1
|
Lyu M, Xu G, Zhou J, Reboud J, Wang Y, Lai H, Chen Y, Zhou Y, Zhu G, Cooper JM, Ying B. Single-Cell Sequencing Reveals Functional Alterations in Tuberculosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305592. [PMID: 38192178 PMCID: PMC10953544 DOI: 10.1002/advs.202305592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/21/2023] [Indexed: 01/10/2024]
Abstract
Despite its importance, the functional heterogeneity surrounding the dynamics of interactions between mycobacterium tuberculosis and human immune cells in determining host immune strength and tuberculosis (TB) outcomes, remains far from understood. This work now describes the development of a new technological platform to elucidate the immune function differences in individuals with TB, integrating single-cell RNA sequencing and cell surface antibody sequencing to provide both genomic and phenotypic information from the same samples. Single-cell analysis of 23 990 peripheral blood mononuclear cells from a new cohort of primary TB patients and healthy controls enables to not only show four distinct immune phenotypes (TB, myeloid, and natural killer (NK) cells), but also determine the dynamic changes in cell population abundance, gene expression, developmental trajectory, transcriptomic regulation, and cell-cell signaling. In doing so, TB-related changes in immune cell functions demonstrate that the immune response is mediated through host T cells, myeloid cells, and NK cells, with TB patients showing decreased naive, cytotoxicity, and memory functions of T cells, rather than their immunoregulatory function. The platform also has the potential to identify new targets for immunotherapeutic treatment strategies to restore T cells from dysfunctional or exhausted states.
Collapse
Affiliation(s)
- Mengyuan Lyu
- Department of Laboratory MedicineWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Gaolian Xu
- School of Biomedical Engineering/Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Jian Zhou
- Department of Thoracic SurgeryWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Julien Reboud
- Division of Biomedical EngineeringUniversity of GlasgowGlasgowG12 8LTUnited Kingdom
| | - Yili Wang
- Department of Laboratory MedicineWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Hongli Lai
- Department of Laboratory MedicineWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Yi Chen
- Department of Laboratory MedicineWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Yanbing Zhou
- Department of Laboratory MedicineWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Guiying Zhu
- School of Biomedical Engineering/Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Jonathan M. Cooper
- Division of Biomedical EngineeringUniversity of GlasgowGlasgowG12 8LTUnited Kingdom
| | - Binwu Ying
- Department of Laboratory MedicineWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| |
Collapse
|
2
|
Li S, Lei H, Li J, Sun A, Ahmed Z, Duan H, Chen L, Zhang B, Lei C, Yi K. Analysis of genetic diversity and selection signals in Chaling cattle of southern China using whole-genome scan. Anim Genet 2023; 54:284-294. [PMID: 36864643 DOI: 10.1111/age.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 03/04/2023]
Abstract
China has diversified resources of indigenous cattle, which are classified into Northern, Central, and Southern groups according to their geographical distribution. Chaling cattle belong to Southern group. This breed is famous for the production of good quality meat with elite meat grades. To analyze the genetic diversity of Chaling cattle, 20 samples were sequenced using whole-genome resequencing technology, along with 138 published whole-genome sequencing data of Indian indicine cattle, Chinese indicine cattle, East Asian taurine cattle, Eurasian taurine cattle, and European taurine cattle as control. It was found that Chaling cattle originated from Chinese indicine cattle. The genetic diversity of Chaling cattle is higher than that of Indian indicine cattle, East Asian taurine cattle, Eurasian taurine cattle, and European taurine cattle, but lower than that of Chinese indicine cattle and Xiangxi cattle. Annotating the selection signals obtained by composite likelihood ratio, θπ, FST , π-ratio, and XP-EHH methods, several genes associated with immunity, heat tolerance, reproduction, growth, and meat quality showed strong selection signals. In general, this study provides a theoretical basis for analyzing the genetic mechanism of Chaling cattle with excellent adaptability, rough feeding tolerance, good immune performance, and good meat quality. This work lays a foundation for genetic breeding of Chaling cattle in future.
Collapse
Affiliation(s)
- Shuang Li
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong Lei
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan, China
| | - Jianbo Li
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan, China
| | - Ao Sun
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan, China
| | - Zulfiqar Ahmed
- Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Science, University of Poonch Rawalakot, Azad Kashmir, Pakistan
| | - Hongfeng Duan
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan, China
| | - Lin Chen
- Chaling County Agricultural Development Corporation Ltd, Chaling, Hunan, China
| | - Baizhong Zhang
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan, China
| |
Collapse
|
3
|
Combination Analysis of Ferroptosis and Immune Status Predicts Patients Survival in Breast Invasive Ductal Carcinoma. Biomolecules 2023; 13:biom13010147. [PMID: 36671532 PMCID: PMC9855618 DOI: 10.3390/biom13010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Ferroptosis is a new form of iron-dependent cell death and plays an important role during the occurrence and development of various tumors. Increasingly, evidence shows a convincing interaction between ferroptosis and tumor immunity, which affects cancer patients' prognoses. These two processes cooperatively regulate different developmental stages of tumors and could be considered important tumor therapeutic targets. However, reliable prognostic markers screened based on the combination of ferroptosis and tumor immune status have not been well characterized. Here, we chose the ssGSEA and ESTIMATE algorithms to evaluate the ferroptosis and immune status of a TCGA breast invasive ductal carcinoma (IDC) cohort, which revealed their correlation characteristics as well as patients' prognoses. The WGCNA algorithm was used to identify genes related to both ferroptosis and immunity. Univariate COX, LASSO regression, and multivariate Cox regression models were used to screen prognostic-related genes and construct prognostic risk models. Based on the ferroptosis and immune scores, the cohort was divided into three groups: a high-ferroptosis/low-immune group, a low-ferroptosis/high-immune group, and a mixed group. These three groups exhibited distinctive survival characteristics, as well as unique clinical phenotypes, immune characteristics, and activated signaling pathways. Among them, low-ferroptosis and high-immune statuses were favorable factors for the survival rates of patients. A total of 34 differentially expressed genes related to ferroptosis-immunity were identified among the three groups. After univariate, Lasso regression, and multivariate stepwise screening, two key prognostic genes (GNAI2, PSME1) were identified. Meanwhile, a risk prognosis model was constructed, which can predict the overall survival rate in the validation set. Lastly, we verified the importance of model genes in three independent GEO cohorts. In short, we constructed a prognostic model that assists in patient risk stratification based on ferroptosis-immune-related genes in IDC. This model helps assess patients' prognoses and guide individualized treatment, which also further eelucidatesthe molecular mechanisms of IDC.
Collapse
|
4
|
Álvarez L, Marín-García PJ, Llobat L. Immunological and genomic characterization of Ibizan Hound dogs in an endemic Leishmania infantum region. Parasit Vectors 2022; 15:445. [DOI: 10.1186/s13071-022-05504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract
Background
The Ibizan Hound is a canine breed native to the Mediterranean region, where leishmaniosis is an endemic zoonosis. Several studies indicate low prevalence of this disease in these dogs but the underlying molecular mechanism remains unknown.
Methods
In this study, qualitative immunological and genomic profiles of this breed have been analyzed.
Results
Our analysis shows relevant differences between the cytokine serum profile of Ibizan Hound dogs and previously published data from other canine strains. Additionally, several genetic risk variants related to the immune response, regulation of the immune system, and genes encoding cytokines and their receptors have been studied. The most relevant genes that presented such fixed polymorphisms were IFNG and IL6R. Other variants with frequencies ≥ 0.7 were found in the genes ARHGAP18, DAPK1, GNAI2, MITF, IL12RB1, LTBP1, SCL28A3, SCL35D2, PTPN22, CIITA, THEMIS, and CD180. Epigenetic regulatory genes such as HEY2 and L3MBTL3 showed also intronic polymorphisms.
Conclusions
Our analysis and results indicate that the regulation of immune responses is different in Ibizan Hounds compared to other breeds. Future studies are needed to elucidate whether these differences are related to the low prevalence of L. infantum infection in the Ibizan Hound.
Graphical Abstract
Collapse
|
5
|
Wang B, Wang M, Ao D, Wei X. CXCL13-CXCR5 axis: Regulation in inflammatory diseases and cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188799. [PMID: 36103908 DOI: 10.1016/j.bbcan.2022.188799] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 01/10/2023]
Abstract
Chemokine C-X-C motif ligand 13 (CXCL13), originally identified as a B-cell chemokine, plays an important role in the immune system. The interaction between CXCL13 and its receptor, the G-protein coupled receptor (GPCR) CXCR5, builds a signaling network that regulates not only normal organisms but also the development of many diseases. However, the precise action mechanism remains unclear. In this review, we discussed the functional mechanisms of the CXCL13-CXCR5 axis under normal conditions, with special focus on its association with diseases. For certain refractory diseases, we emphasize the diagnostic and therapeutic role of CXCL13-CXCR5 axis.
