Bioconsult, Odijk, Netherlands. .,Lava Therapeutics, Utrecht, Netherlands.
| |
Collapse
|
12
|
Abstract
Monoclonal antibodies are proteinaceous in nature and are subject to instability issues. Stability testing of monoclonal antibodies is a critical regulatory requirement in their development and commercialization as therapeutic biological molecules. This article reviews the numerous drug manufacturing processes such as: upstream processing, downstream purification and aseptic filling along with physical and chemical factors such as protein concentration, structure, pH, temperature, light, agitation, deamidation, oxidation, glycation leading to instabilities in monoclonal antibodies and it spotlights the variety of analytical techniques employed to investigate and generate information on stability studies and henceforth, helps in developing the stability-indicating methods. In addition, this paper aims to discuss the ICH regulatory guideline (s) for the stability assessment of biological products (Drug Substance and Drug Product).
Collapse
Affiliation(s)
- Harleen Kaur
- Analytical Sciences, Aurobindo Biologics, Hyderabad, India
| |
Collapse
|
13
|
Rosenfeld R, Noy-Porat T, Mechaly A, Makdasi E, Levy Y, Alcalay R, Falach R, Aftalion M, Epstein E, Gur D, Chitlaru T, Vitner EB, Melamed S, Politi B, Zauberman A, Lazar S, Beth-Din A, Evgy Y, Yitzhaki S, Shapira SC, Israely T, Mazor O. Post-exposure protection of SARS-CoV-2 lethal infected K18-hACE2 transgenic mice by neutralizing human monoclonal antibody. Nat Commun 2021; 12:944. [PMID: 33574228 PMCID: PMC7878817 DOI: 10.1038/s41467-021-21239-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits high levels of mortality and morbidity and has dramatic consequences on human life, sociality and global economy. Neutralizing antibodies constitute a highly promising approach for treating and preventing infection by this novel pathogen. In the present study, we characterize and further evaluate the recently identified human monoclonal MD65 antibody for its ability to provide protection against a lethal SARS-CoV-2 infection of K18-hACE2 transgenic mice. Eighty percent of the untreated mice succumbed 6-9 days post-infection, while administration of the MD65 antibody as late as 3 days after exposure rescued all infected animals. In addition, the efficiency of the treatment is supported by prevention of morbidity and ablation of the load of infective virions in the lungs of treated animals. The data demonstrate the therapeutic value of human monoclonal antibodies as a life-saving treatment for severe COVID-19 infection.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- COVID-19/immunology
- Chlorocebus aethiops
- Female
- Immunoglobulin G/administration & dosage
- Immunoglobulin G/genetics
- Immunoglobulin G/immunology
- Lung/pathology
- Lung/virology
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- SARS-CoV-2/classification
- SARS-CoV-2/physiology
- Seroconversion
- Vero Cells
- Viral Load
- COVID-19 Drug Treatment
- Mice
Collapse
Affiliation(s)
- Ronit Rosenfeld
- Israel Institute for Biological Research, Ness-Ziona, Israel.
| | - Tal Noy-Porat
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Adva Mechaly
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Efi Makdasi
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yinon Levy
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ron Alcalay
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Reut Falach
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Moshe Aftalion
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Eyal Epstein
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - David Gur
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | | | - Einat B Vitner
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Sharon Melamed
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Boaz Politi
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | | | - Shirley Lazar
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Adi Beth-Din
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yentl Evgy
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Shmuel Yitzhaki
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | | | - Tomer Israely
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ohad Mazor
- Israel Institute for Biological Research, Ness-Ziona, Israel.
| |
Collapse
|
14
|
Bivalent antibody pliers inhibit β-tryptase by an allosteric mechanism dependent on the IgG hinge. Nat Commun 2020; 11:6435. [PMID: 33353951 PMCID: PMC7755903 DOI: 10.1038/s41467-020-20143-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Human β-tryptase, a tetrameric trypsin-like serine protease, is an important mediator of allergic inflammatory responses in asthma. Antibodies generally inhibit proteases by blocking substrate access by binding to active sites or exosites or by allosteric modulation. The bivalency of IgG antibodies can increase potency via avidity, but has never been described as essential for activity. Here we report an inhibitory anti-tryptase IgG antibody with a bivalency-driven mechanism of action. Using biochemical and structural data, we determine that four Fabs simultaneously occupy four exosites on the β-tryptase tetramer, inducing allosteric changes at the small interface. In the presence of heparin, the monovalent Fab shows essentially no inhibition, whereas the bivalent IgG fully inhibits β-tryptase activity in a hinge-dependent manner. Our results suggest a model where the bivalent IgG acts akin to molecular pliers, pulling the tetramer apart into inactive β-tryptase monomers, and may provide an alternative strategy for antibody engineering. β-tryptases are responsible for most of the proteolytic activity during mast cell activation. Here, the authors develop β-tryptase-inhibiting antibodies and provide structural and biochemical evidence that the bivalency of the antibodies is a prerequisite for their inhibitory activity.
Collapse
|
15
|
van der Horst HJ, Nijhof IS, Mutis T, Chamuleau MED. Fc-Engineered Antibodies with Enhanced Fc-Effector Function for the Treatment of B-Cell Malignancies. Cancers (Basel) 2020; 12:E3041. [PMID: 33086644 PMCID: PMC7603375 DOI: 10.3390/cancers12103041] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/17/2022] Open
Abstract
Monoclonal antibody (mAb) therapy has rapidly changed the field of cancer therapy. In 1997, the CD20-targeting mAb rituximab was the first mAb to be approved by the U.S. Food and Drug Administration (FDA) for treatment of cancer. Within two decades, dozens of mAbs entered the clinic for treatment of several hematological cancers and solid tumors, and numerous more are under clinical investigation. The success of mAbs as cancer therapeutics lies in their ability to induce various cytotoxic machineries against specific targets. These cytotoxic machineries include antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC), which are all mediated via the fragment crystallizable (Fc) domain of mAbs. In this review article, we will outline the novel approaches of engineering these Fc domains of mAbs to enhance their Fc-effector function and thereby their anti-tumor potency, with specific focus to summarize their (pre-) clinical status for the treatment of B-cell malignancies, including chronic lymphocytic leukemia (CLL), B-cell non-Hodgkin lymphoma (B-NHL), and multiple myeloma (MM).
Collapse
Affiliation(s)
- Hilma J. van der Horst
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU Medical Center, 1081 HV Amsterdam, The Netherlands; (I.S.N.); (T.M.); (M.E.D.C.)
| | | | | | | |
Collapse
|
16
|
Taking the Hinge off: An Approach to Effector-Less Monoclonal Antibodies. Antibodies (Basel) 2020; 9:antib9040050. [PMID: 32977708 PMCID: PMC7709103 DOI: 10.3390/antib9040050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/05/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022] Open
Abstract
A variety of Fc domain engineering approaches for abrogating the effector functions of mAbs exists. To address some of the limitations of the current Fc domain silencing approaches, we are exploring a less commonly considered option which relies on the deletion of the hinge. Removal of the hinge domain in humanized IgG1 and IgG4 mAbs obliterates their ability to bind to activating human Fc gamma receptors I and IIIA, while leaving their ability to engage their target antigen intact. Deletion of the hinge also reduces binding to the Fc neonatal receptor, although Fc engineering allows partial recovery of affinity. Engineering of the CH3 domain, stabilizes hinge deleted IgG4s and prevents Fab arm exchange. The faster clearing properties together with the pacified Fc make modality of the hinge deleted mAb an appealing solution for therapeutic and diagnostic applications.
