1
|
Deng Z, Ding W, Li F, Shen S, Huang C, Lai K. Pulmonary IFN-γ Causes Lymphocytic Inflammation and Cough Hypersensitivity by Increasing the Number of IFN-γ-Secreting T Lymphocytes. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:653-673. [PMID: 36426396 PMCID: PMC9709684 DOI: 10.4168/aair.2022.14.6.653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 07/25/2023]
Abstract
PURPOSE Respiratory viral infection increases the number of lung-resident T lymphocytes, which enhance cough sensitivity by producing interferon-γ (IFN-γ). It is poorly understood why IFN-γ-secreting T lymphocytes persist for a long time when the respiratory viruses have been removed. METHODS Repeated pulmonary administration of IFN-γ and intraperitoneal injection with different inhibitors were used to study the effects of pulmonary IFN-γ in mice and guinea pigs. RESULTS IFN-γ administration caused the increasing of IFN-γ-secreting T lymphocytes in both lung and blood, followed by the elevated physiological level of IFN-γ in the lung, the airway inflammation and the airway epithelial damage. IFN-γ administration also enhanced the cough sensitivity of guinea pigs. IFN-γ activated the STAT1 and extracellular signal-regulated kinase (ERK) pathways in lung tissues, released IFN-γ-inducible protein 10 (IP-10), and resulted in F-actin accumulation in lung-resident lymphocytes. The CXC chemokine receptor 3 (CXCR3) inhibitor potently suppressed all the IFN-γ-induced inflammatory changes. The STAT1 inhibitor mitigated IFN-γ-secreting T lymphocytes infiltration by inhibiting T lymphocytes proliferation. F-actin accumulation and the ERK1/2 pathway contributed to pulmonary IFN-γ-induced augmentation of the airway inflammation and increasing of IFN-γ-secreting T lymphocytes in blood. CONCLUSIONS High physiological levels of IFN-γ in the lung may cause pulmonary lymphocytic inflammation and cough hypersensitivity by increasing the number of IFN-γ-secreting T lymphocytes through the IP-10 and CXCR3 pathways.
Collapse
Affiliation(s)
- Zheng Deng
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenbin Ding
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fengying Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuirong Shen
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuqin Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Quarta A, Le Blon D, D'aes T, Pieters Z, Hamzei Taj S, Miró-Mur F, Luyckx E, Van Breedam E, Daans J, Goossens H, Dewilde S, Hens N, Pasque V, Planas AM, Hoehn M, Berneman Z, Ponsaerts P. Murine iPSC-derived microglia and macrophage cell culture models recapitulate distinct phenotypical and functional properties of classical and alternative neuro-immune polarisation. Brain Behav Immun 2019; 82:406-421. [PMID: 31525508 DOI: 10.1016/j.bbi.2019.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 12/24/2022] Open
Abstract
The establishment and validation of reliable induced pluripotent stem cell (iPSC)-derived in vitro models to study microglia and monocyte/macrophage immune function holds great potential for fundamental and translational neuro-immunology research. In this study, we first demonstrate that ramified CX3CR1+ iPSC-microglia (cultured within a neural environment) and round-shaped CX3CR1- iPSC-macrophages can easily be differentiated from newly established murine CX3CR1eGFP/+CCR2RFP/+ iPSC lines. Furthermore, we show that obtained murine iPSC-microglia and iPSC-macrophages are distinct cell populations, even though iPSC-macrophages may upregulate CX3CR1 expression when cultured within a neural environment. Next, we characterized the phenotypical and functional properties of murine iPSC-microglia and iPSC-macrophages following classical and alternative immune polarisation. While iPSC-macrophages could easily be triggered to adopt a classically-activated or alternatively-activated phenotype following, respectively, lipopolysaccharide + interferon γ or interleukin 13 (IL13) stimulation, iPSC-microglia and iPSC-macrophages cultured within a neural environment displayed a more moderate activation profile as characterised by the absence of MHCII expression upon classical immune polarisation and the absence of Ym1 expression upon alternative immune polarisation. Finally, extending our preceding in vivo studies, this striking phenotypical divergence was also observed for resident microglia and infiltrating monocytes within highly inflammatory cortical lesions in CX3CR1eGFP/+CCR2RFP/+ mice subjected to middle cerebral arterial occlusion (MCAO) stroke and following IL13-mediated therapeutic intervention thereon. In conclusion, our study demonstrates that the applied murine iPSC-microglia and iPSC-macrophage culture models are able to recapitulate in vivo microglia and monocyte/macrophage ontogeny and corresponding phenotypical/functional properties upon classical and alternative immune polarisation, and therefore represent a valuable in vitro platform to further study and modulate microglia and (infiltrating) monocyte immune responses under neuro-inflammatory conditions within a neural environment.