Collapse
Affiliation(s)
- Binhan Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Danyi Ao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Sex Differences in Coronary Artery Disease and Diabetes Revealed by scRNA-Seq and CITE-Seq of Human CD4+ T Cells. Int J Mol Sci 2022; 23:ijms23179875. [PMID: 36077273 PMCID: PMC9456056 DOI: 10.3390/ijms23179875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022] Open
Abstract
Despite the decades-old knowledge that males and people with diabetes mellitus (DM) are at increased risk for coronary artery disease (CAD), the reasons for this association are only partially understood. Among the immune cells involved, recent evidence supports a critical role of T cells as drivers and modifiers of CAD. CD4+ T cells are commonly found in atherosclerotic plaques. We aimed to understand the relationship of CAD with sex and DM by single-cell RNA (scRNA-Seq) and antibody sequencing (CITE-Seq) of CD4+ T cells. Peripheral blood mononuclear cells (PBMCs) of 61 men and women who underwent cardiac catheterization were interrogated by scRNA-Seq combined with 49 surface markers (CITE-Seq). CAD severity was quantified using Gensini scores, with scores above 30 considered CAD+ and below 6 considered CAD-. Four pairs of groups were matched for clinical and demographic parameters. To test how sex and DM changed cell proportions and gene expression, we compared matched groups of men and women, as well as diabetic and non-diabetic subjects. We analyzed 41,782 single CD4+ T cell transcriptomes for sex differences in 16 women and 45 men with and without coronary artery disease and with and without DM. We identified 16 clusters in CD4+ T cells. The proportion of cells in CD4+ effector memory cluster 8 (CD4T8, CCR2+ Em) was significantly decreased in CAD+, especially among DM+ participants. This same cluster, CD4T8, was significantly decreased in female participants, along with two other CD4+ T cell clusters. In CD4+ T cells, 31 genes showed significant and coordinated upregulation in both CAD and DM. The DM gene signature was partially additive to the CAD gene signature. We conclude that (1) CAD and DM are clearly reflected in PBMC transcriptomes, and (2) significant differences exist between women and men and (3) between subjects with DM and non-DM.
Collapse
|
7
|
Villaseca S, Romero G, Ruiz MJ, Pérez C, Leal JI, Tovar LM, Torrejón M. Gαi protein subunit: A step toward understanding its non-canonical mechanisms. Front Cell Dev Biol 2022; 10:941870. [PMID: 36092739 PMCID: PMC9449497 DOI: 10.3389/fcell.2022.941870] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The heterotrimeric G protein family plays essential roles during a varied array of cellular events; thus, its deregulation can seriously alter signaling events and the overall state of the cell. Heterotrimeric G-proteins have three subunits (α, β, γ) and are subdivided into four families, Gαi, Gα12/13, Gαq, and Gαs. These proteins cycle between an inactive Gα-GDP state and active Gα-GTP state, triggered canonically by the G-protein coupled receptor (GPCR) and by other accessory proteins receptors independent also known as AGS (Activators of G-protein Signaling). In this review, we summarize research data specific for the Gαi family. This family has the largest number of individual members, including Gαi1, Gαi2, Gαi3, Gαo, Gαt, Gαg, and Gαz, and constitutes the majority of G proteins α subunits expressed in a tissue or cell. Gαi was initially described by its inhibitory function on adenylyl cyclase activity, decreasing cAMP levels. Interestingly, today Gi family G-protein have been reported to be importantly involved in the immune system function. Here, we discuss the impact of Gαi on non-canonical effector proteins, such as c-Src, ERK1/2, phospholipase-C (PLC), and proteins from the Rho GTPase family members, all of them essential signaling pathways regulating a wide range of physiological processes.
Collapse
|
8
|
Potential Role of CXCL13/CXCR5 Signaling in Immune Checkpoint Inhibitor Treatment in Cancer. Cancers (Basel) 2022; 14:cancers14020294. [PMID: 35053457 PMCID: PMC8774093 DOI: 10.3390/cancers14020294] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Immunotherapy is currently the backbone of new drug treatments for many cancer patients. CXC chemokine ligand 13 (CXCL13) is an important factor involved in recruiting immune cells that express CXC chemokine receptor type 5 (CXCR5) in the tumor microenvironment and serves as a key molecular determinant of tertiary lymphoid structure (TLS) formation. An increasing number of studies have identified the influence of CXCL13 on prognosis in patients with cancer, regardless of the use of immunotherapy treatment. However, no comprehensive reviews of the role of CXCL13 in cancer immunotherapy have been published to date. This review aims to provide an overview of the CXCL13/CXCR5 signaling axis to summarize its mechanisms of action in cancer cells and lymphocytes, in addition to effects on immunity and cancer pathobiology, and its potential as a biomarker for the response to cancer immunotherapy. Abstract Immune checkpoint inhibitors (ICIs), including antibodies that target programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), or cytotoxic T lymphocyte antigen 4 (CTLA4), represent some of the most important breakthroughs in new drug development for oncology therapy from the past decade. CXC chemokine ligand 13 (CXCL13) exclusively binds CXC chemokine receptor type 5 (CXCR5), which plays a critical role in immune cell recruitment and activation and the regulation of the adaptive immune response. CXCL13 is a key molecular determinant of the formation of tertiary lymphoid structures (TLSs), which are organized aggregates of T, B, and dendritic cells that participate in the adaptive antitumor immune response. CXCL13 may also serve as a prognostic and predictive factor, and the role played by CXCL13 in some ICI-responsive tumor types has gained intense interest. This review discusses how CXCL13/CXCR5 signaling modulates cancer and immune cells to promote lymphocyte infiltration, activation by tumor antigens, and differentiation to increase the antitumor immune response. We also summarize recent preclinical and clinical evidence regarding the ICI-therapeutic implications of targeting the CXCL13/CXCR5 axis and discuss the potential role of this signaling pathway in cancer immunotherapy.
Collapse
|
9
|
Sun Q, He Q, Xu J, Liu Q, Lu Y, Zhang Z, Xu X, Sun B. Guanine nucleotide-binding protein G(i)α2 aggravates hepatic ischemia-reperfusion injury in mice by regulating MLK3 signaling. FASEB J 2019; 33:7049-7060. [PMID: 30840837 DOI: 10.1096/fj.201802462r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Hepatic ischemia-reperfusion (I/R) injury is a major challenge in liver resection and transplantation surgeries. Previous studies have revealed that guanine nucleotide-binding protein G(i)α2 (GNAI2) was involved in the progression of myocardial and cerebral I/R injury, but the role and function of GNAI2 in hepatic I/R have not been elucidated. The hepatocyte-specific GNAI2 knockout (GNAI2hep-/-) mice were generated and subjected to hepatic I/R injury. Primary hepatocytes isolated from GNAI2hep-/- and GNAI2flox/flox mice were cultured and challenged to hypoxia-reoxygenation insult. The specific function of GNAI2 in I/R-triggered hepatic injury and the underlying molecular mechanism were explored by various phenotypic analyses and molecular biology methods. In this study, we demonstrated that hepatic GNAI2 expression was significantly increased in liver transplantation patients and wild-type mice after hepatic I/R. Interestingly, hepatocyte-specific GNAI2 deficiency attenuated I/R-induced liver damage, inflammation cytokine expression, macrophage/neutrophil infiltration, and hepatocyte apoptosis in vivo and in vitro. Mechanistically, up-regulation of GNAI2 phosphorylates mixed-lineage protein kinase 3 (MLK3) through direct binding, which exacerbated hepatic I/R damage via MAPK and NF-κB pathway activation. Furthermore, blocking MLK3 signaling reversed GNAI2-mediated hepatic I/R injury. Our study firstly identifies GNAI2 as a promising target for prevention of hepatic I/R-induced injury and related liver diseases.-Sun, Q., He, Q., Xu, J., Liu, Q., Lu, Y., Zhang, Z., Xu, X., Sun, B. Guanine nucleotide-binding protein G(i)α2 aggravates hepatic ischemia-reperfusion injury in mice by regulating MLK3 signaling.
Collapse
Affiliation(s)
- Qikai Sun
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qifeng He
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jianbo Xu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qiaoyu Liu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yijun Lu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zechuan Zhang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoliang Xu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Beicheng Sun
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
10
|
Brink T, Leiss V, Siegert P, Jehle D, Ebner JK, Schwan C, Shymanets A, Wiese S, Nürnberg B, Hensel M, Aktories K, Orth JHC. Salmonella Typhimurium effector SseI inhibits chemotaxis and increases host cell survival by deamidation of heterotrimeric Gi proteins. PLoS Pathog 2018; 14:e1007248. [PMID: 30102745 PMCID: PMC6107295 DOI: 10.1371/journal.ppat.1007248] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/23/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
Salmonella enterica serotype Typhimurium (S. Typhimurium) is one of the most frequent causes of food-borne illness in humans and usually associated with acute self-limiting gastroenteritis. However, in immunocompromised patients, the pathogen can disseminate and lead to severe systemic diseases. S. Typhimurium are facultative intracellular bacteria. For uptake and intracellular life, Salmonella translocate numerous effector proteins into host cells using two type-III secretion systems (T3SS), which are encoded within Salmonella pathogenicity islands 1 (SPI-1) and 2 (SPI-2). While SPI-1 effectors mainly promote initial invasion, SPI-2 effectors control intracellular survival and proliferation. Here, we elucidate the mode of action of Salmonella SPI-2 effector SseI, which is involved in control of systemic dissemination of S. Typhimurium. SseI deamidates a specific glutamine residue of heterotrimeric G proteins of the Gαi family, resulting in persistent activation of the G protein. Gi activation inhibits cAMP production and stimulates PI3-kinase γ by Gαi-released Gβγ subunits, resulting in activation of survival pathways by phosphorylation of Akt and mTOR. Moreover, SseI-induced deamidation leads to non-polarized activation of Gαi and, thereby, to loss of directed migration of dendritic cells. Salmonella Typhimurium is one of the most common causes of gastroenteritis in humans. In immunocompromised patients, the pathogen can cause systemic infections. Crucial virulence factors are encoded on two Salmonella pathogenicity islands SPI-1 and SPI-2. While SPI-1 encodes virulence factors essential for host cell invasion, intracellular proliferation of the pathogen depends mainly on SPI-2 effectors. Here, we elucidate the mode of action of Salmonella SPI-2 effector SseI. SseI activates heterotrimeric G proteins of the Gαi family by deamidation of a specific glutamine residue. Deamidation blocks GTP hydrolysis by Gαi, resulting in a persistently active G protein. Gi activation inhibits cAMP production and stimulates PI3Kγ by Gαi-released Gβγ subunits, resulting in activation of survival pathways by phosphorylation of Akt and mTOR. Moreover, deamidation of Gαi leads to a loss of directed migration in dendritic cells. The data offers a new perspective in the understanding of the actions of SseI.