Collapse
|
17
|
Cha S, Lee WS, Choi J, Jeong JG, Nam JR, Kim J, Kim HN, Lee JH, Yoo JS, Ryu KS. NMR mapping of the highly flexible regions of 13C/ 15N-labeled antibody TTAC-0001-Fab. JOURNAL OF BIOMOLECULAR NMR 2020; 74:311-319. [PMID: 32415582 DOI: 10.1007/s10858-020-00313-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Monoclonal antibody (mAb) drugs are clinically important for the treatment of various diseases. TTAC-0001 is under development as a new anti-cancer antibody drug targeting VEGFR-2. As the less severe toxicity of TTAC-0001 compared to Bevacizumab, likely due to the decreased in vivo half-life, seems to be related to its structural flexibility, it is important to map the exact flexible regions. Although the 13C/15N-labeled protein is required for NMR analyses, it is difficult to obtain antibody fragments (Fab and scFv) containing disulfide bonds through general cytosolic expression in Escherichia coli (E. coli). Here, we notably increased the periplasmic expression of the 13C/15N-labeled TTAC-0001-Fab (13C/15N-TTAC-Fab) through simple isopropyl β-D-1-thiogalactopyranoside (IPTG)-induction at an increased optical density (1.5 OD600nm). Through NMR triple resonance experiments, two loop insertions (LI-1 between the VH and CH1; LI-2 between the VL and CL) were confirmed to be highly flexible. The additional LIs could be another way to engineer the antibody by changing the pharmacokinetic properties.
Collapse
Affiliation(s)
- Soyoung Cha
- Protein Structure Research Team, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do, 28119, South Korea
- Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, South Korea
| | - Weon Sup Lee
- PharmAbcine, 2F, Research Building 2, 70, Yuseong-daero 1689 Beon-gil, Yuseong-gu, Daejeon, 34047, South Korea
- Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, South Korea
| | - Joonhyeok Choi
- Protein Structure Research Team, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do, 28119, South Korea
| | - Jong Geun Jeong
- PharmAbcine, 2F, Research Building 2, 70, Yuseong-daero 1689 Beon-gil, Yuseong-gu, Daejeon, 34047, South Korea
| | - Ju Ryoung Nam
- PharmAbcine, 2F, Research Building 2, 70, Yuseong-daero 1689 Beon-gil, Yuseong-gu, Daejeon, 34047, South Korea
| | - Jihong Kim
- New Drug Development Center, Osong Medical Innovation Foundation, 123 Osongsaengmyeong-Ro, Osong-Eup, Cheongju-Si, Chungcheongbuk-Do, 28160, South Korea
| | - Hak-Nam Kim
- Protein Structure Research Team, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do, 28119, South Korea
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Jinju-si, Gyeongsangnam-Do, 52828, South Korea
| | - Jin-San Yoo
- PharmAbcine, 2F, Research Building 2, 70, Yuseong-daero 1689 Beon-gil, Yuseong-gu, Daejeon, 34047, South Korea.
| | - Kyoung-Seok Ryu
- Protein Structure Research Team, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do, 28119, South Korea.
- Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, South Korea.
| |
Collapse
|
18
|
Sidorov A, Beduleva L, Menshikov I, Terentiev A, Cherepanov I. Physicochemical characteristics of human IgG Fc fragments that expose regulatory rheumatoid factor neoepitopes and may show promise as antirheumatic agents. Biotechnol Appl Biochem 2020; 67:287-293. [DOI: 10.1002/bab.1849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/05/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Alexandr Sidorov
- Udmurt Federal Research Center UB RAS Izhevsk Russian Federation
- Department of Immunology and Cell BiologyUdmurt State University Izhevsk Russian Federation
| | - Liubov Beduleva
- Udmurt Federal Research Center UB RAS Izhevsk Russian Federation
- Department of Immunology and Cell BiologyUdmurt State University Izhevsk Russian Federation
- Novye Vakciny Ltd. Izhevsk Russian Federation
| | - Igor Menshikov
- Udmurt Federal Research Center UB RAS Izhevsk Russian Federation
- Department of Immunology and Cell BiologyUdmurt State University Izhevsk Russian Federation
- Novye Vakciny Ltd. Izhevsk Russian Federation
| | - Alexey Terentiev
- Udmurt Federal Research Center UB RAS Izhevsk Russian Federation
- Department of Immunology and Cell BiologyUdmurt State University Izhevsk Russian Federation
| | - Igor Cherepanov
- Department of Fundamental ChemistryUdmurt State University Izhevsk Russian Federation
| |
Collapse
|
19
|
Burke CW, Froude JW, Rossi F, White CE, Moyer CL, Ennis J, Pitt ML, Streatfield S, Jones RM, Musiychuk K, Kervinen J, Zeitlin L, Yusibov V, Glass PJ. Therapeutic monoclonal antibody treatment protects nonhuman primates from severe Venezuelan equine encephalitis virus disease after aerosol exposure. PLoS Pathog 2019; 15:e1008157. [PMID: 31790515 PMCID: PMC6907853 DOI: 10.1371/journal.ppat.1008157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/12/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
There are no FDA licensed vaccines or therapeutics for Venezuelan equine encephalitis virus (VEEV) which causes a debilitating acute febrile illness in humans that can progress to encephalitis. Previous studies demonstrated that murine and macaque monoclonal antibodies (mAbs) provide prophylactic and therapeutic efficacy against VEEV peripheral and aerosol challenge in mice. Additionally, humanized versions of two neutralizing mAbs specific for the E2 glycoprotein, 1A3B-7 and 1A4A-1, administered singly protected mice against aerosolized VEEV. However, no studies have demonstrated protection in nonhuman primate (NHP) models of VEEV infection. Here, we evaluated a chimeric antibody 1A3B-7 (c1A3B-7) containing mouse variable regions on a human IgG framework and a humanized antibody 1A4A-1 containing a serum half-life extension modification (Hu-1A4A-1-YTE) for their post-exposure efficacy in NHPs exposed to aerosolized VEEV. Approximately 24 hours after exposure, NHPs were administered a single bolus intravenous mAb. Control NHPs had typical biomarkers of VEEV infection including measurable viremia, fever, and lymphopenia. In contrast, c1A3B-7 treated NHPs had significant reductions in viremia and lymphopenia and on average approximately 50% reduction in fever. Although not statistically significant, Hu-1A4A-1-YTE administration did result in reductions in viremia and fever duration. Delay of treatment with c1A3B-7 to 48 hours post-exposure still provided NHPs protection from severe VEE disease through reductions in viremia and fever. These results demonstrate that post-exposure administration of c1A3B-7 protected macaques from development of severe VEE disease even when administered 48 hours following aerosol exposure and describe the first evaluations of VEEV-specific mAbs for post-exposure prophylactic use in NHPs. Viral mutations were identified in one NHP after c1A3B-7 treatment administered 24 hrs after virus exposure. This suggests that a cocktail-based therapy, or an alternative mAb against an epitope that cannot mutate without resulting in loss of viral fitness may be necessary for a highly effective therapeutic.