Collapse
Affiliation(s)
- Alessandra Quarta
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium; Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Debbie Le Blon
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium; Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Tine D'aes
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium; Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Zoë Pieters
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium; Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Belgium; Centre for Health Economics Research and Modelling Infectious Diseases, University of Antwerp, Belgium
| | - Somayyeh Hamzei Taj
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Francesc Miró-Mur
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Evi Luyckx
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium; Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium; Protein Chemistry, Proteomics and Epigenetic Signaling, University of Antwerp, Antwerp, Belgium
| | - Elise Van Breedam
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium; Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Jasmijn Daans
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium; Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Herman Goossens
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Sylvia Dewilde
- Protein Chemistry, Proteomics and Epigenetic Signaling, University of Antwerp, Antwerp, Belgium
| | - Niel Hens
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium; Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Belgium; Centre for Health Economics Research and Modelling Infectious Diseases, University of Antwerp, Belgium
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Cancer Institute, KU Leuven - University of Leuven, Belgium
| | - Anna M Planas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Mathias Hoehn
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany; Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Zwi Berneman
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium; Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium; Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
3
|
Abstract
Interferon gamma has long been studied as a critical mediator of tumor immunity. In recent years, the complexity of cellular interactions that take place in the tumor microenvironment has become better appreciated in the context of immunotherapy. While checkpoint inhibitors have dramatically improved remission rates in cancer treatment, IFN-γ and related effectors continue to be identified as strong predictors of treatment success. In this review, we provide an overview of the multiple immunosuppressive barriers that IFN-γ has to overcome to eliminate tumors, and potential avenues for modulating the immune response in favor of tumor rejection.
Collapse
Affiliation(s)
- J Daniel Burke
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Howard A Young
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
4
|
Imbrechts M, De Samblancx K, Fierens K, Brisse E, Vandenhaute J, Mitera T, Libert C, Smets I, Goris A, Wouters C, Matthys P. IFN-γ stimulates CpG-induced IL-10 production in B cells via p38 and JNK signalling pathways. Eur J Immunol 2018; 48:1506-1521. [DOI: 10.1002/eji.201847578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/28/2018] [Accepted: 06/30/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Maya Imbrechts
- KU Leuven; Rega Institute; Laboratory of Immunobiology; Leuven Belgium
| | | | - Karlien Fierens
- KU Leuven; Rega Institute; Laboratory of Immunobiology; Leuven Belgium
| | - Ellen Brisse
- KU Leuven; Rega Institute; Laboratory of Immunobiology; Leuven Belgium
| | | | - Tania Mitera
- KU Leuven; Rega Institute; Laboratory of Immunobiology; Leuven Belgium
| | - Claude Libert
- VIB Center for Inflammation Research; Ghent Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent Belgium
| | - Ide Smets
- KU Leuven; Department of Neurosciences; Laboratory for Neuroimmunology; Leuven Belgium
- Department of Neurology; University Hospitals Leuven; Leuven Belgium
| | - An Goris
- KU Leuven; Department of Neurosciences; Laboratory for Neuroimmunology; Leuven Belgium
| | - Carine Wouters
- KU Leuven; Rega Institute; Laboratory of Immunobiology; Leuven Belgium
- Laboratory of Paediatric Immunology; University Hospitals Leuven; Leuven Belgium
| | - Patrick Matthys
- KU Leuven; Rega Institute; Laboratory of Immunobiology; Leuven Belgium
| |
Collapse
|
5
|
Ilic N, Gruden-Movsesijan A, Cvetkovic J, Tomic S, Vucevic DB, Aranzamendi C, Colic M, Pinelli E, Sofronic-Milosavljevic L. Trichinella spiralis Excretory-Secretory Products Induce Tolerogenic Properties in Human Dendritic Cells via Toll-Like Receptors 2 and 4. Front Immunol 2018; 9:11. [PMID: 29416536 PMCID: PMC5787699 DOI: 10.3389/fimmu.2018.00011] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Abstract
Trichinella spiralis, as well as its muscle larvae excretory–secretory products (ES L1), given either alone or via dendritic cells (DCs), induce a tolerogenic immune microenvironment in inbred rodents and successfully ameliorate experimental autoimmune encephalomyelitis. ES L1 directs the immunological balance away from T helper (Th)1, toward Th2 and regulatory responses by modulating DCs phenotype. The ultimate goal of our work is to find out if it is possible to translate knowledge obtained in animal model to humans and to generate human tolerogenic DCs suitable for therapy of autoimmune diseases through stimulation with ES L1. Here, the impact of ES L1 on the activation of human monocyte-derived DCs is explored for the first time. Under the influence of ES L1, DCs acquired tolerogenic (semi-matured) phenotype, characterized by low expression of HLA-DR, CD83, and CD86 as well as moderate expression of CD40, along with the unchanged production of interleukin (IL)-12 and elevated production of IL-10 and transforming growth factor (TGF)-β, compared to controls. The interaction with DCs involved toll-like receptors (TLR) 2 and 4, and this interaction was mainly responsible for the phenotypic and functional properties of ES L1-treated DCs. Importantly, ES L1 potentiated Th2 polarizing capacity of DCs, and impaired their allo-stimulatory and Th1/Th17 polarizing properties. Moreover, ES L1-treated DCs promoted the expansion of IL-10- and TGF-β- producing CD4+CD25hiFoxp3hi T cells in indolamine 2, 3 dioxygenase (IDO)-1-dependent manner and increased the suppressive potential of the primed T cell population. ES L1-treated DCs retained the tolerogenic properties, even after the challenge with different pro-inflammatory stimuli, including those acting via TLR3 and, especially TLR4. These results suggest that the induction of tolerogenic properties of DCs through stimulation with ES L1 could represent an innovative approach for the preparation of tolerogenic DC for treatment of inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Nataša Ilic