Collapse
Affiliation(s)
- Thorsten Brink
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Veronika Leiss
- Abteilung für Pharmakologie und Experimentelle Therapie, Medizinische Fakultät und ICePhA, Eberhard-Karls-Universität Tübingen, Germany
| | - Peter Siegert
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Doris Jehle
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Julia K. Ebner
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Carsten Schwan
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Aliaksei Shymanets
- Abteilung für Pharmakologie und Experimentelle Therapie, Medizinische Fakultät und ICePhA, Eberhard-Karls-Universität Tübingen, Germany
| | - Sebastian Wiese
- Zentrum für Biosystemanalyse, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Bernd Nürnberg
- Abteilung für Pharmakologie und Experimentelle Therapie, Medizinische Fakultät und ICePhA, Eberhard-Karls-Universität Tübingen, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany
| | - Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- * E-mail:
| | - Joachim H. C. Orth
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Liu Y, Zhang J, Qiu X. Super-delta: a new differential gene expression analysis procedure with robust data normalization. BMC Bioinformatics 2017; 18:582. [PMID: 29268715 PMCID: PMC5740711 DOI: 10.1186/s12859-017-1992-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/06/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Normalization is an important data preparation step in gene expression analyses, designed to remove various systematic noise. Sample variance is greatly reduced after normalization, hence the power of subsequent statistical analyses is likely to increase. On the other hand, variance reduction is made possible by borrowing information across all genes, including differentially expressed genes (DEGs) and outliers, which will inevitably introduce some bias. This bias typically inflates type I error; and can reduce statistical power in certain situations. In this study we propose a new differential expression analysis pipeline, dubbed as super-delta, that consists of a multivariate extension of the global normalization and a modified t-test. A robust procedure is designed to minimize the bias introduced by DEGs in the normalization step. The modified t-test is derived based on asymptotic theory for hypothesis testing that suitably pairs with the proposed robust normalization. RESULTS We first compared super-delta with four commonly used normalization methods: global, median-IQR, quantile, and cyclic loess normalization in simulation studies. Super-delta was shown to have better statistical power with tighter control of type I error rate than its competitors. In many cases, the performance of super-delta is close to that of an oracle test in which datasets without technical noise were used. We then applied all methods to a collection of gene expression datasets on breast cancer patients who received neoadjuvant chemotherapy. While there is a substantial overlap of the DEGs identified by all of them, super-delta were able to identify comparatively more DEGs than its competitors. Downstream gene set enrichment analysis confirmed that all these methods selected largely consistent pathways. Detailed investigations on the relatively small differences showed that pathways identified by super-delta have better connections to breast cancer than other methods. CONCLUSIONS As a new pipeline, super-delta provides new insights to the area of differential gene expression analysis. Solid theoretical foundation supports its asymptotic unbiasedness and technical noise-free properties. Implementation on real and simulated datasets demonstrates its decent performance compared with state-of-art procedures. It also has the potential of expansion to be incorporated with other data type and/or more general between-group comparison problems.
Collapse
Affiliation(s)
- Yuhang Liu
- Department of Statistics, Florida State University, Tallahassee, 32306 FL USA
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, 32306 FL USA
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, 14624 NY USA
| |
Collapse
|
12
|
Loss of Gα i proteins impairs thymocyte development, disrupts T-cell trafficking, and leads to an expanded population of splenic CD4 +PD-1 +CXCR5 +/- T-cells. Sci Rep 2017. [PMID: 28646160 PMCID: PMC5482867 DOI: 10.1038/s41598-017-04537-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Thymocyte and T cell trafficking relies on signals initiated by G-protein coupled receptors. To address the importance of the G-proteins Gαi2 and Gαi3 in thymocyte and T cell function, we developed several mouse models. Gαi2 deficiency in hematopoietic progenitors led to a small thymus, a double negative (DN)1/DN2 thymocyte transition block, and an accumulation of mature single positive (SP) thymocytes. Loss at the double positive (DP) stage of thymocyte development caused an increase in mature cells within the thymus. In both models an abnormal distribution of memory and naïve CD4 T cells occurred, and peripheral CD4 and CD8 T cells had reduced chemoattractant responses. The loss of Gαi3 had no discernable impact, however the lack of both G-proteins commencing at the DP stage caused a severe T cell phenotype. These mice lacked a thymic medullary region, exhibited thymocyte retention, had a peripheral T cell deficiency, and lacked T cell chemoattractant responses. Yet a noteworthy population of CD4+PD-1+CXCR5+/− cells resided in the spleen of these mice likely due to a loss of regulatory T cell function. Our results delineate a role for Gαi2 in early thymocyte development and for Gαi2/3 in multiple aspects of T cell biology.
Collapse
|
13
|
Hwang IY, Park C, Harrison K, Kehrl JH. Normal Thymocyte Egress, T Cell Trafficking, and CD4 + T Cell Homeostasis Require Interactions between RGS Proteins and Gα i2. THE JOURNAL OF IMMUNOLOGY 2017; 198:2721-2734. [PMID: 28235863 DOI: 10.4049/jimmunol.1601433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/24/2017] [Indexed: 11/19/2022]
Abstract
Adaptive immunity depends on mature thymocytes leaving the thymus to enter the bloodstream and the trafficking of T cells through lymphoid organs. Both of these require heterotrimeric Gαi protein signaling, whose intensity and duration are controlled by the regulator of G protein signaling (RGS) proteins. In this study, we show that RGS protein/Gαi2 interactions are essential for normal thymocyte egress, T cell trafficking, and homeostasis. Mature thymocytes with a Gαi2 mutation that disables RGS protein binding accumulated in the perivascular channels of thymic corticomedullary venules. Severe reductions in peripheral naive CD4+ T cells and regulatory T cells occurred. The mutant CD4+ T cells adhered poorly to high endothelial venules and exhibited defects in lymph node entrance and egress. The kinetics of chemokine receptor signaling were disturbed, including chemokine- induced integrin activation. Despite the thymic and lymph node egress defects, sphingosine-1-phosphate signaling was not obviously perturbed. This study reveals how RGS proteins modulate Gαi2 signaling to facilitate thymocyte egress and T cell trafficking.
Collapse
Affiliation(s)
- Il-Young Hwang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Chung Park
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kathleen Harrison
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - John H Kehrl
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
14
|
Robichaux WG, Branham-O'Connor M, Hwang IY, Vural A, Kehrl JH, Blumer JB. Regulation of Chemokine Signal Integration by Activator of G-Protein Signaling 4 (AGS4). J Pharmacol Exp Ther 2017; 360:424-433. [PMID: 28062526 DOI: 10.1124/jpet.116.238436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/28/2016] [Indexed: 12/15/2022] Open
Abstract
Activator of G-protein signaling 4 (AGS4)/G-protein signaling modulator 3 (Gpsm3) contains three G-protein regulatory (GPR) motifs, each of which can bind Gαi-GDP free of Gβγ We previously demonstrated that the AGS4-Gαi interaction is regulated by seven transmembrane-spanning receptors (7-TMR), which may reflect direct coupling of the GPR-Gαi module to the receptor analogous to canonical Gαβγ heterotrimer. We have demonstrated that the AGS4-Gαi complex is regulated by chemokine receptors in an agonist-dependent manner that is receptor-proximal. As an initial approach to investigate the functional role(s) of this regulated interaction in vivo, we analyzed leukocytes, in which AGS4/Gpsm3 is predominantly expressed, from AGS4/Gpsm3-null mice. Loss of AGS4/Gpsm3 resulted in mild but significant neutropenia and leukocytosis. Dendritic cells, T lymphocytes, and neutrophils from AGS4/Gpsm3-null mice also exhibited significant defects in chemoattractant-directed chemotaxis and extracellular signal-regulated kinase activation. An in vivo peritonitis model revealed a dramatic reduction in the ability of AGS4/Gpsm3-null neutrophils to migrate to primary sites of inflammation. Taken together, these data suggest that AGS4/Gpsm3 is required for proper chemokine signal processing in leukocytes and provide further evidence for the importance of the GPR-Gαi module in the regulation of leukocyte function.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina (W.G.R., M.B.-O., J.B.B.); and B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (I.-Y.H., A.V., J.H.K.)