Collapse
Affiliation(s)
- Crystal W. Burke
- Virology Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, United States of America
| | - Jeffery W. Froude
- Virology Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, United States of America
| | - Franco Rossi
- Center of Aerobiological Sciences, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, United States of America
| | - Charles E. White
- Biostatisics Branch, US Army Medical Research Institute of Infectious Disease, Fort Detrick Maryland, United States of America
| | - Crystal L. Moyer
- Mapp Biopharmaceutical, Inc., San Diego, California, United States of America
| | - Jane Ennis
- Mapp Biopharmaceutical, Inc., San Diego, California, United States of America
| | - M. Louise Pitt
- Virology Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, United States of America
| | - Stephen Streatfield
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - R. Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Konstantin Musiychuk
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Jukka Kervinen
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc., San Diego, California, United States of America
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Pamela J. Glass
- Virology Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, United States of America
| |
Collapse
|
20
|
Gurjar SA, Wheeler JX, Wadhwa M, Thorpe R, Kimber I, Derrick JP, Dearman RJ, Metcalfe C. The impact of thioredoxin reduction of allosteric disulfide bonds on the therapeutic potential of monoclonal antibodies. J Biol Chem 2019; 294:19616-19634. [PMID: 31727737 PMCID: PMC6926469 DOI: 10.1074/jbc.ra119.010637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Therapeutic mAbs are used to manage a wide range of cancers and autoimmune disorders. However, mAb-based treatments are not always successful, highlighting the need for a better understanding of the factors influencing mAb efficacy. Increased levels of oxidative stress associated with several diseases are counteracted by the activities of various oxidoreductase enzymes, such as thioredoxin (Trx), which also reduces allosteric disulfide bonds in proteins, including mAbs. Here, using an array of in vitro assays, we explored the functional effects of Trx-mediated reduction on the mechanisms of action of six therapeutic mAbs. We found that Trx reduces the interchain disulfide bonds of the mAbs, after which they remain intact but have altered function. In general, this reduction increased antigen-binding capacity, resulting in, for example, enhanced tumor necrosis factor (TNF) neutralization by two anti-TNF mAbs. Conversely, Trx reduction decreased the antiproliferative activity of an anti-tyrosine kinase-type cell-surface receptor HER2 mAb. In all of the mAbs, Fc receptor binding was abrogated by Trx activity, with significant loss in both complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity (ADCC) activity of the mAbs tested. We also confirmed that without alkylation, Trx-reduced interchain disulfide bonds reoxidize, and ADCC activity is restored. In summary, Trx-mediated reduction has a substantial impact on the functional effects of an mAb, including variable effects on antigen binding and Fc function, with the potential to significantly impact mAb efficacy in vivo.
Collapse
Affiliation(s)
- Shalom A Gurjar
- Division of Biotherapeutics, The National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Jun X Wheeler
- Division of Technology Development and Infrastructure, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Meenu Wadhwa
- Division of Biotherapeutics, The National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Robin Thorpe
- Division of Biotherapeutics, The National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Ian Kimber
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Rebecca J Dearman
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Clive Metcalfe
- Division of Biotherapeutics, The National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| |
Collapse
|
21
|
Saunders KO. Conceptual Approaches to Modulating Antibody Effector Functions and Circulation Half-Life. Front Immunol 2019; 10:1296. [PMID: 31231397 PMCID: PMC6568213 DOI: 10.3389/fimmu.2019.01296] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022] Open
Abstract
Antibodies and Fc-fusion antibody-like proteins have become successful biologics developed for cancer treatment, passive immunity against infection, addiction, and autoimmune diseases. In general these biopharmaceuticals can be used for blocking protein:protein interactions, crosslinking host receptors to induce signaling, recruiting effector cells to targets, and fixing complement. With the vast capability of antibodies to affect infectious and genetic diseases much effort has been placed on improving and tailoring antibodies for specific functions. While antibody:antigen engagement is critical for an efficacious antibody biologic, equally as important are the hinge and constant domains of the heavy chain. It is the hinge and constant domains of the antibody that engage host receptors or complement protein to mediate a myriad of effector functions and regulate antibody circulation. Molecular and structural studies have provided insight into how the hinge and constant domains from antibodies across different species, isotypes, subclasses, and alleles are recognized by host cell receptors and complement protein C1q. The molecular details of these interactions have led to manipulation of the sequences and glycosylation of hinge and constant domains to enhance or reduce antibody effector functions and circulating half-life. This review will describe the concepts being applied to optimize the hinge and crystallizable fragment of antibodies, and it will detail how these interactions can be tuned up or down to mediate a biological function that confers a desired disease outcome.
Collapse
Affiliation(s)
- Kevin O. Saunders
- Laboratory of Protein Expression, Departments of Surgery, Molecular Genetics and Microbiology, and Immunology, Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| |
Collapse
|
22
|
Bahou C, Love EA, Leonard S, Spears RJ, Maruani A, Armour K, Baker JR, Chudasama V. Disulfide Modified IgG1: An Investigation of Biophysical Profile and Clinically Relevant Fc Interactions. Bioconjug Chem 2019; 30:1048-1054. [PMID: 30855134 DOI: 10.1021/acs.bioconjchem.9b00174] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Modification of immunoglobulin G (IgG) 1 proteins in cancer treatment is a rapidly growing field of research. Antibody-drug conjugates (ADCs) exploit the targeted nature of this immunotherapy by conjugating highly potent drugs to antibodies, allowing for effective transport of cargo(s) to cancerous cells. Of the many bioconjugation strategies now available for the formation of highly homogeneous ADCs, disulfide modification is considered an effective, low-cost, and widely accepted method for modifying IgG1s for improved clinical benefit. However, little is known about how disulfide modification impacts clinically relevant fragment crystallizable (Fc) region interactions. Although often overlooked as a secondary ADC function, Fc interactions could prove key in the rational design of cancer cell-targeting ADCs through consideration of potent mechanisms such as antibody-dependent cellular cytotoxicity (ADCC). This work explores different IgG1 disulfide modification techniques and the effect they have on quantifiable secondary IgG1 Fc interactions (e.g., CD16a and FcRn). The solvent accessible disulfide residues of trastuzumab, a clinically relevant IgG1, were modified to provide a range of bioconjugates with differing amounts of interchain covalent linkages. It was found that by natively rebridging the IgG1 model, all tested Fc functionalities were not significantly affected. Additionally, in non Fc-specific biophysical experiments (e.g., thermal stability/aggregation), the natively rebridged species provided an exceptional profile, showing no significant change from the tested native antibody. Conjugates with significant disruption of the covalent connectivity of IgG1 chains resulted in a suboptimal Fc profile (CD16a kinetics or ADCC activity), in addition to substandard non Fc-specific attributes (thermal stability). These results advocate native disulfide rebridging as an excellent synthetic strategy for forming homogeneous IgG1 bioconjugates, with no reported negative impact on biophysical profile relative to the native antibody.
Collapse
Affiliation(s)
- Calise Bahou
- Department of Chemistry , University College London , 20 Gordon Street , WC1H OAJ , London , United Kingdom.,LifeArc , Accelerator Building, SBC Open Innovation Campus, SG1 2FX , Stevenage , United Kingdom
| | - Elizabeth A Love
- LifeArc , Accelerator Building, SBC Open Innovation Campus, SG1 2FX , Stevenage , United Kingdom
| | - Siobhán Leonard
- LifeArc , Accelerator Building, SBC Open Innovation Campus, SG1 2FX , Stevenage , United Kingdom
| | - Richard J Spears
- Department of Chemistry , University College London , 20 Gordon Street , WC1H OAJ , London , United Kingdom
| | - Antoine Maruani
- Department of Chemistry , University College London , 20 Gordon Street , WC1H OAJ , London , United Kingdom
| | - Kathryn Armour
- LifeArc , Accelerator Building, SBC Open Innovation Campus, SG1 2FX , Stevenage , United Kingdom
| | - James R Baker
- Department of Chemistry , University College London , 20 Gordon Street , WC1H OAJ , London , United Kingdom
| | - Vijay Chudasama
- Department of Chemistry , University College London , 20 Gordon Street , WC1H OAJ , London , United Kingdom.,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy , Universidade de Lisboa , 1649-004 Lisbon , Portugal
| |
Collapse
|
23
|
D'Eall C, Pon RA, Rossotti MA, Krahn N, Spearman M, Callaghan D, van Faassen H, Hussack G, Stetefeld J, Butler M, Durocher Y, Zhang J, Henry KA, Tanha J. Modulating antibody-dependent cellular cytotoxicity of epidermal growth factor receptor-specific heavy-chain antibodies through hinge engineering. Immunol Cell Biol 2019; 97:526-537. [PMID: 30680791 DOI: 10.1111/imcb.12238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 01/20/2023]
Abstract
Human IgG1 and IgG3 antibodies (Abs) can mediate Ab-dependent cellular cytotoxicity (ADCC), and engineering of the Ab Fc (point mutation; defucosylation) has been shown to affect ADCC by modulating affinity for FcRγIIIa. In the absence of a CH 1 domain, many camelid heavy-chain Abs (HCAbs) naturally bear very long and flexible hinge regions connecting their VH H and CH 2 domains. To better understand the influence of hinge length and structure on HCAb ADCC, we produced a series of hinge-engineered epidermal growth factor receptor (EGFR)-specific chimeric camelid VH H-human Fc Abs and characterized their affinities for recombinant EGFR and FcRγIIIa, their binding to EGFR-positive tumor cells, and their ability to elicit ADCC. In the case of one chimeric HCAb (EG2-hFc), we found that variants bearing longer hinges (IgG3 or camelid hinge regions) showed dramatically improved ADCC in comparison with a variant bearing the human IgG1 hinge, in similar fashion to a variant with reduced CH 2 fucosylation. Conversely, an EG2-hFc variant bearing a truncated human IgG1 upper hinge region failed to elicit ADCC. However, there was no consistent association between hinge length and ADCC for four similarly engineered chimeric HCAbs directed against distinct EGFR epitopes. These findings demonstrate that the ADCC of some HCAbs can be modulated simply by varying the length of the Ab hinge. Although this effect appears to be heavily epitope-dependent, this strategy may be useful to consider during the design of VH H-based therapeutic Abs for cancer.