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | | | - Jelena Cvetkovic
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Sergej Tomic
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | | | - Carmen Aranzamendi
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands.,Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Miodrag Colic
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia.,Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Elena Pinelli
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | |
Collapse
|
6
|
Moreno Ayala MA, Gottardo MF, Gori MS, Nicola Candia AJ, Caruso C, De Laurentiis A, Imsen M, Klein S, Bal de Kier Joffé E, Salamone G, Castro MG, Seilicovich A, Candolfi M. Dual activation of Toll-like receptors 7 and 9 impairs the efficacy of antitumor vaccines in murine models of metastatic breast cancer. J Cancer Res Clin Oncol 2017; 143:1713-1732. [PMID: 28432455 DOI: 10.1007/s00432-017-2421-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 04/08/2017] [Indexed: 01/06/2023]
Abstract
PURPOSE Since combination of Toll-like receptor (TLR) ligands could boost antitumor immunity, we evaluated the efficacy of dendritic cell (DC) vaccines upon dual activation of TLR9 and TLR7 in breast cancer models. METHODS DCs were generated from mouse bone marrow or peripheral blood from healthy human donors and stimulated with CpG1826 (mouse TLR9 agonist), CpG2006 or IMT504 (human TLR9 agonists) and R848 (TLR7 agonist). Efficacy of antitumor vaccines was evaluated in BALB/c mice bearing metastatic mammary adenocarcinomas. RESULTS CpG-DCs improved the survival of tumor-bearing mice, reduced the development of lung metastases and generated immunological memory. However, dual activation of TLRs impaired the efficacy of DC vaccines. In vitro, we found that R848 inhibited CpG-mediated maturation of murine DCs. A positive feedback loop in TLR9 mRNA expression was observed upon CpG stimulation that was inhibited in the presence of R848. Impaired activation of NF-κB was detected when TLR9 and TLR7 were simultaneously activated. Blockade of nitric oxide synthase (NOS) and indoleamine-pyrrole-2,3-dioxygenase (IDO) improved the activation of CpG-DCs. When we evaluated the effect of combined activation of TLR9 and TLR7 in human DCs, we found that R848 induced robust DC activation that was inhibited by TLR9 agonists. CONCLUSIONS These observations provide insight in the biology of TLR9 and TLR7 crosstalk and suggest caution in the selection of agonists for multiple TLR stimulation. Blockade of NOS and IDO could improve the maturation of antitumor DC vaccines. R848 could prove a useful adjuvant for DC vaccines in human patients.
Collapse
Affiliation(s)
- Mariela A Moreno Ayala
- Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina
| | - María Florencia Gottardo
- Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina.,Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Soledad Gori
- Instituto de Medicina Experimental (IMEX) CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Alejandro Javier Nicola Candia
- Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina
| | - Carla Caruso
- Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina.,Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea De Laurentiis
- Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFYBO-CONICET/UBA), Universidad de Buenos Aires, Buenos Aires, Argentina.,Cátedra de Fisiología, Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Imsen
- Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina
| | - Slobodanka Klein
- Área Investigación, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Elisa Bal de Kier Joffé
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Área Investigación, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela Salamone
- Instituto de Medicina Experimental (IMEX) CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI, USA.,Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina.,Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Magombedze G, Eda S, Stabel J. Predicting the Role of IL-10 in the Regulation of the Adaptive Immune Responses in Mycobacterium avium Subsp. paratuberculosis Infections Using Mathematical Models. PLoS One 2015; 10:e0141539. [PMID: 26619346 PMCID: PMC4664406 DOI: 10.1371/journal.pone.0141539] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/10/2015] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is an intracellular bacterial pathogen that causes Johne’s disease (JD) in cattle and other animals. The hallmark of MAP infection in the early stages is a strong protective cell-mediated immune response (Th1-type), characterized by antigen-specific γ-interferon (IFN-γ). The Th1 response wanes with disease progression and is supplanted by a non-protective humoral immune response (Th2-type). Interleukin-10 (IL-10) is believed to play a critical role in the regulation of host immune responses to MAP infection and potentially orchestrate the reversal of Th1/Th2 immune dominance during disease progression. However, how its role correlates with MAP infection remains to be completely deciphered. We developed mathematical models to explain probable mechanisms for IL-10 involvement in MAP infection. We tested our models with IL-4, IL-10, IFN-γ, and MAP fecal shedding data collected from calves that were experimentally infected and followed over a period of 360 days in the study of Stabel and Robbe-Austerman (2011). Our models predicted that IL-10 can have different roles during MAP infection, (i) it can suppress the Th1 expression, (ii) can enhance Th2 (IL-4) expression, and (iii) can suppress the Th1 expression in synergy with IL-4. In these predicted roles, suppression of Th1 responses was correlated with increased number of MAP. We also predicted that Th1-mediated responses (IFN-γ) can lead to high expression of IL-10 and that infection burden regulates Th2 suppression by the Th1 response. Our models highlight areas where more experimental data is required to refine our model assumptions, and further test and investigate the role of IL-10 in MAP infection.