| | - Melissa Branham-O'Connor
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina (W.G.R., M.B.-O., J.B.B.); and B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (I.-Y.H., A.V., J.H.K.)
| | - Il-Young Hwang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina (W.G.R., M.B.-O., J.B.B.); and B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (I.-Y.H., A.V., J.H.K.)
| | - Ali Vural
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina (W.G.R., M.B.-O., J.B.B.); and B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (I.-Y.H., A.V., J.H.K.)
| | - Johne H Kehrl
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina (W.G.R., M.B.-O., J.B.B.); and B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (I.-Y.H., A.V., J.H.K.)
| | - Joe B Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina (W.G.R., M.B.-O., J.B.B.); and B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (I.-Y.H., A.V., J.H.K.)
| |
Collapse
|
15
|
Druey KM. Emerging Roles of Regulators of G Protein Signaling (RGS) Proteins in the Immune System. Adv Immunol 2017; 136:315-351. [PMID: 28950950 DOI: 10.1016/bs.ai.2017.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kirk M Druey
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, NIAID/NIH, Bethesda, MD, United States.
| |
Collapse
|
16
|
Katakai T, Kinashi T. Microenvironmental Control of High-Speed Interstitial T Cell Migration in the Lymph Node. Front Immunol 2016; 7:194. [PMID: 27242799 PMCID: PMC4865483 DOI: 10.3389/fimmu.2016.00194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/02/2016] [Indexed: 12/30/2022] Open
Abstract
T cells are highly concentrated in the lymph node (LN) paracortex, which serves an important role in triggering adoptive immune responses. Live imaging using two-photon laser scanning microscopy revealed vigorous and non-directional T cell migration within this area at average velocity of more than 10 μm/min. Active interstitial T cell movement is considered to be crucial for scanning large numbers of dendritic cells (DCs) to find rare cognate antigens. However, the mechanism by which T cells achieve such high-speed movement in a densely packed, dynamic tissue environment is not fully understood. Several new findings suggest that fibroblastic reticular cells (FRCs) and DCs control T cell movement in a multilateral manner. Chemokines and lysophosphatidic acid produced by FRCs cooperatively promote the migration, while DCs facilitate LFA-1-dependent motility via expression of ICAM-1. Furthermore, the highly dense and confined microenvironment likely plays a key role in anchorage-independent motility. We propose that T cells dynamically switch between two motility modes; anchorage-dependent and -independent manners. Unique tissue microenvironment and characteristic migration modality of T cells cooperatively generate high-speed interstitial movement in the LN.
Collapse
Affiliation(s)
- Tomoya Katakai
- Department of Immunology, Graduate School of Medical and Dental Sciences, Niigata University , Niigata , Japan
| | - Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University , Hirakata , Japan
| |
Collapse
|
17
|
Kehrl JH. The impact of RGS and other G-protein regulatory proteins on Gαi-mediated signaling in immunity. Biochem Pharmacol 2016; 114:40-52. [PMID: 27071343 DOI: 10.1016/j.bcp.2016.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/08/2016] [Indexed: 01/30/2023]
Abstract
Leukocyte chemoattractant receptors are members of the G-protein coupled receptor (GPCR) family. Signaling downstream of these receptors directs the localization, positioning and homeostatic trafficking of leukocytes; as well as their recruitment to, and their retention at, inflammatory sites. Ligand induced changes in the molecular conformation of chemoattractant receptors results in the engagement of heterotrimeric G-proteins, which promotes α subunits to undergo GTP/GDP exchange. This results in the functional release of βγ subunits from the heterotrimers, thereby activating downstream effector molecules, which initiate leukocyte polarization, gradient sensing, and directional migration. Pertussis toxin ADP ribosylates Gαi subunits and prevents chemoattractant receptors from triggering Gαi nucleotide exchange. The use of pertussis toxin revealed the essential importance of Gαi subunit nucleotide exchange for chemoattractant receptor signaling. More recent studies have identified a range of regulatory mechanisms that target these receptors and their associated heterotrimeric G-proteins, thereby helping to control the magnitude, kinetics, and duration of signaling. A failure in these regulatory pathways can lead to impaired receptor signaling and immunopathology. The analysis of mice with targeted deletions of Gαi isoforms as well as some of these G-protein regulatory proteins is providing insights into their roles in chemoattractant receptor signaling.
Collapse
Affiliation(s)
- John H Kehrl
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 2089, United States.
| |
Collapse
|
18
|
Xie Z, Chan EC, Druey KM. R4 Regulator of G Protein Signaling (RGS) Proteins in Inflammation and Immunity. AAPS JOURNAL 2015; 18:294-304. [PMID: 26597290 DOI: 10.1208/s12248-015-9847-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/11/2015] [Indexed: 11/30/2022]
Abstract
G protein-coupled receptors (GPCRs) have important functions in both innate and adaptive immunity, with the capacity to bridge interactions between the two arms of the host responses to pathogens through direct recognition of secreted microbial products or the by-products of host cells damaged by pathogen exposure. In the mid-1990s, a large group of intracellular proteins was discovered, the regulator of G protein signaling (RGS) family, whose main, but not exclusive, function appears to be to constrain the intensity and duration of GPCR signaling. The R4/B subfamily--the focus of this review--includes RGS1-5, 8, 13, 16, 18, and 21, which are the smallest RGS proteins in size, with the exception of RGS3. Prominent roles in the trafficking of B and T lymphocytes and macrophages have been described for RGS1, RGS13, and RGS16, while RGS18 appears to control platelet and osteoclast functions. Additional G protein independent functions of RGS13 have been uncovered in gene expression in B lymphocytes and mast cell-mediated allergic reactions. In this review, we discuss potential physiological roles of this RGS protein subfamily, primarily in leukocytes having central roles in immune and inflammatory responses. We also discuss approaches to target RGS proteins therapeutically, which represents a virtually untapped strategy to combat exaggerated immune responses leading to inflammation.
Collapse
Affiliation(s)
- Zhihui Xie
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, NIAID/NIH, 50 South Drive Room 4154, Bethesda, Maryland, 20892, USA
| | - Eunice C Chan
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, NIAID/NIH, 50 South Drive Room 4154, Bethesda, Maryland, 20892, USA
| | - Kirk M Druey
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, NIAID/NIH, 50 South Drive Room 4154, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
19
|
Stein JV. T Cell Motility as Modulator of Interactions with Dendritic Cells. Front Immunol 2015; 6:559. [PMID: 26579132 PMCID: PMC4629691 DOI: 10.3389/fimmu.2015.00559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/19/2015] [Indexed: 01/13/2023] Open
Abstract
It is well established that the balance of costimulatory and inhibitory signals during interactions with dendritic cells (DCs) determines T cell transition from a naïve to an activated or tolerant/anergic status. Although many of these molecular interactions are well reproduced in reductionist in vitro assays, the highly dynamic motility of naïve T cells in lymphoid tissue acts as an additional lever to fine-tune their activation threshold. T cell detachment from DCs providing suboptimal stimulation allows them to search for DCs with higher levels of stimulatory signals, while storing a transient memory of short encounters. In turn, adhesion of weakly reactive T cells to DCs presenting peptides presented on major histocompatibility complex with low affinity is prevented by lipid mediators. Finally, controlled recruitment of CD8(+) T cells to cognate DC-CD4(+) T cell clusters shapes memory T cell formation and the quality of the immune response. Dynamic physiological lymphocyte motility therefore constitutes a mechanism to mitigate low avidity T cell activation and to improve the search for "optimal" DCs, while contributing to peripheral tolerance induction in the absence of inflammation.
Collapse
Affiliation(s)
- Jens V Stein
- Theodor Kocher Institute, University of Bern , Bern , Switzerland
| |
Collapse
|
20
|
Inhibition of G-Protein βγ Signaling Decreases Levels of Messenger RNAs Encoding Proinflammatory Cytokines in T Cell Receptor-Stimulated CD4(+) T Helper Cells. J Mol Signal 2015; 10:1. [PMID: 27095999 PMCID: PMC4831316 DOI: 10.5334/1750-2187-10-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Inhibition of G-protein βγ (Gβγ) signaling was found previously to enhance T cell receptor (TCR)-stimulated increases in interleukin 2 (IL-2) mRNA in CD4+ T helper cells, suggesting that Gβγ might be a useful drug target for treating autoimmune diseases, as low dose IL-2 therapy can suppress autoimmune responses. Because IL-2 may counteract autoimmunity in part by shifting CD4+ T helper cells away from the Type 1 T helper cell (TH1) and TH17 subtypes towards the TH2 subtype, the purpose of this study was to determine if blocking Gβγ signaling affected the balance of TH1, TH17, and TH2 cytokine mRNAs produced by CD4+ T helper cells. Methods: Gallein, a small molecule inhibitor of Gβγ, and siRNA-mediated silencing of the G-protein β1 subunit (Gβ1) were used to test the effect of blocking Gβγ on mRNA levels of cytokines in primary human TCR-stimulated CD4+ T helper cells. Results: Gallein and Gβ1 siRNA decreased interferon-γ (IFN-γ) and IL-17A mRNA levels in TCR-stimulated CD4+ T cells grown under TH1-promoting conditions. Inhibiting Gβγ also decreased mRNA levels of STAT4, which plays a positive role in TH1 differentiation and IL-17A production. Moreover, mRNA levels of the STAT4-regulated TH1-associated proteins, IL-18 receptor β chain (IL-18Rβ), mitogen-activated protein kinase kinase kinase 8 (MAP3K8), lymphocyte activation gene 3 (LAG-3), natural killer cell group 7 sequence (NKG7), and oncostatin M (OSM) were also decreased upon Gβγ inhibition. Gallein also increased IL-4, IL-5, IL-9, and IL-13 mRNA levels in TCR-stimulated memory CD4+ T cells grown in TH2-promoting conditions. Conclusions: Inhibiting Gβγ to produce these shifts in cytokine mRNA production might be beneficial for patients with autoimmune diseases such as rheumatoid arthritis (RA), Crohn’s disease (CD), psoriasis, multiple sclerosis (MS), and Hashimoto’s thyroiditis (HT), in which both IFN-γ and IL-17A are elevated.