Collapse
Affiliation(s)
- Calvin D'Eall
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Robert A Pon
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Martin A Rossotti
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Natalie Krahn
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
| | - Maureen Spearman
- Department of Microbiology, University of Manitoba, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
| | - Deborah Callaghan
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Henk van Faassen
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
| | - Michael Butler
- Department of Microbiology, University of Manitoba, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Ave, Montréal, QC, H4P 2R2, Canada
| | - Jianbing Zhang
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Jamshid Tanha
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
24
|
Ashoor DN, Ben Khalaf N, Bourguiba-Hachemi S, Marzouq MH, Fathallah MD. Engineering of the upper hinge region of human IgG1 Fc enhances the binding affinity to FcγIIIa (CD16a) receptor isoform. Protein Eng Des Sel 2019; 31:205-212. [PMID: 30299461 DOI: 10.1093/protein/gzy019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 08/04/2018] [Indexed: 11/12/2022] Open
Abstract
The interaction between antibodies and Immune cells surface FcγRIIIa (CD16a) receptor triggers a variety of immune responses including antibody-dependent cell-mediated cytotoxicity, antibody neutralization, phagocytosis, inflammation and tissue injury. Recent studies showed that IgG1 upper hinge region and FcγRs polymorphism play a major role in the interaction with Fcγ receptors and in the stability of the immune complex hence, in mounting strong inflammatory response. To further investigate this issue, we developed a tool box of IgG1 Fc isoforms to depict the affinity between mutated IgG1 Fc regions and extracellular domain variants (V158F) of CD16a. Our strategy consisted of designing different random upper-hinge mutated variants of IgG1 Fc domain, reproducing the naturally occurring two variants of CD16a and producing all of them as recombinant fusion proteins in Pichia Pastoris. The interactions were assayed using the Surface Plasmon Resonance (Biacore) method along with an in silico analysis to identify the major interaction and key residues that underline the affinity between the Fc region and CD16a variants. Our data showed that the affinity of the Fc region to the CD16a is strongly correlated to polar interactions. This molecular engineering approach yielded an IgG1Fc mutant with enhanced binding affinity to CD16a F158 variant.
Collapse
Affiliation(s)
- Dana N Ashoor
- Health Biotechnology Program, Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Noureddine Ben Khalaf
- Health Biotechnology Program, Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Sonia Bourguiba-Hachemi
- Health Biotechnology Program, Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Maryam H Marzouq
- Health Biotechnology Program, Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - M Dahmani Fathallah
- Health Biotechnology Program, Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
25
|
Zhao J, Nussinov R, Ma B. Antigen binding allosterically promotes Fc receptor recognition. MAbs 2019; 11:58-74. [PMID: 30212263 PMCID: PMC6343797 DOI: 10.1080/19420862.2018.1522178] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/10/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022] Open
Abstract
A key question in immunology is whether antigen recognition and Fc receptor (FcR) binding are allosterically linked. This question is also relevant for therapeutic antibody design. Antibody Fab and Fc domains are connected by flexible unstructured hinge region. Fc chains have conserved glycosylation sites at Asn297, with each conjugated to a core heptasaccharide and forming biantennary Fc glycan. The glycans modulate the Fc conformations and functions. It is well known that the antibody Fab and Fc domains and glycan affect antibody activity, but whether these elements act independently or synergistically is still uncertain. We simulated four antibody complexes: free antibody, antigen-bound antibody, FcR-bound antibody, and an antigen-antibody-FcR complex. We found that, in the antibody's "T/Y" conformation, the glycans, and the Fc domain all respond to antigen binding, with the antibody population shifting to two dominant clusters, both with the Fc-receptor binding site open. The simulations reveal that the Fc-glycan-receptor complexes also segregate into two conformational clusters, one corresponding to the antigen-free antibody-FcR baseline binding, and the other with an antigen-enhanced antibody-FcR interaction. Our study confirmed allosteric communications in antibody-antigen recognition and following FcR activation. Even though we observed allosteric communications through the IgG domains, the most important mechanism that we observed is the communication via population shift, stimulated by antigen binding and propagating to influence FcR recognition.
Collapse
Affiliation(s)
- Jun Zhao
- Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
26
|
Leipold D, Prabhu S. Pharmacokinetic and Pharmacodynamic Considerations in the Design of Therapeutic Antibodies. Clin Transl Sci 2018; 12:130-139. [PMID: 30414357 PMCID: PMC6440574 DOI: 10.1111/cts.12597] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022] Open
Abstract
The design and development of therapeutic monoclonal antibodies (mAbs) through optimizing their pharmacokinetic (PK) and pharmacodynamic (PD) properties is crucial to improve efficacy while minimizing adverse events. Many of these properties are interdependent, which highlights the inherent challenges in therapeutic antibody design, where improving one antibody property can sometimes lead to changes in others. Here, we discuss optimization approaches for PK/PD properties of therapeutic mAbs.
Collapse
Affiliation(s)
- Douglas Leipold
- Preclinical and Translational Pharmacokinetics/Pharmacodynamics, Genentech, South San Francisco, California, USA
| | - Saileta Prabhu
- Preclinical and Translational Pharmacokinetics/Pharmacodynamics, Genentech, South San Francisco, California, USA
| |
Collapse
|
27
|
Engineering the hinge region of human IgG1 Fc-fused bispecific antibodies to improve fragmentation resistance. Sci Rep 2018; 8:17253. [PMID: 30467410 PMCID: PMC6250740 DOI: 10.1038/s41598-018-35489-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 11/06/2018] [Indexed: 11/08/2022] Open
Abstract
Fc domain fusion can improve the therapeutic effects of relatively small biological molecules such as peptides, cytokines, and antibody fragments. Fc fusion proteins can also be used to enhance the cytotoxic effects of small bispecific antibodies (bsAbs). However, fragmentation of Fc fusion proteins, which mainly occurs around the hinge regions during production, storage, and circulation in the blood, is a major issue. In this study, we first investigated the mechanisms of fragmentation around the hinge region during storage using Fc-fused bsAbs with specificity for epidermal growth factor receptor and CD3 as a model. The fragmentation peaks generated by gel filtration analysis indicated that both contaminating proteases and dissolved active oxygen should be considered causes of fragmentation. We designed and constructed variants by introducing a point mutation into the upper hinge region, which reduced the cleavage caused by dissolved active oxygen, and shortened the hinge region to restrict access of proteases. These hinge modifications improved fragmentation resistance and did not affect the biological activity of the bsAbs in vitro. We confirmed the versatility of the hinge modifications using another Fc-fused bsAb. Our results show that hinge modifications to the Fc fusion protein, especially the introduction of a point mutation into the upper hinge region, can reduce fragmentation substantially, and these modifications can be used to improve the fragmentation resistance of other recombinant Fc fusion proteins.