Collapse
Affiliation(s)
- Gesham Magombedze
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee, 37996–1527, United States of America
- MRC Centre for Outbreak Analysis & Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- * E-mail: ;
| | - Shigetoshi Eda
- Department of Forestry, Wildlife, and Fisheries, University of Tennessee, Knoxville, Tennessee, 37996–1527, United States of America
| | - Judy Stabel
- USDA-ARS, National Animal Disease, Ames, Iowa, 50010, United States of America
| |
Collapse
|
8
|
A combination hydrogel microparticle-based vaccine prevents type 1 diabetes in non-obese diabetic mice. Sci Rep 2015; 5:13155. [PMID: 26279095 PMCID: PMC4538389 DOI: 10.1038/srep13155] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/16/2015] [Indexed: 02/07/2023] Open
Abstract
Targeted delivery of self-antigens to the immune system in a mode that stimulates a tolerance-inducing pathway has proven difficult. To address this hurdle, we developed a vaccine based-approach comprised of two synthetic controlled-release biomaterials, poly(lactide-co-glycolide; PLGA) microparticles (MPs) encapsulating denatured insulin (key self-antigen in type 1 diabetes; T1D), and PuraMatrixTM peptide hydrogel containing granulocyte macrophage colony-stimulating factor (GM-CSF) and CpG ODN1826 (CpG), which were included as vaccine adjuvants to recruit and activate immune cells. Although CpG is normally considered pro-inflammatory, it also has anti-inflammatory effects, including enhancing IL-10 production. Three subcutaneous administrations of this hydrogel (GM-CSF/CpG)/insulin-MP vaccine protected 40% of NOD mice from T1D. In contrast, all control mice became diabetic. In vitro studies indicate CpG stimulation increased IL-10 production, as a potential mechanism. Multiple subcutaneous injections of the insulin containing formulation resulted in formation of granulomas, which resolved by 28 weeks. Histological analysis of these granulomas indicated infiltration of a diverse cadre of immune cells, with characteristics reminiscent of a tertiary lymphoid organ, suggesting the creation of a microenvironment to recruit and educate immune cells. These results demonstrate the feasibility of this injectable hydrogel/MP based vaccine system to prevent T1D.
Collapse
|
9
|
Kulkarni MM, Varikuti S, Terrazas C, Kimble JL, Satoskar AR, McGwire BS. Signal transducer and activator of transcription 1 (STAT-1) plays a critical role in control of Trypanosoma cruzi infection. Immunology 2015; 145:225-31. [PMID: 25545325 DOI: 10.1111/imm.12438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 12/15/2014] [Accepted: 12/23/2014] [Indexed: 01/14/2023] Open
Abstract
The control of Trypanosoma cruzi infection is related to interferon-γ (IFN-γ) activation leading to intracellular clearance of parasites. The transcription factor signal transducer and activator of transcription 1 (STAT-1) is a key mediator of IFN-γ intracellular signalling and knockout of this protein leads to susceptibility to several intracellular microbes. To determine the role of STAT-1 in host susceptibility to T. cruzi infection we compared the survival, parasite loads and balance of IFN-γ and interleukin-10 (IL-10) responses between wild-type and STAT-1 knockout mice. We found that the lack of STAT-1 resulted in a more robust infection, leading to higher levels of blood and tissue parasites and markedly reduced survival. In addition, infected STAT-1 knockout mice had higher systemic levels of both IFN-γ and IL-10, suggesting that the absence of STAT-1 leads to a disequilibrium of pro-inflammatory and anti-inflammatory cytokines. Analysis of spleen cells indicates that CD4, CD8 cells generate IFN-γ and natural killer cells express IL-13 in STAT-1 knockout animals. The production of IL-17 is particularly enhanced in the absence STAT-1 expression but did not reduce mortality. Overall these results indicate that STAT-1 is important for the control of T. cruzi infection in mice.