Collapse
|
21
|
Neubig RR. RGS-Insensitive G Proteins as In Vivo Probes of RGS Function. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 133:13-30. [PMID: 26123300 DOI: 10.1016/bs.pmbts.2015.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Guanine nucleotide-binding proteins of the inhibitory (Gi/o) class play critical physiological roles and the receptors that activate them are important therapeutic targets (e.g., mu opioid, serotonin 5HT1a, etc.). Gi/o proteins are negatively regulated by regulator of G protein signaling (RGS) proteins. The redundant actions of the 20 different RGS family members have made it difficult to establish their overall physiological role. A unique G protein mutation (G184S in Gαi/o) prevents RGS binding to the Gα subunit and blocks all RGS action at that particular Gα subunit. The robust phenotypes of mice expressing these RGS-insensitive (RGSi) mutant G proteins illustrate the profound action of RGS proteins in cardiovascular, metabolic, and central nervous system functions. Specifically, the enhanced Gαi2 signaling through the RGSi Gαi2(G184S) mutant knock-in mice shows protection against cardiac ischemia/reperfusion injury and potentiation of serotonin-mediated antidepressant actions. In contrast, the RGSi Gαo mutant knock-in produces enhanced mu-opioid receptor-mediated analgesia but also a seizure phenotype. These genetic models provide novel insights into potential therapeutic strategies related to RGS protein inhibitors and/or G protein subtype-biased agonists at particular GPCRs.
Collapse
Affiliation(s)
- Richard R Neubig
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
22
|
Branham-O'Connor M, Robichaux WG, Zhang XK, Cho H, Kehrl JH, Lanier SM, Blumer JB. Defective chemokine signal integration in leukocytes lacking activator of G protein signaling 3 (AGS3). J Biol Chem 2014; 289:10738-10747. [PMID: 24573680 DOI: 10.1074/jbc.m113.515031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activator of G-protein signaling 3 (AGS3, gene name G-protein signaling modulator-1, Gpsm1), an accessory protein for G-protein signaling, has functional roles in the kidney and CNS. Here we show that AGS3 is expressed in spleen, thymus, and bone marrow-derived dendritic cells, and is up-regulated upon leukocyte activation. We explored the role of AGS3 in immune cell function by characterizing chemokine receptor signaling in leukocytes from mice lacking AGS3. No obvious differences in lymphocyte subsets were observed. Interestingly, however, AGS3-null B and T lymphocytes and bone marrow-derived dendritic cells exhibited significant chemotactic defects as well as reductions in chemokine-stimulated calcium mobilization and altered ERK and Akt activation. These studies indicate a role for AGS3 in the regulation of G-protein signaling in the immune system, providing unexpected venues for the potential development of therapeutic agents that modulate immune function by targeting these regulatory mechanisms.
Collapse
Affiliation(s)
- Melissa Branham-O'Connor
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425
| | - William G Robichaux
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Xian-Kui Zhang
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Hyeseon Cho
- B-cell Section, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - John H Kehrl
- B-cell Section, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Stephen M Lanier
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Joe B Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425.
| |
Collapse
|
23
|
Niggli V. Insights into the mechanism for dictating polarity in migrating T-cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 312:201-70. [PMID: 25262243 DOI: 10.1016/b978-0-12-800178-3.00007-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review is focused on mechanisms of chemokine-induced polarization of T-lymphocytes. Polarization involves, starting from spherical cells, formation of a morphologically and functionally different rear (uropod) and front (leading edge). This polarization is required for efficient random and directed T-cell migration. The addressed topics concern the specific location of cell organelles and of receptors, signaling molecules, and cytoskeletal proteins in chemokine-stimulated polarized T-cells. In chemokine-stimulated, polarized T-cells, specific proteins, signaling molecules and organelles show enrichment either in the rear, the midzone, or the front; different from the random location in spherical resting cells. Possible mechanisms involved in this asymmetric location will be discussed. A major topic is also the functional role of proteins and cell organelles in T-cell polarization and migration. Specifically, the roles of adhesion and chemokine receptors, cytoskeletal proteins, signaling molecules, scaffolding proteins, and membrane microdomains in these processes will be discussed. The polarity which is established during contact formation of T-cells with antigen-presenting cells is not discussed in detail.
Collapse
Affiliation(s)
- Verena Niggli
- Institute of Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|
24
|
G proteins Gαi1/3 are critical targets for Bordetella pertussis toxin-induced vasoactive amine sensitization. Infect Immun 2013; 82:773-82. [PMID: 24478091 DOI: 10.1128/iai.00971-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pertussis toxin (PTX) is an AB5-type exotoxin produced by the bacterium Bordetella pertussis, the causative agent of whooping cough. In vivo intoxication with PTX elicits a variety of immunologic and inflammatory responses, including vasoactive amine sensitization (VAAS) to histamine (HA), serotonin (5-HT), and bradykinin (BDK). Previously, by using a forward genetic approach, we identified the HA H1 receptor (Hrh1/H1R) as the gene in mice that controls differential susceptibility to B. pertussis PTX-induced HA sensitization (Bphs). Here we show, by using inbred strains of mice, F1 hybrids, and segregating populations, that, unlike Bphs, PTX-induced 5-HT sensitivity (Bpss) and BDK sensitivity (Bpbs) are recessive traits and are separately controlled by multiple loci unlinked to 5-HT and BDK receptors, respectively. Furthermore, we found that PTX sensitizes mice to HA independently of Toll-like receptor 4, a purported receptor for PTX, and that the VAAS properties of PTX are not dependent upon endothelial caveolae or endothelial nitric oxide synthase. Finally, by using mice deficient in individual Gαi/o G-protein subunits, we demonstrate that Gαi1 and Gαi3 are the critical in vivo targets of ADP-ribosylation underlying VAAS elicited by PTX exposure.
Collapse
|
25
|
Hwang IY, Hwang KS, Park C, Harrison KA, Kehrl JH. Rgs13 constrains early B cell responses and limits germinal center sizes. PLoS One 2013; 8:e60139. [PMID: 23533672 PMCID: PMC3606317 DOI: 10.1371/journal.pone.0060139] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/21/2013] [Indexed: 11/18/2022] Open
Abstract
Germinal centers (GCs) are microanatomic structures that develop in secondary lymphoid organs in response to antigenic stimulation. Within GCs B cells clonally expand and their immunoglobulin genes undergo class switch recombination and somatic hypermutation. Transcriptional profiling has identified a number of genes that are prominently expressed in GC B cells. Among them is Rgs13, which encodes an RGS protein with a dual function. Its canonical function is to accelerate the intrinsic GTPase activity of heterotrimeric G-protein α subunits at the plasma membrane, thereby limiting heterotrimeric G-protein signaling. A unique, non-canonical function of RGS13 occurs following translocation to the nucleus, where it represses CREB transcriptional activity. The functional role of RGS13 in GC B cells is unknown. To create a surrogate marker for Rgs13 expression and a loss of function mutation, we inserted a GFP coding region into the Rgs13 genomic locus. Following immunization GFP expression rapidly increased in activated B cells, persisted in GC B cells, but declined in newly generated memory B and plasma cells. Intravital microscopy of the inguinal lymph node (LN) of immunized mice revealed the rapid appearance of GFP+ cells at LN interfollicular regions and along the T/B cell borders, and eventually within GCs. Analysis of WT, knock-in, and mixed chimeric mice indicated that RGS13 constrains extra-follicular plasma cell generation, GC size, and GC B cell numbers. Analysis of select cell cycle and GC specific genes disclosed an aberrant gene expression profile in the Rgs13 deficient GC B cells. These results indicate that RGS13, likely acting at cell membranes and in nuclei, helps coordinate key decision points during the expansion and differentiation of naive B cells.