Collapse
|
28
|
Polli JR, Engler FA, Balthasar JP. Physiologically Based Modeling of the Pharmacokinetics of "Catch-and-Release" Anti-Carcinoembryonic Antigen Monoclonal Antibodies in Colorectal Cancer Xenograft Mouse Models. J Pharm Sci 2018; 108:674-691. [PMID: 30321546 DOI: 10.1016/j.xphs.2018.09.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
Engineered monoclonal antibodies (mAbs) with pH-sensitive target release, or "catch-and-release" (CAR) binding, have shown promise in decreasing the extent of target-mediated mAb elimination, increasing mAb exposure, and increasing dose potency. This study developed a mechanistic physiologically based pharmacokinetic (PBPK) model to evaluate the effects of pH-sensitive CAR target binding on the disposition of anti-carcinoembryonic antigen (CEA) mAbs in mouse models of colorectal cancer. The PBPK model was qualified by comparing model-predicted plasma concentration-time data with data observed in tumor-bearing mice following the administration of T84.66, a "standard" anti-CEA mAb that demonstrates strong binding at pH 7.4 and 5.5. Further simulations evaluated the effects CAR pH-dependent binding, with decreasing CEA affinity with decreasing pH, on anti-CEA mAb plasma pharmacokinetics. Simulated data were compared with data observed for a novel CAR mAb, 10H6. The PBPK model provided precise parameter estimates, and excellent data characterization (median prediction error 18.4%) following fitting to T84.66 data. Simulations well predicted 10H6 data (median prediction error 21.4%). Sensitivity analyses demonstrated that key determinants of the disposition of CAR mAbs include the following: antigen binding affinity, the rate constant of mAb-CEA dissociation in acidified endosomes, antigen concentration, and the tumor vasculature reflection coefficient.
Collapse
Affiliation(s)
- Joseph Ryan Polli
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York 14215
| | - Frank A Engler
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York 14215
| | - Joseph P Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York 14215.
| |
Collapse
|
29
|
Zhao J, Nussinov R, Wu WJ, Ma B. In Silico Methods in Antibody Design. Antibodies (Basel) 2018; 7:E22. [PMID: 31544874 PMCID: PMC6640671 DOI: 10.3390/antib7030022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 01/10/2023] Open
Abstract
Antibody therapies with high efficiency and low toxicity are becoming one of the major approaches in antibody therapeutics. Based on high-throughput sequencing and increasing experimental structures of antibodies/antibody-antigen complexes, computational approaches can predict antibody/antigen structures, engineering the function of antibodies and design antibody-antigen complexes with improved properties. This review summarizes recent progress in the field of in silico design of antibodies, including antibody structure modeling, antibody-antigen complex prediction, antibody stability evaluation, and allosteric effects in antibodies and functions. We listed the cases in which these methods have helped experimental studies to improve the affinities and physicochemical properties of antibodies. We emphasized how the molecular dynamics unveiled the allosteric effects during antibody-antigen recognition and antibody-effector recognition.
Collapse
Affiliation(s)
- Jun Zhao
- Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
- Interagency Oncology Task Force (IOTF) Fellowship: Oncology Product Research/Review Fellow, National Cancer Institute, Bethesda, MD 20892, USA.
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Wen-Jin Wu
- Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
30
|
Klaus T, Bereta J. CH2 Domain of Mouse IgG3 Governs Antibody Oligomerization, Increases Functional Affinity to Multivalent Antigens and Enhances Hemagglutination. Front Immunol 2018; 9:1096. [PMID: 29875771 PMCID: PMC5974032 DOI: 10.3389/fimmu.2018.01096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/02/2018] [Indexed: 01/06/2023] Open
Abstract
Mouse IgG3 is highly protective against several life-threatening bacteria. This isotype is the only one among mouse IgGs that forms non-covalent oligomers, has increased functional affinity to polyvalent antigens, and efficiently agglutinates erythrocytes. IgG3 also triggers the complement cascade. The high efficacy of protection after passive immunization with IgG3 is correlated with the unique properties of this isotype. Although the features of IgG3 are well documented, their molecular basis remains elusive. Based on functional analyses of IgG1/IgG3 hybrid molecules with swapped constant domains, we identified IgG3-derived CH2 domain as a major determinant of antibody oligomerization and increased functional affinity to a multivalent antigen. The CH2 domain was also crucial for efficient hemagglutination triggered by IgG3 and was indispensable for complement cascade activation. This domain is glycosylated and atypically charged. A mutational analysis based on molecular models of CH2 domain charge distribution indicated that the functional affinity was influenced by the specific charge location. N-glycans were essential for CH2-dependent enhancement of hemagglutination and complement activation. Oligomerization was independent of CH2 charge and glycosylation. We also verified that known C1q-binding motifs are functional in mouse IgG3 but not in IgG1 framework. We generated for the first time a gain-of-function antibody with properties transferred from IgG3 into IgG1 by replacing the CH2 domain. Finding that the CH2 domain of IgG3 governs unique properties of this isotype is likely to open an avenue toward the generation of IgG3-inspired antibodies that will be protective against existing or emerging lethal pathogens.
Collapse
Affiliation(s)
- Tomasz Klaus
- Laboratory of Monoclonal Antibodies, Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.,Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Joanna Bereta
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
31
|
Zhou W, Lin S, Chen R, Liu J, Li Y. Characterization of antibody-C1q interactions by Biolayer Interferometry. Anal Biochem 2018; 549:143-148. [DOI: 10.1016/j.ab.2018.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/20/2018] [Accepted: 03/21/2018] [Indexed: 12/17/2022]
|
32
|
Lu LL, Suscovich TJ, Fortune SM, Alter G. Beyond binding: antibody effector functions in infectious diseases. Nat Rev Immunol 2018; 18:46-61. [PMID: 29063907 PMCID: PMC6369690 DOI: 10.1038/nri.2017.106] [Citation(s) in RCA: 486] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibodies play an essential role in host defence against pathogens by recognizing microorganisms or infected cells. Although preventing pathogen entry is one potential mechanism of protection, antibodies can control and eradicate infections through a variety of other mechanisms. In addition to binding and directly neutralizing pathogens, antibodies drive the clearance of bacteria, viruses, fungi and parasites via their interaction with the innate and adaptive immune systems, leveraging a remarkable diversity of antimicrobial processes locked within our immune system. Specifically, antibodies collaboratively form immune complexes that drive sequestration and uptake of pathogens, clear toxins, eliminate infected cells, increase antigen presentation and regulate inflammation. The diverse effector functions that are deployed by antibodies are dynamically regulated via differential modification of the antibody constant domain, which provides specific instructions to the immune system. Here, we review mechanisms by which antibody effector functions contribute to the balance between microbial clearance and pathology and discuss tractable lessons that may guide rational vaccine and therapeutic design to target gaps in our infectious disease armamentarium.