Collapse
Affiliation(s)
- Manjusha M Kulkarni
- Center for Microbial Interface Biology, The Ohio State University Medical Center, Columbus, OH, USA; Department of Microbial Infection and Immunity, The Ohio State University Medical Center, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
10
|
Lecocq M, Detry B, Guisset A, Pilette C. FcαRI-Mediated Inhibition of IL-12 Production and Priming by IFN-γ of Human Monocytes and Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:2362-71. [DOI: 10.4049/jimmunol.1201128] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Xiang XX, Zhou XQ, Wang JX, Xie Q, Cai X, Yu H, Zhou HJ. Effects of CpG-ODNs on phenotype and function of monocyte-derived dendritic cells in chronic hepatitis B. World J Gastroenterol 2011; 17:4825-30. [PMID: 22147985 PMCID: PMC3229633 DOI: 10.3748/wjg.v17.i43.4825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 06/21/2011] [Accepted: 06/28/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effects of synthetic nonmethylated CpG-containing oligodeoxynucleotides (CpG-ODNs), either alone or combined with recombinant Hepatitis B surface antigen (HBsAg) polypeptide, on the phenotype, function, and intracellular signaling pathways of monocyte-derived dendritic cells (DCs) in patients with chronic hepatitis B (CHB).
METHODS: Peripheral blood monocytes isolated from CHB patients and healthy volunteers were induced to be dendritic cells by recombinant human granulocyte-monocyte colony stimulating factor and interleukin-4. The DCs were then treated with CpG-ODNs, CpG-ODNs/HBsAg, or tumor necrosis factor (TNF)-α for 18 h. The expression of surface molecules including HLA-DR, CD86, and CD1a in DCs were detected by flow cytometry, and the expression of signal transducers and activators of transcription (STAT1, 3, 4, 5, 6) and suppressors of cell signaling (SOCS1, 3) were determined by Western blotting assay. In addition, the capacity of DCs to stimulate allogeneic T lymphocytes and the amount of IL-12p70 released from DCs were measured.
RESULTS: In the DCs derived from patients with CHB, treatment with TNF-α, CpG-ODNs, or CpG-ODNs/HBsAg, as compared to the vector control, significantly increased the expression of HLA-DR, stimulated the release of IL-12p70, and enhanced the capacity of DCs to stimulate allogenic T lymphocytes. The expressions of STAT1/4/6 and SOCS1/3, but not STAT3/5, were upregulated by TNF-α, CpG-ODNs, and CpG-ODNs/HBsAg. In addition, the expression of CD1a was upregulated only in the presence of both CpG-ODNs and HBsAg.
CONCLUSION: The treatment with CpG-ODNs, either alone or combined with HBsAg, has a remarkable stimulatory effect on the impaired phenotype and function of DCs in CHB, possibly by regulating the expression of STAT1, 4, 6 and SOCS1, 3.
Collapse
|
12
|
St Paul M, Mallick AI, Haq K, Orouji S, Abdul-Careem MF, Sharif S. In vivo administration of ligands for chicken toll-like receptors 4 and 21 induces the expression of immune system genes in the spleen. Vet Immunol Immunopathol 2011; 144:228-37. [PMID: 22019071 DOI: 10.1016/j.vetimm.2011.09.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/02/2011] [Accepted: 09/22/2011] [Indexed: 10/17/2022]
Abstract
Toll-like receptors (TLRs) are a group of conserved proteins that play an important role in pathogen recognition in addition to the initiation and regulation of innate and adaptive immune responses. To date, several TLRs have been identified in chickens, each recognizing different ligands. TLR stimulation in chickens has been shown to play a role in host-responses to pathogens. However, the mechanisms through which TLRs modulate the chicken immune system have not been well examined. The present study was conducted to characterize the kinetics of responses to TLR4 and TLR21 stimulation in chickens following intramuscular injections of their corresponding ligands, lipopolysaccharide (LPS) and CpG oligodeoxynucleotides (ODNs), respectively. To this end, relative expression of cytokine genes in the spleen was determined at 2, 6, 12 and 24 h after injection of TLR ligands. The results indicated that LPS strongly induced the up-regulation of some immune system genes early on in the response to treatment, including interferon (IFN)-γ, interleukin (IL)-10, and IL-1β. Furthermore, treatment with CpG ODN promoted the up-regulation of major histocompatibility complex (MHC)-II, IFN-γ and IL-10. The response to CpG ODN appeared to be somewhat delayed compared to the response to LPS. Moreover, we found a significant increase in IFN-α gene expression in response to LPS but not CpG ODNs. Future studies may be aimed to further characterize the molecular mechanisms of TLR activation in chickens or to exploit TLR agonists as vaccine adjuvants.