Collapse
Affiliation(s)
- Il-Young Hwang
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kyung-Sun Hwang
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chung Park
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kathleen A. Harrison
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John H. Kehrl
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
26
|
Wiege K, Ali SR, Gewecke B, Novakovic A, Konrad FM, Pexa K, Beer-Hammer S, Reutershan J, Piekorz RP, Schmidt RE, Nürnberg B, Gessner JE. Gαi2 is the essential Gαi protein in immune complex-induced lung disease. THE JOURNAL OF IMMUNOLOGY 2012; 190:324-33. [PMID: 23225882 DOI: 10.4049/jimmunol.1201398] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Heterotrimeric G proteins of the Gα(i) family have been implicated in signaling pathways regulating cell migration in immune diseases. The Gα(i)-protein-coupled C5a receptor is a critical regulator of IgG FcR function in experimental models of immune complex (IC)-induced inflammation. By using mice deficient for Gα(i2) or Gα(i3), we show that Gα(i2) is necessary for neutrophil influx in skin and lung Arthus reactions and agonist-induced neutrophilia in the peritoneum, whereas Gα(i3) plays a less critical but variable role. Detailed analyses of the pulmonary IC-induced inflammatory response revealed several shared functions of Gα(i2) and Gα(i3), including mediating C5a anaphylatoxin receptor-induced activation of macrophages, involvement in alveolar production of chemokines, transition of neutrophils from bone marrow into blood, and modulation of CD11b and CD62L expression that account for neutrophil adhesion to endothelial cells. Interestingly, C5a-stimulated endothelial polymorphonuclear neutrophil transmigration, but not chemotaxis, is enhanced versus reduced in the absence of neutrophil Gα(i3) or Gα(i2), respectively, and knockdown of endothelial Gα(i2) caused decreased transmigration of wild-type neutrophils. These data demonstrate that Gα(i2) and Gα(i3) contribute to inflammation by redundant, overlapping, and Gα(i)-isoform-specific mechanisms, with Gα(i2) exhibiting unique functions in both neutrophils and endothelial cells that appear essential for polymorphonuclear neutrophil recruitment in IC disease.
Collapse
Affiliation(s)
- Kristina Wiege
- Molecular Immunology Research Unit, Clinical Department of Immunology and Rheumatology, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ordás MC, Castro R, Dixon B, Sunyer JO, Bjork S, Bartholomew J, Korytar T, Köllner B, Cuesta A, Tafalla C. Identification of a novel CCR7 gene in rainbow trout with differential expression in the context of mucosal or systemic infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:302-11. [PMID: 22858409 PMCID: PMC3739294 DOI: 10.1016/j.dci.2012.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/03/2012] [Accepted: 07/05/2012] [Indexed: 05/13/2023]
Abstract
In mammals, CCR7 is the chemokine receptor for the CCL19 and CCL21 chemokines, molecules with a major role in the recruitment of lymphocytes to lymph nodes and Peyer's patches in the intestinal mucosa, especially naïve T lymphocytes. In the current work, we have identified a CCR7 orthologue in rainbow trout (Oncorhynchus mykiss) that shares many of the conserved features of mammalian CCR7. The receptor is constitutively transcribed in the gills, hindgut, spleen, thymus and gonad. When leukocyte populations were isolated, IgM(+) cells, T cells and myeloid cells from head kidney transcribed the CCR7 gene. In blood, both IgM(+) and IgT(+) B cells and myeloid cells but not T lymphocytes were transcribing CCR7, whereas in the spleen, CCR7 mRNA expression was strongly detected in T lymphocytes. In response to infection with viral hemorrhagic septicemia virus (VHSV), CCR7 transcription was down-regulated in spleen and head kidney upon intraperitoneal infection, whereas upon bath infection, CCR7 was up-regulated in gills but remained undetected in the fin bases, the main site of virus entry. Concerning its regulation in the intestinal mucosa, the ex vivo stimulation of hindgut segments with Poly I:C or inactivated bacteria significantly increased CCR7 transcription, while in the context of an infection with Ceratomyxa shasta, the levels of transcription of CCR7 in both IgM(+) and IgT(+) cells from the gut were dramatically increased. All these data suggest that CCR7 plays an important role in lymphocyte trafficking during rainbow trout infections, in which CCR7 appears to be implicated in the recruitment of B lymphocytes into the gut.
Collapse
Affiliation(s)
- M. Camino Ordás
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Rosario Castro
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - J. Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah Bjork
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Jerri Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Tomas Korytar
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Institute of Infectology, 17493 Greifswald-Insel Riems, Germany
| | - Bernd Köllner
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Institute of Infectology, 17493 Greifswald-Insel Riems, Germany
| | - Alberto Cuesta
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
- Corresponding author. Address: Centro de Investigación en Sanidad Animal (CISA-INIA), Carretera de Algete a El Casar km. 8.1, Valdeolmos 28130, Madrid, Spain. Tel.: +34 91 6202300; fax: +34 91 6202247. (C. Tafalla)
| |
Collapse
|
28
|
Wiege K, Le DD, Syed SN, Ali SR, Novakovic A, Beer-Hammer S, Piekorz RP, Schmidt RE, Nürnberg B, Gessner JE. Defective macrophage migration in Gαi2- but not Gαi3-deficient mice. THE JOURNAL OF IMMUNOLOGY 2012; 189:980-7. [PMID: 22706085 DOI: 10.4049/jimmunol.1200891] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Various heterotrimeric G(i) proteins are considered to be involved in cell migration and effector function of immune cells. The underlying mechanisms, how they control the activation of myeloid effector cells, are not well understood. To elucidate isoform-redundant and -specific roles for Gα(i) proteins in these processes, we analyzed mice genetically deficient in Gα(i2) or Gα(i3). First, we show an altered distribution of tissue macrophages and blood monocytes in the absence of Gα(i2) but not Gα(i3). Gα(i2)-deficient but not wild-type or Gα(i3)-deficient mice exhibited reduced recruitment of macrophages in experimental models of thioglycollate-induced peritonitis and LPS-triggered lung injury. In contrast, genetic ablation of Gα(i2) had no effect on Gα(i)-dependent peritoneal cytokine production in vitro and the phagocytosis-promoting function of the Gα(i)-coupled C5a anaphylatoxin receptor by liver macrophages in vivo. Interestingly, actin rearrangement and CCL2- and C5a anaphylatoxin receptor-induced chemotaxis but not macrophage CCR2 and C5a anaphylatoxin receptor expression were reduced in the specific absence of Gα(i2). Furthermore, knockdown of Gα(i2) caused decreased cell migration and motility of RAW 264.7 cells, which was rescued by transfection of Gα(i2) but not Gα(i3). These results indicate that Gα(i2), albeit redundant to Gα(i3) in some macrophage activation processes, clearly exhibits a Gα(i) isoform-specific role in the regulation of macrophage migration.
Collapse
Affiliation(s)
- Kristina Wiege
- Clinical Department of Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Svensson L, Stanley P, Willenbrock F, Hogg N. The Gαq/11 proteins contribute to T lymphocyte migration by promoting turnover of integrin LFA-1 through recycling. PLoS One 2012; 7:e38517. [PMID: 22701657 PMCID: PMC3372505 DOI: 10.1371/journal.pone.0038517] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 05/07/2012] [Indexed: 11/18/2022] Open
Abstract
The role of Gαi proteins coupled to chemokine receptors in directed migration of immune cells is well understood. In this study we show that the separate class of Gαq/11 proteins is required for the underlying ability of T cells to migrate both randomly and in a directed chemokine-dependent manner. Interfering with Gαq or Gα11 using dominant negative cDNA constructs or siRNA for Gαq causes accumulation of LFA-1 adhesions and stalled migration. Gαq/11 has an impact on LFA-1 expression at plasma membrane level and also on its internalization. Additionally Gαq co-localizes with LFA-1- and EEA1-expressing intracellular vesicles and partially with Rap1- but not Rab11-expressing vesicles. However the influence of Gαq is not confined to the vesicles that express it, as its reduction alters intracellular trafficking of other vesicles involved in recycling. In summary vesicle-associated Gαq/11 is required for the turnover of LFA-1 adhesion that is necessary for migration. These G proteins participate directly in the initial phase of recycling and this has an impact on later stages of the endo-exocytic pathway.
Collapse
Affiliation(s)
- Lena Svensson
- Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Paula Stanley
- Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Frances Willenbrock
- Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Nancy Hogg
- Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Lymph node B lymphocyte trafficking is constrained by anatomy and highly dependent upon chemoattractant desensitization. Blood 2011; 119:978-89. [PMID: 22039261 DOI: 10.1182/blood-2011-06-364273] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
B lymphocyte recirculation through lymph nodes (LNs) requires crossing endothelial barriers and chemoattractant-triggered cell migration. Here we show how LN anatomy and chemoattractant receptor signaling organize B lymphocyte LN trafficking. Blood-borne B cells predominately used CCR7 signaling to adhere to high endothelial venules (HEVs). New B cell emigrants slowly transited the HEV perivenule space, and thereafter localized nearby, avoiding the follicle. Eventually, the newly arrived B cells entered the basal portion of the follicle gradually populating it. In contrast, newly arriving activated B cells rapidly crossed HEVs and migrated toward the lymph node follicle. During their LN residency, recirculating B cells reacquired their sphingosine-1 phospate receptor 1 (S1P1) receptors and markedly attenuated their sensitivity to chemokines. Eventually, the B cells exited the LN follicle by entering the cortical lymphatics or returning to the paracortical cords. Upon entering the lymph, the B cells lost their polarity, down-regulated their S1P1 receptors, and subsequently strongly up-regulated their sensitivity to chemokines. These results are summarized in a model of homeostatic trafficking of B cells through LNs.