Collapse
Affiliation(s)
- Lenette L Lu
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, Massachusetts 02139, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Todd J Suscovich
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
33
|
Shiga Y, Murata D, Sugimoto A, Oshima Y, Tada M, Ishii-Watabe A, Imai K, Tomii K, Takeuchi T, Kagaya S, Sato A. Hinge-Deficient IgG1 Fc Fusion: Application to Human Lactoferrin. Mol Pharm 2017; 14:3025-3035. [DOI: 10.1021/acs.molpharmaceut.7b00221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuki Shiga
- School
of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo 192-0982, Japan
| | - Daisuke Murata
- School
of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo 192-0982, Japan
| | - Akinori Sugimoto
- School
of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo 192-0982, Japan
| | - Yuta Oshima
- School
of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo 192-0982, Japan
| | - Minoru Tada
- Division
of Biological Chemistry and Biologicals, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan
| | - Akiko Ishii-Watabe
- Division
of Biological Chemistry and Biologicals, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan
| | - Kenichiro Imai
- Artificial
Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo 135-0064, Japan
- Biotechnology
Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo 135-0064, Japan
| | - Kentaro Tomii
- Artificial
Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo 135-0064, Japan
- Biotechnology
Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo 135-0064, Japan
| | - Takashi Takeuchi
- Department
of Veterinary Medicine, Tottori University, Koyama-Minami, Tottori 680-8550, Japan
| | - Shinji Kagaya
- NRL Pharma, Inc., Kawasaki, Kanagawa 213-0012, Japan
| | - Atsushi Sato
- School
of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo 192-0982, Japan
| |
Collapse
|
34
|
Wang Q, Chen Y, Pelletier M, Cvitkovic R, Bonnell J, Chang CY, Koksal AC, O'Connor E, Gao X, Yu XQ, Wu H, Stover CK, Dall'Acqua WF, Xiao X. Enhancement of antibody functions through Fc multiplications. MAbs 2017; 9:393-403. [PMID: 28102754 DOI: 10.1080/19420862.2017.1281505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Antibodies carry out a plethora of functions through their crystallizable fragment (Fc) regions, which can be naturally tuned by the adoption of several isotypes and post-translational modifications. Protein engineering enables further Fc function modulations through modifications of the interactions between the Fc and its functional partners, including FcγR, FcRn, complement complex, and additions of auxiliary functional units. Due to the many functions embedded within the confinement of an Fc, a suitable balance must be maintained for a therapeutic antibody to be effective and safe. The outcome of any Fc engineering depends on the interplay among all the effector molecules involved. In this report, we assessed the effects of Fc multiplication (or tandem Fc) on antibody functions. Using IgG1 as a test case, we found that, depending on the specifically designed linker, Fc multiplication led to differentially folded, stable molecules with unique pharmacokinetic profiles. Interestingly, the variants with 3 copies of Fc improved in vitro opsonophagocytic killing activity and displayed significantly improved protective efficacies in a Klebsiella pneumoniae mouse therapeutic model despite faster clearance compared with its IgG1 counterpart. There was no adverse effect observed or pro-inflammatory cytokine release when the Fc variants were administered to animals. We further elucidated that enhanced binding to various effector molecules by IgG-3Fc created a "sink" leading to the rapid clearance of the 3Fc variants, and identified the increased FcRn binding as one strategy to facilitate "sink" escape. These findings reveal new opportunities for novel Fc engineering to further expand our abilities to manipulate and improve antibody therapeutics.
Collapse
Affiliation(s)
- Qun Wang
- a Department of Infectious Diseases , MedImmune , Gaithersburg , MD , USA
| | - Yan Chen
- b Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Mark Pelletier
- a Department of Infectious Diseases , MedImmune , Gaithersburg , MD , USA
| | - Romana Cvitkovic
- a Department of Infectious Diseases , MedImmune , Gaithersburg , MD , USA
| | - Jessica Bonnell
- a Department of Infectious Diseases , MedImmune , Gaithersburg , MD , USA
| | - Chien-Ying Chang
- b Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Adem C Koksal
- b Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Ellen O'Connor
- c Department of Purification Process Sciences , MedImmune , Gaithersburg , MD , USA
| | - Xizhe Gao
- d Department of Clinical Pharmacology & DMPK , MedImmune , Gaithersburg , MD , USA
| | - Xiang-Qing Yu
- d Department of Clinical Pharmacology & DMPK , MedImmune , Gaithersburg , MD , USA
| | - Herren Wu
- b Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - C Kendall Stover
- a Department of Infectious Diseases , MedImmune , Gaithersburg , MD , USA
| | - William F Dall'Acqua
- b Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Xiaodong Xiao
- b Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| |
Collapse
|
35
|
Jefferis R. Recombinant Proteins and Monoclonal Antibodies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 175:281-318. [DOI: 10.1007/10_2017_32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
A Novel Platform for the Potentiation of Therapeutic Antibodies Based on Antigen-Dependent Formation of IgG Hexamers at the Cell Surface. PLoS Biol 2016; 14:e1002344. [PMID: 26736041 PMCID: PMC4703389 DOI: 10.1371/journal.pbio.1002344] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/03/2015] [Indexed: 11/19/2022] Open
Abstract
IgG antibodies can organize into ordered hexamers on cell surfaces after binding their antigen. These hexamers bind the first component of complement C1 inducing complement-dependent target cell killing. Here, we translated this natural concept into a novel technology platform (HexaBody technology) for therapeutic antibody potentiation. We identified mutations that enhanced hexamer formation and complement activation by IgG1 antibodies against a range of targets on cells from hematological and solid tumor indications. IgG1 backbones with preferred mutations E345K or E430G conveyed a strong ability to induce conditional complement-dependent cytotoxicity (CDC) of cell lines and chronic lymphocytic leukemia (CLL) patient tumor cells, while retaining regular pharmacokinetics and biopharmaceutical developability. Both mutations potently enhanced CDC- and antibody-dependent cellular cytotoxicity (ADCC) of a type II CD20 antibody that was ineffective in complement activation, while retaining its ability to induce apoptosis. The identified IgG1 Fc backbones provide a novel platform for the generation of therapeutics with enhanced effector functions that only become activated upon binding to target cell-expressed antigen.
Collapse
|
37
|
|
38
|
Oganesyan V, Mazor Y, Yang C, Cook KE, Woods RM, Ferguson A, Bowen MA, Martin T, Zhu J, Wu H, Dall’Acqua WF. Structural insights into the interaction of human IgG1 with FcγRI: no direct role of glycans in binding. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:2354-61. [PMID: 26527150 PMCID: PMC4631484 DOI: 10.1107/s1399004715018015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/25/2015] [Indexed: 11/10/2022]
Abstract
The three-dimensional structure of a human IgG1 Fc fragment bound to wild-type human FcγRI is reported. The structure of the corresponding complex was solved at a resolution of 2.4 Å using molecular replacement; this is the highest resolution achieved for an unmutated FcγRI molecule. This study highlights the critical structural and functional role played by the second extracellular subdomain of FcγRI. It also explains the long-known major energetic contribution of the Fc `LLGG' motif at positions 234-237, and particularly of Leu235, via a `lock-and-key' mechanism. Finally, a previously held belief is corrected and a differing view is offered on the recently proposed direct role of Fc carbohydrates in the corresponding interaction. Structural evidence is provided that such glycan-related effects are strictly indirect.
Collapse
Affiliation(s)
- Vaheh Oganesyan
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| | - Yariv Mazor
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| | - Chunning Yang
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| | - Kimberly E. Cook
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| | - Robert M. Woods
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| | - Andrew Ferguson
- Discovery Sciences, Structure and Biophysics, AstraZeneca Pharmaceuticals, 35 Gatehouse Drive, Mailstop E3, Waltham, MA 02451, USA
| | - Michael A. Bowen
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| | - Tom Martin
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| | - Jie Zhu
- Biopharmaceutical Development, MedImmune LLC, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| | - Herren Wu
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| | - William F. Dall’Acqua
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| |
Collapse
|
39
|
Rivera CA, Gómez RS, Díaz RA, Céspedes PF, Espinoza JA, González PA, Riedel CA, Bueno SM, Kalergis AM. Novel therapies and vaccines against the human respiratory syncytial virus. Expert Opin Investig Drugs 2015; 24:1613-30. [DOI: 10.1517/13543784.2015.1099626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Quast I, Keller CW, Maurer MA, Giddens JP, Tackenberg B, Wang LX, Münz C, Nimmerjahn F, Dalakas MC, Lünemann JD. Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity. J Clin Invest 2015; 125:4160-70. [PMID: 26436649 DOI: 10.1172/jci82695] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/25/2015] [Indexed: 12/19/2022] Open
Abstract
IgG molecules exert both pro- and antiinflammatory effector functions based on the composition of the fragment crystallizable (Fc) domain glycan. Sialylated IgG Fc domains have antiinflammatory properties that are attributed to their ability to increase the activation threshold of innate effector cells to immune complexes by stimulating the upregulation of the inhibitory Fcγ receptor IIB (FcγRIIB). Here, we report that IgG Fc sialylation of human monoclonal IgG1 molecules impairs their efficacy to induce complement-mediated cytotoxicity (CDC). Fc sialylation of a CD20-targeting antibody had no impact on antibody-dependent cellular cytotoxicity and did not change the affinity of the antibody for activating Fcγ receptors. In contrast, the presence of sialic acid abrogated the increased binding of C1q to Fc-galactosylated IgG1 and resulted in decreased levels of C3b deposition on the cell surface. Similar to monoclonal antibodies, sialic acid inhibited the increased C1q binding to galactosylated Fc fragments in human polyclonal IgG. In sera derived from patients with chronic inflammatory demyelinating polyneuropathy, an autoimmune disease of the peripheral nervous system in which humoral immune responses mediate tissue damage, induction of IgG Fc sialylation was associated with clinical disease remission. Thus, impairment of CDC represents an FcγR-independent mechanism by which Fc-sialylated glycovariants might limit proinflammatory IgG effector functions.