Collapse
Affiliation(s)
- Michael St Paul
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | | | |
Collapse
|
13
|
Conditioning of the injection site with CpG enhances the migration of adoptively transferred dendritic cells and endogenous CD8+ T-cell responses. J Immunother 2010; 33:115-25. [PMID: 20145551 DOI: 10.1097/cji.0b013e3181b8ef5f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The efficiency of immunotherapy using tumor-antigen-loaded dendritic cells (DCs) is severely limited by the impaired migration of injected cells from the application site to the draining lymph nodes. As described earlier, pretreatment of the injection site with inflammatory cytokines enhances DC migration. We wanted to test whether toll-like receptor (TLR) ligands can improve migration of murine bone marrow-derived DC (BMDC) and the subsequent T-cell responses. For this purpose, we established an experimental setup closely resembling human vaccination protocols that served to investigate DC migration from the skin to the draining lymph nodes. We observed that BMDC, matured with a cytokine cocktail (tumor necrosis factor-alpha, interleukin-beta, interleukin-6, prostaglandin E2), strongly expressed CCR7. The migration efficiency of adoptively transferred mature BMDCs was determined by the number of cells injected and the application site. We decided to inject DC intradermally into the ear skin and investigated the effects of pretreatment of the injection site with various TLR ligands. Conditioning of the skin site with the TLR ligands CpG and Peptidoglycan increased the number of DCs arriving in the lymph node. Mechanical stress applied to the skin, such as tape stripping of the skin was equally effective. Importantly, only pretreatment with CpG enhanced responses of endogenous CD8 T cells. Thus, conditioning of the injection site with the TLR ligand CpG could be a new promising way to improve the outcome of DC immunotherapy.
Collapse
|
14
|
Morel PA, Turner MS. Designing the optimal vaccine: the importance of cytokines and dendritic cells. ACTA ACUST UNITED AC 2010; 3:7-17. [PMID: 21822455 DOI: 10.2174/1875035401003010007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many vaccines existing today provide strong protection against a wide variety of infectious organisms, and these consist of either live attenuated or inactivated microorganisms. Most of these vaccines were developed empirically and there has not been a clear understanding of the immunological principles that contribute to this success. Recent advances in systems biology are being applied to the study of vaccines in order to determine which immunological parameters are the best predictors of success. New approaches to vaccine development include the identification of peptide epitopes and the manipulation of the immune response to generate the most appropriate response. Vaccines are being developed to prevent and/or treat such conditions as cancer and autoimmunity in addition to infectious diseases. Vaccines targeting this diverse group of diseases may need to elicit very different types of immune responses. Recent advances in our understanding of the functions of dendritic cells (DC) and cytokines in orchestrating qualitatively different immune responses has allowed the design of vaccines that can elicit immune responses appropriate for cancer, autoimmunity or infectious organisms. This review will focus on recent advances in the ways DC and cytokines can be used to develop the most appropriate and effective vaccines.
Collapse
Affiliation(s)
- Penelope A Morel
- Department of Immunology University of Pittsburgh School of Medicine
| | | |
Collapse
|
15
|
Rosenblatt J, Bissonnette A, Ahmad R, Wu Z, Vasir B, Stevenson K, Zarwan C, Keefe W, Glotzbecker B, Mills H, Joyce R, Levine JD, Tzachanis D, Boussiotis V, Kufe D, Avigan D. Immunomodulatory effects of vitamin D: implications for GVHD. Bone Marrow Transplant 2010; 45:1463-8. [PMID: 20081878 DOI: 10.1038/bmt.2009.366] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
GVHD remains a major source of morbidity and mortality after allogeneic BMT. GVHD is mediated by alloreactive T cells derived from the hematopoietic graft that target host tissues. Pre-clinical models have shown that presentation of alloantigens by host DCs results in the activation of donor-derived T cells that mediate GVHD. Strategies that interfere with the Ag-presenting capacity of DCs after allogeneic transplantation may decrease the risk of developing GVHD. Vitamin D is a hormone essential for calcium metabolism that shows immunomodulatory properties. We showed that correction of vitamin D deficiency appeared to mitigate manifestations of GVHD. In pre-clinical studies, we have shown that vitamin D inhibits DC maturation, polarizes T-cell populations toward the expression of Th2 as compared with Th1 cytokines, and blunts allogeneic T-cell proliferation in response to DC stimulation. Exposure to vitamin D resulted in increased expression of IDO, an enzyme responsible for tryptophan metabolism that is upregulated in tolerizing DCs. These data suggest that exposure to vitamin D results in immature DC populations that bias toward tolerizing rather than stimulatory T-cell populations. Vitamin D may therefore have a role in the prevention of GVHD.