Collapse
|
31
|
Zhi L, Kim P, Thompson BD, Pitsillides C, Bankovich AJ, Yun SH, Lin CP, Cyster JG, Wu MX. FTY720 blocks egress of T cells in part by abrogation of their adhesion on the lymph node sinus. THE JOURNAL OF IMMUNOLOGY 2011; 187:2244-51. [PMID: 21788441 DOI: 10.4049/jimmunol.1100670] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Egress of lymphocytes from lymphoid tissues is a complex process in which Gαi-mediated signals play a decisive role. We show here that although FTY720, an agonist of the sphingosine 1-phosphate (S1P)(1) receptor, induces S1P(1) receptor internalization sufficiently in the presence or absence of Gαi2 or Gαi3, the drug blocks egress of wild-type (WT) and Gαi3-deficent T cells, but not Gαi2-deficient T cells, in both WT and Gαi2-deficient hosts. Intravital imaging of lymph nodes revealed that all three groups of T cells approached and engaged cortical sinusoids similarly in the presence or absence of FTY720. The cells also entered and departed the sinus at an almost identical frequency in the absence of the drug. However, after engagement of the sinus, most WT and Gαi3-deficient T cells retracted and migrated back into the parenchyma in FTY720-treated animals, due to a failure of the cells to establish adhesion on the sinus, whereas Gαi2-deficient T cells adhered firmly on the sinus, which prevented their retraction, facilitating their transmigration of the lymphatic endothelial barrier. These data confirm egress of Gαi2(-/-) T cells independent of S1P-mediated chemotaxis and failure of FTY720 to close lymphatic stromal channels and argue for the first time, to our knowledge, that FTY720 induces lymphopenia in part by impairing T cell adhesion to the sinus in a manner dependent on Gαi2.
Collapse
Affiliation(s)
- Liang Zhi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hwang IY, Park C, Harrision KA, Huang NN, Kehrl JH. Variations in Gnai2 and Rgs1 expression affect chemokine receptor signaling and the organization of secondary lymphoid organs. Genes Immun 2010; 11:384-96. [PMID: 20508603 PMCID: PMC2908210 DOI: 10.1038/gene.2010.27] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ligand bound chemoattractant receptors activate the heterotrimeric G protein Gi to stimulate downstream signaling pathways to properly position lymphocytes in lymphoid organs. Here we show how variations the expression of a chemokine receptor and in two components in the signaling pathway, Gαi2 and RGS1, affects the output fidelity of the signaling pathway. Examination of B cells from mice with varying numbers of intact alleles of Ccr7, Rgs1, Gnai2, and Gnai3 provided the basis for these results. Loss of a single allele of either Gnai2 or Rgs1 affected CCL19 triggered chemotaxis, while loss of a single allele of Ccr7, which encodes the cognate CCL19 receptor, had little effect. Emphasizing the importance of Gnai2, B cells lacking Gnai3 expression responded to chemokines better than did wild type B cells. At an organismal level, variations in Rgs1 and Gnai2 expression affected marginal zone B cell development, splenic architecture, lymphoid follicle size, and germinal center morphology. Gnai2 expression was also needed for the proper alignment of MOMA-1+ macrophages and MAdCAM-1+ endothelial cells along marginal zone sinuses in the spleen. These data indicate that chemoattractant receptors, heterotrimeric G-proteins, and RGS protein expression levels have a complex inter-relationship that affects the responses to chemoattractant exposure.
Collapse
Affiliation(s)
- I Y Hwang
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
33
|
Hwang IY, Park C, Harrison K, Kehrl JH. TLR4 signaling augments B lymphocyte migration and overcomes the restriction that limits access to germinal center dark zones. ACTA ACUST UNITED AC 2009; 206:2641-57. [PMID: 19917774 PMCID: PMC2806604 DOI: 10.1084/jem.20091982] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
B lymphocyte–intrinsic Toll-like receptor (TLR) signals amplify humoral immunity and can exacerbate autoimmune diseases. We identify a new mechanism by which TLR signals may contribute to autoimmunity and chronic inflammation. We show that TLR4 signaling enhances B lymphocyte trafficking into lymph nodes (LNs), induces B lymphocyte clustering and interactions within LN follicles, leads to sustained in vivo B cell proliferation, overcomes the restriction that limits the access of nonantigen-activated B cells to germinal center dark zones, and enhances the generation of memory and plasma cells. Intravital microscopy and in vivo tracking studies of B cells transferred to recipient mice revealed that TLR4-activated, but not nonstimulated, B cells accumulated within the dark zones of preexisting germinal centers even when transferred with antigen-specific B cells. The TLR4-activated cells persist much better than nonstimulated cells, expanding both within the memory and plasma cell compartments. TLR-mediated activation of B cells may help to feed and stabilize the spontaneous and ectopic germinal centers that are so commonly found in autoimmune individuals and that accompany chronic inflammation.
Collapse
Affiliation(s)
- Il-Young Hwang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
34
|
Interplay between the heterotrimeric G-protein subunits Galphaq and Galphai2 sets the threshold for chemotaxis and TCR activation. BMC Immunol 2009; 10:27. [PMID: 19426503 PMCID: PMC2694176 DOI: 10.1186/1471-2172-10-27] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 05/08/2009] [Indexed: 12/19/2022] Open
Abstract
Background TCR and CXCR4-mediated signaling appears to be reciprocally regulated pathways. TCR activation dampens the chemotactic response towards the CXCR4 ligand CXCL12, while T cells exposed to CXCL12 are less prone to subsequent TCR-activation. The heterotrimeric G proteins Gαq and Gαi2 have been implicated in CXCR4-signaling and we have recently also reported the possible involvement of Gαq in TCR-dependent activation of Lck (Ngai et al., Eur. J. Immunol., 2008, 38: 32083218). Here we examined the role of Gαq in migration and TCR activation. Results Pre-treatment of T cells with CXCL12 led to significantly reduced Lck Y394 phosphorylation upon TCR triggering indicating heterologous desensitization. We show that knockdown of Gαq significantly enhanced basal migration in T cells and reduced CXCL12-induced SHP-1 phosphorylation whereas Gαi2 knockdown inhibited CXCL12-induced migration. Conclusion Our data suggest that Gαi2 confers migration signals in the presence of CXCL12 whereas Gαq exerts a tonic inhibition on both basal and stimulated migrational responses. This is compatible with the notion that the level of Gαq activation contributes to determining the commitment of the T cell either to migration or activation through the TCR.
Collapse
|
35
|
Abstract
The phosphoinositide 3-kinase (PI3K) family of lipid kinases regulates diverse aspects of lymphocyte behavior. This review discusses how genetic and pharmacological tools have yielded an increasingly detailed understanding of how PI3K enzymes function at different stages of lymphocyte development and activation. Following antigen receptor engagement, activated PI3K generates 3-phosphorylated inositol lipid products that serve as membrane targeting signals for numerous proteins involved in the assembly of multiprotein complexes, termed signalosomes, and immune synapse formation. In B cells, class IA PI3K is the dominant subgroup whose loss causes profound defects in development and antigen responsiveness. In T cells, both class IA and IB PI3K contribute to development and immune function. PI3K also regulates both chemokine responsiveness and antigen-driven changes in lymphocyte trafficking. PI3K modulates the function not only of effector T cells, but also regulatory T cells; these disparate functions culminate in unexpected autoimmune phenotypes in mice with PI3K-deficient T cells. Thus, PI3K signaling is not a simple switch to promote cellular activation, but rather an intricate web of interactions that must be properly balanced to ensure appropriate cellular responses and maintain immune homeostasis. Defining these complexities remains a challenge for pharmaceutical development of PI3K inhibitors to combat inflammation and autoimmunity.
Collapse
Affiliation(s)
- David A Fruman
- Department of Molecular Biology and Biochemistry, and Center for Immunology, University of California at Irvine, Irvine, CA, USA.
| | | |
Collapse
|
36
|
Cho H, Kehrl JH. Chapter 9 Regulation of Immune Function by G Protein‐Coupled Receptors, Trimeric G Proteins, and RGS Proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:249-98. [DOI: 10.1016/s1877-1173(09)86009-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Park C, Hwang IY, Kehrl JH. Intravital two-photon imaging of adoptively transferred B lymphocytes in inguinal lymph nodes. Methods Mol Biol 2009; 571:199-207. [PMID: 19763968 DOI: 10.1007/978-1-60761-198-1_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Intravital two-photon imaging allows the observation of immune cells in intact organs of live animals in real time. Recently, several studies using two-photon microscopy have detailed the motility of mouse B and T lymphocyte within lymph nodes and have shown a dependence upon chemokine receptor signaling for the basal velocity of the cells. For, example, T cells from Gnia2 (-/-)mice, deficient in the heterotrimer G-protein G alpha subunit G(alpha i2) have markedly impaired chemokine-triggered chemotaxis. In vivo these cells have reduced motility and impaired positioning within lymph nodes. Gnia2 (-/-) B cells exhibit similar defects. In addition, B cells from Rgs1 (-/-) mice, deficient in a major negative regulator of G(alpha i), have a more robust motility than do wild-type B cells. Here, we describe procedures for visualizing the behavior of fluorescently labeled and adoptively transferred B lymphocytes within the inguinal lymph node of live mice.