Collapse
MESH Headings
- Animals
- Antibody-Dependent Cell Cytotoxicity
- Antigens, CD20/immunology
- B-Lymphocytes/immunology
- Burkitt Lymphoma/pathology
- Cell Line, Tumor
- Complement C1q/immunology
- Complement C1q/metabolism
- Complement Pathway, Classical
- Complement System Proteins/immunology
- Cytotoxicity, Immunologic
- Glycosylation
- Humans
- Immunoglobulin G/chemistry
- Immunoglobulin G/immunology
- Immunoglobulin gamma-Chains/chemistry
- Immunoglobulin gamma-Chains/immunology
- Immunoglobulins, Intravenous/therapeutic use
- Killer Cells, Natural/immunology
- Lymphocyte Depletion
- Mice
- Myelin-Oligodendrocyte Glycoprotein/immunology
- N-Acetylneuraminic Acid/chemistry
- Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/immunology
- Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/therapy
- Protein Processing, Post-Translational
- Receptors, IgG/immunology
- Rituximab/chemistry
- Rituximab/immunology
Collapse
|
41
|
Abstract
The use of monoclonal antibodies as therapeutics requires optimizing several of their key attributes. These include binding affinity and specificity, folding stability, solubility, pharmacokinetics, effector functions, and compatibility with the attachment of additional antibody domains (bispecific antibodies) and cytotoxic drugs (antibody-drug conjugates). Addressing these and other challenges requires the use of systematic design methods that complement powerful immunization and in vitro screening methods. We review advances in designing the binding loops, scaffolds, domain interfaces, constant regions, post-translational and chemical modifications, and bispecific architectures of antibodies and fragments thereof to improve their bioactivity. We also highlight unmet challenges in antibody design that must be overcome to generate potent antibody therapeutics.
Collapse
Affiliation(s)
- Kathryn E Tiller
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180;
| | - Peter M Tessier
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180;
| |
Collapse
|
42
|
Suzuki M, Yamanoi A, Machino Y, Ootsubo M, Izawa KI, Kohroki J, Masuho Y. Effect of trastuzumab interchain disulfide bond cleavage on Fcγ receptor binding and antibody-dependent tumour cell phagocytosis. J Biochem 2015; 159:67-76. [PMID: 26254483 DOI: 10.1093/jb/mvv074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/25/2015] [Indexed: 01/08/2023] Open
Abstract
The Fc domain of human IgG1 binds to Fcγ receptors (FcγRs) to induce effector functions such as phagocytosis. There are four interchain disulfide bonds between the H and L chains. In this study, the disulfide bonds within the IgG1 trastuzumab (TRA), which is specific for HER2, were cleaved by mild S-sulfonation or by mild reduction followed by S-alkylation with three different reagents. The cleavage did not change the binding activities of TRA to HER2-bearing SK-BR-3 cells. The binding activities of TRA to FcγRIIA and FcγRIIB were greatly enhanced by modification with mild reduction and S-alkylation with ICH2CONH2 or N-(4-aminophenyl) maleimide, while the binding activities of TRA to FcγRI and FcγRIIIA were decreased by any of the four modifications. However, the interchain disulfide bond cleavage by the different modifications did not change the antibody-dependent cell-mediated phagocytosis (ADCP) of SK-BR-3 cells by activated THP-1 cells. The order of FcγR expression levels on the THP-1 cells was FcγRII > FcγRI > FcγRIII and ADCP was inhibited by blocking antibodies against FcγRI and FcγRII. These results imply that the effect of the interchain disulfide bond cleavage on FcγRs binding and ADCP is dependent on modifications of the cysteine residues and the FcγR isotypes.
Collapse
Affiliation(s)
- Mami Suzuki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan and Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Ayaka Yamanoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan and
| | - Yusuke Machino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan and
| | - Michiko Ootsubo
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan and
| | - Ken-ichi Izawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan and
| | - Junya Kohroki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan and
| | - Yasuhiko Masuho
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan and
| |
Collapse
|
43
|
Rayner LE, Hui GK, Gor J, Heenan RK, Dalby PA, Perkins SJ. The solution structures of two human IgG1 antibodies show conformational stability and accommodate their C1q and FcγR ligands. J Biol Chem 2015; 290:8420-38. [PMID: 25659433 PMCID: PMC4375494 DOI: 10.1074/jbc.m114.631002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/28/2015] [Indexed: 11/06/2022] Open
Abstract
The human IgG1 antibody subclass shows distinct properties compared with the IgG2, IgG3, and IgG4 subclasses and is the most exploited subclass in therapeutic antibodies. It is the most abundant subclass, has a half-life as long as that of IgG2 and IgG4, binds the FcγR receptor, and activates complement. There is limited structural information on full-length human IgG1 because of the challenges of crystallization. To rectify this, we have studied the solution structures of two human IgG1 6a and 19a monoclonal antibodies in different buffers at different temperatures. Analytical ultracentrifugation showed that both antibodies were predominantly monomeric, with sedimentation coefficients s20,w (0) of 6.3-6.4 S. Only a minor dimer peak was observed, and the amount was not dependent on buffer conditions. Solution scattering showed that the x-ray radius of gyration Rg increased with salt concentration, whereas the neutron Rg values remained unchanged with temperature. The x-ray and neutron distance distribution curves P(r) revealed two peaks, M1 and M2, whose positions were unchanged in different buffers to indicate conformational stability. Constrained atomistic scattering modeling revealed predominantly asymmetric solution structures for both antibodies with extended hinge structures. Both structures were similar to the only known crystal structure of full-length human IgG1. The Fab conformations in both structures were suitably positioned to permit the Fc region to bind readily to its FcγR and C1q ligands without steric clashes, unlike human IgG4. Our molecular models for human IgG1 explain its immune activities, and we discuss its stability and function for therapeutic applications.
Collapse
Affiliation(s)
- Lucy E Rayner
- From the Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Gar Kay Hui
- From the Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Jayesh Gor
- From the Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Richard K Heenan
- the ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, United Kingdom, and
| | - Paul A Dalby
- the Department of Biochemical Engineering, Division of Engineering, Roberts Building, University College London, Gower Street, London WC1E 7JE, United Kingdom
| | - Stephen J Perkins
- From the Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom,
| |
Collapse
|
44
|
Targeting FcRn for the modulation of antibody dynamics. Mol Immunol 2015; 67:131-41. [PMID: 25766596 DOI: 10.1016/j.molimm.2015.02.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 01/08/2023]
Abstract
The MHC class I-related receptor, FcRn, is a multitasking protein that transports its IgG ligand within and across cells of diverse origins. The role of this receptor as a global regulator of IgG homeostasis and transport, combined with knowledge of the molecular details of FcRn-IgG interactions, has led to opportunities to modulate the in vivo dynamics of antibodies and their antigens through protein engineering. Consequently, the generation of half-life extended antibodies has shown a rapid expansion over the past decade. Further, FcRn itself can be targeted by inhibitors to induce decreased levels of circulating IgGs, which could have applications in multiple clinical settings. The engineering of antibody-antigen interactions to reduce antibody-mediated buffering of soluble ligand has also developed into an active area of investigation, leading to novel antibody platforms designed to result in more effective antigen clearance. Similarly, the target-mediated elimination of antibodies by internalizing, membrane bound antigens (receptors) can be decreased using novel engineering approaches. These strategies, combined with subcellular trafficking analyses of antibody/antigen/FcRn behavior in cells to predict in vivo behavior, have considerable promise for the production of next generation therapeutics and diagnostics.