Collapse
Affiliation(s)
- J Rosenblatt
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu XS, Leerberg J, MacDonald K, Leggatt GR, Frazer IH. IFN-gamma promotes generation of IL-10 secreting CD4+ T cells that suppress generation of CD8 responses in an antigen-experienced host. THE JOURNAL OF IMMUNOLOGY 2009; 183:51-8. [PMID: 19535638 DOI: 10.4049/jimmunol.0802047] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ags characterizing tumors or chronic viral infection are generally presented to the host immune system before specific immunotherapy is initiated, and consequent generation of regulatory CD4(+) T cells can inhibit induction of desired effector CD8 T cell responses. IL-10 produced in response to ongoing Ag exposure inhibits generation of CD8 T cells in an Ag-experienced host. We now show that this IL-10 is produced by Ag experienced CD4(+) glucocorticoid-induced tumor necrosis factor receptor(+) T cells that also secrete IFN-gamma upon antigenic stimulation, that IL-10 secretion by these cells is enhanced through IFN-gamma signaling, and, unexpectedly, that IFN-gamma signaling is required for inhibition of generation of Ag-specific CD8 T cell responses in an Ag-experienced host. Systemic inhibition of both IL-10 and IFN-gamma at the time of immunization may therefore facilitate induction of effective immunotherapeutic responses against tumor specific and viral Ags.
Collapse
Affiliation(s)
- Xiao Song Liu
- University of Queensland Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| | | | | | | | | |
Collapse
|
17
|
Mechanism of Interferon-gamma mediated down-regulation of Interleukin-10 gene expression. Mol Immunol 2009; 46:1351-9. [DOI: 10.1016/j.molimm.2008.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 11/24/2008] [Accepted: 11/25/2008] [Indexed: 11/21/2022]
|
18
|
Richter C, Juan MHS, Will J, Brandes RP, Kalinke U, Akira S, Pfeilschifter JM, Hultqvist M, Holmdahl R, Radeke HH. Ncf1Provides a Reactive Oxygen Species-Independent Negative Feedback Regulation of TLR9-Induced IL-12p70 in Murine Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:4183-91. [DOI: 10.4049/jimmunol.0800795] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Kortylewski M, Kujawski M, Herrmann A, Yang C, Wang L, Liu Y, Salcedo R, Yu H. Toll-like receptor 9 activation of signal transducer and activator of transcription 3 constrains its agonist-based immunotherapy. Cancer Res 2009; 69:2497-505. [PMID: 19258507 DOI: 10.1158/0008-5472.can-08-3031] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although toll-like receptor (TLR) agonists, such as CpG, are used as immunotherapeutic agents in clinical trials for cancer and infectious diseases, their effects are limited and the underlying mechanism(s) that restrains CpG efficacy remains obscure. Here, we show that signal transducer and activator of transcription 3 (Stat3) plays a key role in down-modulating immunostimulatory effects of CpG. In the absence of interleukin-6 (IL-6) and IL-10 induction, CpG directly activates Stat3 within minutes through TLR9. Ablating Stat3 in hematopoietic cells results in rapid activation of innate immunity by CpG, with enhanced production of IFN-gamma, tumor necrosis factor-alpha, IL-12, and activation of macrophages, neutrophils, and natural killer cells marked with Stat1 activation. Innate immune responses induced by CpG in mice with a Stat3-ablated hematopoietic system cause potent antitumor effects, leading to eradication of large (>1 cm) B16 melanoma tumors within 72 h. Moreover, ablating Stat3 in myeloid cells increases CpG-induced dendritic cell maturation, T-cell activation, generation of tumor antigen-specific T cells, and long-lasting antitumor immunity. A critical role of Stat3 in mediating immunosuppression by certain cytokines and growth factors in the tumor microenvironment has been recently documented. By demonstrating direct and rapid activation of Stat3 by TLR agonists, we identify a second level of Stat3-mediated immunosuppression. Our results further suggest that targeting Stat3 can drastically improve CpG-based immunotherapeutic approaches.
Collapse
Affiliation(s)
- Marcin Kortylewski
- Division of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute at City of Hope, Duarte, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Lyakh L, Trinchieri G, Provezza L, Carra G, Gerosa F. Regulation of interleukin-12/interleukin-23 production and the T-helper 17 response in humans. Immunol Rev 2009; 226:112-31. [PMID: 19161420 DOI: 10.1111/j.1600-065x.2008.00700.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interleukin-12 (IL-12) and IL-23 share a common chain. Yet, their production in response to pathogens is differentially regulated, and their functions are distinct and often antithetic. IL-12 is involved in the induction or amplification of the T-helper (Th) type 1 response, whereas IL-23 has been associated with the generation of the Th17 response and IL-17 production. Mycobacterium tuberculosis and yeast zymosan induce IL-23, but in the absence of other stimuli, no IL-12 is induced in human dendritic cells (DCs). The stimulation of IL-23 by M. tuberculosis was mostly explained by the triggering of Toll-like receptor (TLR2) and the cytoplasmic receptor nucleotide oligomerization domain (NOD)-containing protein 2, whereas zymosan induces IL-23 primarily by stimulating the beta-glucan receptor dectin-1 alone or in combination with TLR2. IL-23, IL-6, transforming growth factor (TGF-beta1), and IL-1beta in supernatants from activated human DCs induce human naive CD4(+) T cells to produce IL-17. These data are consistent with various recent reports that TGF-beta is an inducer of IL-17 production both in human and in mouse cells. However, IL-1 is necessary in combination with some or all of the other cytokines to induce IL-17 production in human T cells. The ability of various stimuli to induce Th17 cells depends not only on their induction of IL-23, IL-6, and TGF-beta production in DCs but also on their ability to activate directly or indirectly the inflammasome and to induce IL-1beta.