Collapse
Affiliation(s)
- Chung Park
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
38
|
Kehrl JH, Hwang IY, Park C. Chemoattract receptor signaling and its role in lymphocyte motility and trafficking. Curr Top Microbiol Immunol 2009; 334:107-27. [PMID: 19521683 DOI: 10.1007/978-3-540-93864-4_5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Intravital microscopy has provided extraordinary glimpses of lymphocytes crossing high endothelial venules, detailed the movements and interactions of lymphocytes within lymph organs, and recorded lymphocytes crossing the lymphatic endothelium into the efferent lymph. Helping to orchestrate these movements are signals generated by the engagement of chemoattractants with their cognate receptors. Chemokines present on high endothelial venules and within lymph organs, and the high levels of sphingosine l-phosphate in the lymph, provide signposts to help guide lymphocytes and provide intracellular signals that affect lymphocyte polarity and motility. Within lymph nodes, T and B lymphocytes migrate along networks of fibroblastic reticular cells and follicular dendritic, respectively, which provide an adhesive platform and solid phased chemokines. Illustrating the importance of chemoattractant receptors in these processes, lymphocytes that lack CXCR4, CXCR5, CCR7 or S1PR1, or which lack crucial signaling molecules activated by these receptors, exhibit defects in lymph node entrance, positioning, polarity, motility, and/or lymph node egress. This review will focus on the contributions of in vivo imaging of lymphocytes from various mouse mutants to our understanding of the roles chemoattractants play in lymphocyte entrance into and exit from lymph nodes, and in coordinating and facilitating the movements of lymphocytes within lymph nodes.
Collapse
Affiliation(s)
- John H Kehrl
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases/NIH, 10 Center Drive, Bethesda, MD 20892-1876, USA.
| | | | | |
Collapse
|
39
|
Worbs T, Förster R. T cell migration dynamics within lymph nodes during steady state: an overview of extracellular and intracellular factors influencing the basal intranodal T cell motility. Curr Top Microbiol Immunol 2009; 334:71-105. [PMID: 19521682 DOI: 10.1007/978-3-540-93864-4_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Naive T lymphocytes continuously recirculate through secondary lymphoid organs such as lymph nodes until they are eventually activated by recognizing cognate peptide/MHC-complexes on the surface of antigen-protecting cells. The intranodal T cell migration behavior leading to these crucial--and potentially rare--encounters during the induction of an adaptive immune response could not be directly addressed until, in 2002, the use of two-photon microscopy also allowed the visualization of cellular dynamics deep within intact lymph nodes. Since then, numerous studies have confirmed that, by default, naive T cells are extremely motile, scanning the paracortical T cell zone for cognate antigen by means of an apparent random walk. This review attempts to summarize the current knowledge of factors influencing the basal migration behavior of naive T lymphocytes within lymph nodes during steady state. Extracellular cues, such as the motility-promoting influence of CCR7 ligands and the role of integrins during interstitial migration, as well as intracellular signaling pathways involved in T cell motility, will be discussed. Particular emphasis is placed on structural features of the lymph node environment orchestrating T cell migration, namely the framework of fibroblastic reticular cells serving as migration "highways." Finally, new approaches to simulate the cellular dynamics within lymph nodes in silico by means of mathematical modeling will be reviewed.
Collapse
Affiliation(s)
- Tim Worbs
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany.
| | | |
Collapse
|
40
|
Mellado M, Carrasco YR. Imaging techniques: new insights into chemokine/chemokine receptor biology at the immune system. Pharmacol Ther 2008; 119:24-32. [PMID: 18573535 DOI: 10.1016/j.pharmthera.2008.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 04/28/2008] [Indexed: 11/16/2022]
Abstract
Our current knowledge of molecular and cellular responses in vivo is based mainly on event reconstruction from time-freeze observations. Conventional biochemical and genetic methods consider the cell as an individual entity and ligand/receptor pairs as isolated systems. In addition, the data refer to the average behavior of a pool of cells and/or receptors removed from their real-life context. The use of new technologies, particularly real-time imaging approaches, is showing us that biological responses are highly dynamic and extremely dependent on the context in which they take place, and therefore much more diverse than initially envisaged. This review focuses on the mechanistic insights that new imaging techniques, such as those based on resonance energy transfer and two-photon microscopy, contribute to our understanding of how receptors work within a single cell, and how cells work within a tissue. Cell movement is a complex and regulated process; it has a key role in embryogenesis, organogenesis, wound-healing and tumor invasion. Nonetheless, it is in immune system homeostasis and response that cell movement becomes essential. For this reason, immunology is being radically transformed and enriched by these new approaches. We will discuss the use of these techniques for studying chemokine/chemokine receptors and their role in the immune system function, and comment on the potential contribution to the design of therapeutic strategies.
Collapse
Affiliation(s)
- Mario Mellado
- Department of Immunology and Oncology, National Centre of Biotechnology/CSIC, Darwin 3, UAM-Campus de Cantoblanco, Madrid E-28049, Spain.
| | | |
Collapse
|
41
|
Cahalan MD, Parker I. Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs. Annu Rev Immunol 2008; 26:585-626. [PMID: 18173372 DOI: 10.1146/annurev.immunol.24.021605.090620] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The immune system is the most diffuse cellular system in the body. Accordingly, long-range migration of cells and short-range communication by local chemical signaling and by cell-cell contacts are vital to the control of an immune response. Cellular homing and migration within lymphoid organs, antigen recognition, and cell signaling and activation are clearly vital during an immune response, but these events had not been directly observed in vivo until recently. Introduced to the field of immunology in 2002, two-photon microscopy is the method of choice for visualizing living cells deep within native tissue environments, and it is now revealing an elegant cellular choreography that underlies the adaptive immune response to antigen challenge. We review cellular dynamics and molecular factors that contribute to basal motility of lymphocytes in the lymph node and cellular interactions leading to antigen capture and recognition, T cell activation, B cell activation, cytolytic effector function, and antibody production.
Collapse
Affiliation(s)
- Michael D Cahalan
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA.
| | | |
Collapse
|
42
|
Pittet MJ, Mempel TR. Regulation of T-cell migration and effector functions: insights from in vivo imaging studies. Immunol Rev 2008; 221:107-29. [PMID: 18275478 DOI: 10.1111/j.1600-065x.2008.00584.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies of the immune system are providing us with ever more detailed information on the cellular and molecular mechanisms that underlie our evolutionarily conserved ability to fend off infectious pathogens. Progress has probably been fastest at two levels: the various basic biological functions of isolated cells on one side and the significance of individual molecules or cells to the organism as a whole on the other. In both cases, direct phenomenological observation has been an invaluable methodological approach. Where we know least is the middle ground, i.e. how immune functions are integrated through the dynamic interplay of immune cell subsets within the organism. Most of our knowledge in this area has been obtained through inference from static snapshots of dynamic processes, such as histological sections, or from surrogate cell co-culture models. The latter are employed under the assumption that an in vivo equivalent exists for each type of cellular contact artificially enforced in absence of anatomical compartmentalization. In this review, we summarize recent insights on migration and effector functions of T cells, focusing on observations gained from their dynamic microscopic visualization in physiological tissue environments.
Collapse
Affiliation(s)
- Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston, MA 02129, USA
| | | |
Collapse
|
43
|
Blei F. Literature watch. Dellinger, MT, RJ Hunter, et al. (2007). Chy-3 mice are Vegfc haploinsufficient and exhibit defective dermal superficial to deep lymphatic transition and dermal lymphatic hypoplasia. Dev Dyn 236:2346-2355. Lymphat Res Biol 2007; 5:203-4. [PMID: 18035938 DOI: 10.1089/lrb.2007.5308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
44
|
Zarbock A, Deem TL, Burcin TL, Ley K. Galphai2 is required for chemokine-induced neutrophil arrest. Blood 2007; 110:3773-9. [PMID: 17699741 PMCID: PMC2077322 DOI: 10.1182/blood-2007-06-094565] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chemokines, including CXCL1, participate in neutrophil recruitment by triggering the activation of integrins, which leads to arrest from rolling. The downstream signaling pathways which lead to integrin activation and neutophil arrest following G-protein-coupled receptor engagement are incompletely understood. To test whether Galpha(i2) is involved, mouse neutrophils in their native whole blood were investigated in mouse cremaster postcapillary venules and in flow chambers coated with P-selectin, ICAM-1, and CXCL1. Gnai2(-/-) neutrophils showed significantly reduced CXCL1-induced arrest in vitro and in vivo. Similar results were obtained with leukotriene B(4) (LTB(4)). Lethally irradiated mice reconstituted with Gnai2(-/-) bone marrow showed a similar defect in chemoattractant-induced arrest as that of Gnai2(-/-) mice. In thioglycollate-induced peritonitis and lipopolysaccaride (LPS)-induced lung inflammation, chimeric mice lacking Galpha(i2) in hematopoietic cells showed about 50% reduced neutrophil recruitment similar to that seen in Gnai2(-/-) mice. These data show that neutrophil Galpha(i2) is necessary for chemokine-induced arrest, which is relevant for neutrophil recruitment to sites of acute inflammation.
Collapse
Affiliation(s)
- Alexander Zarbock
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908-1394, USA
| | | | | | | |
Collapse
|