Collapse
|
45
|
Melis JPM, Strumane K, Ruuls SR, Beurskens FJ, Schuurman J, Parren PWHI. Complement in therapy and disease: Regulating the complement system with antibody-based therapeutics. Mol Immunol 2015; 67:117-30. [PMID: 25697848 DOI: 10.1016/j.molimm.2015.01.028] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 12/23/2022]
Abstract
Complement is recognized as a key player in a wide range of normal as well as disease-related immune, developmental and homeostatic processes. Knowledge of complement components, structures, interactions, and cross-talk with other biological systems continues to grow and this leads to novel treatments for cancer, infectious, autoimmune- or age-related diseases as well as for preventing transplantation rejection. Antibodies are superbly suited to be developed into therapeutics with appropriate complement stimulatory or inhibitory activity. Here we review the design, development and future of antibody-based drugs that enhance or dampen the complement system.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul W H I Parren
- Genmab, Utrecht, The Netherlands; Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
46
|
Monnet C, Jorieux S, Urbain R, Fournier N, Bouayadi K, De Romeuf C, Behrens CK, Fontayne A, Mondon P. Selection of IgG Variants with Increased FcRn Binding Using Random and Directed Mutagenesis: Impact on Effector Functions. Front Immunol 2015; 6:39. [PMID: 25699055 PMCID: PMC4316771 DOI: 10.3389/fimmu.2015.00039] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/21/2015] [Indexed: 12/26/2022] Open
Abstract
Despite the reasonably long half-life of immunoglogulin G (IgGs), market pressure for higher patient convenience while conserving efficacy continues to drive IgG half-life improvement. IgG half-life is dependent on the neonatal Fc receptor (FcRn), which among other functions, protects IgG from catabolism. FcRn binds the Fc domain of IgG at an acidic pH ensuring that endocytosed IgG will not be degraded in lysosomal compartments and will then be released into the bloodstream. Consistent with this mechanism of action, several Fc-engineered IgG with increased FcRn affinity and conserved pH dependency were designed and resulted in longer half-life in vivo in human FcRn-transgenic mice (hFcRn), cynomolgus monkeys, and recently in healthy humans. These IgG variants were usually obtained by in silico approaches or directed mutagenesis in the FcRn-binding site. Using random mutagenesis, combined with a pH-dependent phage display selection process, we isolated IgG variants with improved FcRn-binding, which exhibited longer in vivo half-life in hFcRn mice. Interestingly, many mutations enhancing Fc/FcRn interaction were located at a distance from the FcRn-binding site validating our random molecular approach. Directed mutagenesis was then applied to generate new variants to further characterize our IgG variants and the effect of the mutations selected. Since these mutations are distributed over the whole Fc sequence, binding to other Fc effectors, such as complement C1q and FcγRs, was dramatically modified, even by mutations distant from these effectors’ binding sites. Hence, we obtained numerous IgG variants with increased FcRn-binding and different binding patterns to other Fc effectors, including variants without any effector function, providing distinct “fit-for-purpose” Fc molecules. We therefore provide evidence that half-life and effector functions should be optimized simultaneously as mutations can have unexpected effects on all Fc receptors that are critical for IgG therapeutic efficacy.
Collapse
|
47
|
Shiga Y, Oshima Y, Kojima Y, Sugimoto A, Tamaki N, Murata D, Takeuchi T, Sato A. Recombinant human lactoferrin-Fc fusion with an improved plasma half-life. Eur J Pharm Sci 2015; 67:136-143. [DOI: 10.1016/j.ejps.2014.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 10/11/2014] [Accepted: 11/12/2014] [Indexed: 12/30/2022]
|
48
|
Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol 2014; 5:520. [PMID: 25368619 PMCID: PMC4202688 DOI: 10.3389/fimmu.2014.00520] [Citation(s) in RCA: 1691] [Impact Index Per Article: 169.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 10/06/2014] [Indexed: 12/21/2022] Open
Abstract
Of the five immunoglobulin isotypes, immunoglobulin G (IgG) is most abundant in human serum. The four subclasses, IgG1, IgG2, IgG3, and IgG4, which are highly conserved, differ in their constant region, particularly in their hinges and upper CH2 domains. These regions are involved in binding to both IgG-Fc receptors (FcγR) and C1q. As a result, the different subclasses have different effector functions, both in terms of triggering FcγR-expressing cells, resulting in phagocytosis or antibody-dependent cell-mediated cytotoxicity, and activating complement. The Fc-regions also contain a binding epitope for the neonatal Fc receptor (FcRn), responsible for the extended half-life, placental transport, and bidirectional transport of IgG to mucosal surfaces. However, FcRn is also expressed in myeloid cells, where it participates in both phagocytosis and antigen presentation together with classical FcγR and complement. How these properties, IgG-polymorphisms and post-translational modification of the antibodies in the form of glycosylation, affect IgG-function will be the focus of the current review.
Collapse
Affiliation(s)
- Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Gillian Dekkers
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| |
Collapse
|
49
|
Kovaleva M, Ferguson L, Steven J, Porter A, Barelle C. Shark variable new antigen receptor biologics - a novel technology platform for therapeutic drug development. Expert Opin Biol Ther 2014; 14:1527-39. [PMID: 25090369 DOI: 10.1517/14712598.2014.937701] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Biologics drugs have succeeded in achieving a commercial dominance in the global market for new therapies and large pharmaceutical companies' interest remains strong through a continued commitment to pipeline development. It is not surprising, therefore, that next-generation biologics, particularly antibody-like scaffolds that offer many of the advantages of the original biologic drugs but in simplified formats, have entered the clinic as competing substitute therapeutic products, to capture market share. AREAS COVERED Specifically, this paper will position shark-derived variable new antigen receptors (VNARs) within an overview of the existing biologics landscape including the growth, diversity and success to date of alternative scaffolds. The intention is not to provide a comprehensive review of biologics as a whole but to discuss the main competing single-domain technologies and the exciting therapeutic potential of VNAR domains as clinical candidates within this context. EXPERT OPINION The inherent ability to specifically bind target and intervene in disease-related biological processes, while reducing off-site toxicity, makes mAbs an effective, potent and now proven class of therapeutics. There are, however, limitations to these 'magic bullets'. Their size and complexity can restrict their utility in certain diseases types and disease locations. In contrast, a number of so-called alternative scaffolds, derived from both immunoglobulin- and non-immunoglobulin-based sources have been developed with real potential to overcome many of the shortcomings documented for mAb treatments. Unlike competing approaches such as Darpins and Affibodies, we now know that shark VNAR domains (like camel VHH nanobody domains), are an integral part of the adaptive immune system of these animals and have evolved naturally (but from very different starting molecules) to exhibit high affinity and selectivity for target. In addition, and again influenced by the environment in which they have evolved naturally, their small size, simple architecture, high solubility and stability, deliver additional flexibility compared to classical antibodies (and many non-natural alternative scaffolds), thereby providing an attractive basis for particular clinical indications where these attributes may offer advantages.
Collapse
Affiliation(s)
- Marina Kovaleva
- University of Aberdeen, Institute of Medical Sciences, College of Life Sciences and Medicine , Foresterhill, Aberdeen, AB25 2ZD , UK +012 2443 8545 ;
| | | | | | | | | |
Collapse
|
50
|
In Vitro functional characterization of feline IgGs. Vet Immunol Immunopathol 2014; 158:214-23. [DOI: 10.1016/j.vetimm.2014.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/19/2013] [Accepted: 01/28/2014] [Indexed: 11/20/2022]
|