Collapse
Affiliation(s)
- Lyudmila Lyakh
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|
21
|
Sarkar S, Sinsimer KS, Foster RL, Brewer G, Pestka S. AUF1 isoform-specific regulation of anti-inflammatory IL10 expression in monocytes. J Interferon Cytokine Res 2009; 28:679-91. [PMID: 18844578 DOI: 10.1089/jir.2008.0028] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IL-10 is an immunomodulatory cytokine that regulates inflammatory responses of mononuclear phagocytes (monocytes and macrophages). Mononuclear cells exposed to microbes or microbial products secrete a host of proinflammatory cytokines followed by delayed onset of anti-inflammatory IL-10. IL-10 suppresses immune responses by inhibiting cytokine production by mononuclear phagocytes. Using THP-1, a human promonocytic leukemia cell line, we show that endotoxin/lipopolysaccharide (LPS) exposure induces IL10 expression while IFN-gamma blocks this LPS-mediated effect. IFN-gamma is an important modulator of IL-10 production during infectious diseases. We show that LPS and IFN-gamma regulate IL10 expression in THP-1 cells in part through posttranscriptional mechanisms. Our results demonstrate that 3'-untranslated region (3'-UTR) AU-rich elements (AREs) decrease expression of a chimeric luciferase reporter gene in THP-1 cells. The ARE-binding protein AUF1 binds the IL10 3'-UTR. Depletion of AUF1 by RNAi suppresses LPS-mediated induction of IL10 mRNA and protein without affecting LPS-mediated stabilization of IL10 mRNA. Upon complementation with either RNAi-refractory p37 or p40 AUF1 plasmids, only p40 restores LPS-mediated induction of IL10 mRNA and protein to near normal levels. Thus, the p40 AUF1 isoform selectively plays a critical, positive role in IL10 expression upon LPS exposure.
Collapse
Affiliation(s)
- Srijata Sarkar
- Department of Molecular Genetics, Microbiology, and Immunology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | | | | | | | |
Collapse
|
22
|
Gerosa F, Baldani-Guerra B, Lyakh LA, Batoni G, Esin S, Winkler-Pickett RT, Consolaro MR, De Marchi M, Giachino D, Robbiano A, Astegiano M, Sambataro A, Kastelein RA, Carra G, Trinchieri G. Differential regulation of interleukin 12 and interleukin 23 production in human dendritic cells. ACTA ACUST UNITED AC 2008; 205:1447-61. [PMID: 18490488 PMCID: PMC2413040 DOI: 10.1084/jem.20071450] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We analyzed interleukin (IL) 12 and IL-23 production by monocyte-derived dendritic cells (mono-DCs). Mycobacterium tuberculosis H37Rv and zymosan preferentially induced IL-23. IL-23 but not IL-12 was efficiently induced by the combination of nucleotide-binding oligodimerization domain and Toll-like receptor (TLR) 2 ligands, which mimics activation by M. tuberculosis, or by the human dectin-1 ligand β-glucan alone or in combination with TLR2 ligands, mimicking induction by zymosan. TLR2 ligands inhibited IL-12 and increased IL-23 production. DC priming with interferon (IFN) γ strongly increased IL-12 production, but was not required for IL-23 production and inhibited IL-23 production induced by β-glucan. The pattern of IL-12 and IL-23 induction was reflected in accumulation of the IL-12p35 and IL-23p19 transcripts, respectively, but not IL-12/23p40. Although IL-23, transforming growth factor β, and IL-6 contained in the supernatants of activated mono-DCs played a role in the induction of IL-17 by human CD4+ T cells, IL-1β, in combination with one or more of those factors, was required for IL-17 production, and its production determined the differential ability of the stimuli used to elicit mono-DCs to produce soluble factors directing IL-17 production. Thus, the differential ability of pathogens to induce antigen-presenting cells to produce cytokines regulates the immune response to infection.
Collapse
Affiliation(s)
- Franca Gerosa
- Department of Pathology, Section of Immunology, University of Verona, 37134 Verona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Vakkila J, Demarco RA, Lotze MT. Coordinate NF-κB and STAT1 Activation Promotes Development of Myeloid Type 1 Dendritic Cells. Scand J Immunol 2008; 67:260-9. [DOI: 10.1111/j.1365-3083.2007.02068.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Frasca L, Nasso M, Spensieri F, Fedele G, Palazzo R, Malavasi F, Ausiello CM. IFN-γ Arms Human Dendritic Cells to Perform Multiple Effector Functions. THE JOURNAL OF IMMUNOLOGY 2008; 180:1471-81. [DOI: 10.4049/jimmunol.180.3.1471] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|