1
|
Li L, Zhang YL, Liu XY, Meng X, Zhao RQ, Ou LL, Li BZ, Xing T. Periodontitis Exacerbates and Promotes the Progression of Chronic Kidney Disease Through Oral Flora, Cytokines, and Oxidative Stress. Front Microbiol 2021; 12:656372. [PMID: 34211440 PMCID: PMC8238692 DOI: 10.3389/fmicb.2021.656372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/01/2021] [Indexed: 12/25/2022] Open
Abstract
Periodontitis is a type of systemic immune inflammation that is caused by the complex infection of a variety of microorganisms in the subgingival plaque and the imbalance of the microbial ecological environment in the mouth. Periodontitis and chronic kidney disease (CKD) share many risk factors, such as obesity, smoking, and age. A growing body of data supports a strong correlation between periodontitis and kidney disease. Evidence supports the role of periodontal inflammation and elevated serum inflammatory mediators in renal atherosclerosis, renal deterioration, and end-stage renal disease (ESRD) development. Periodontitis is a risk factor for kidney disease. However, to our knowledge, there are few studies detailing the possible link between periodontitis and CKD. This review summarizes the possible mechanisms underlying periodontitis and CKD. More importantly, it highlights novel and potential pathogenic factors for CKD, including bacteria, pro-inflammatory mediators and oxidative stress. However, most research on the relationship between periodontitis and systemic disease has not determined causality, and these diseases are largely linked by bidirectional associations. Future research will focus on exploring these links to contribute to new treatments for CKD.
Collapse
Affiliation(s)
- Ling Li
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Ya-Li Zhang
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Xing-Yu Liu
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Xiang Meng
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Rong-Quan Zhao
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Lin-Lin Ou
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Tian Xing
- School of Stomatology, Anhui Medical University, Hefei, China
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Garcia‐Vello P, Di Lorenzo F, Lamprinaki D, Notaro A, Speciale I, Molinaro A, Juge N, De Castro C. Structure of the O-Antigen and the Lipid A from the Lipopolysaccharide of Fusobacterium nucleatum ATCC 51191. Chembiochem 2021; 22:1252-1260. [PMID: 33197108 PMCID: PMC8048906 DOI: 10.1002/cbic.202000751] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/14/2020] [Indexed: 01/26/2023]
Abstract
Fusobacterium nucleatum is a common member of the oral microbiota. However, this symbiont has been found to play an active role in disease development. As a Gram-negative bacterium, F. nucleatum has a protective outer membrane layer whose external leaflet is mainly composed of lipopolysaccharides (LPSs). LPSs play a crucial role in the interaction between bacteria and the host immune system. Here, we characterised the structure of the O-antigen and lipid A from F. nucleatum ssp. animalis ATCC 51191 by using a combination of GC-MS, MALDI and NMR techniques. The results revealed a novel repeat of the O-antigen structure of the LPS, [→4)-β-d-GlcpNAcA-(1→4)-β-d-GlcpNAc3NAlaA-(1→3)-α-d-FucpNAc4NR-(1→], (R=acetylated 60 %), and a bis-phosphorylated hexa-acylated lipid A moiety. Taken together these data showed that F. nucleatum ATCC 51191 has a distinct LPS which might differentially influence recognition by immune cells.
Collapse
Affiliation(s)
- Pilar Garcia‐Vello
- Departmentof Chemical SciencesUniversity of Naples Federico IIVia Cinthia, 2680126NapoliNAItaly
| | - Flaviana Di Lorenzo
- Departmentof Chemical SciencesUniversity of Naples Federico IIVia Cinthia, 2680126NapoliNAItaly
| | - Dimitra Lamprinaki
- Gut Microbes & Health Institute Strategic ProgrammeQuadram Institute BioscienceRosalind Franklin Road, Norwich Research ParkNorwichNR4 7UQUK
| | - Anna Notaro
- Departmentof Chemical SciencesUniversity of Naples Federico IIVia Cinthia, 2680126NapoliNAItaly
| | - Immacolata Speciale
- Department of Agricultural SciencesUniversity of Naples Federico IIVia Università, 10080055Portici NAItaly
| | - Antonio Molinaro
- Departmentof Chemical SciencesUniversity of Naples Federico IIVia Cinthia, 2680126NapoliNAItaly
| | - Nathalie Juge
- Gut Microbes & Health Institute Strategic ProgrammeQuadram Institute BioscienceRosalind Franklin Road, Norwich Research ParkNorwichNR4 7UQUK
| | - Cristina De Castro
- Department of Agricultural SciencesUniversity of Naples Federico IIVia Università, 10080055Portici NAItaly
| |
Collapse
|
3
|
Kim AR, Lim YK, Kook JK, Bak EJ, Yoo YJ. Lipopolysaccharides of Fusobacterium nucleatum and Porphyromonas gingivalis increase RANKL-expressing neutrophils in air pouches of mice. Lab Anim Res 2021; 37:5. [PMID: 33407938 PMCID: PMC7789191 DOI: 10.1186/s42826-020-00080-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/27/2020] [Indexed: 11/10/2022] Open
Abstract
Increases of neutrophils and osteoclasts are pathological changes of periodontitis. RANKL is an osteoclast differentiation factor. The effect of periodontopathogen LPS on RANKL-expressing neutrophils has not been clarified yet. We evaluated numerical changes of RANKL-expressing neutrophils in air pouches of mice injected with LPSs of Fusobacterium nucleatum and Porphyromonas gingivalis. Mice with air pouches were assigned into saline (C)-, E. coli LPS- (Ec LPS)-, F. nucleatum LPS (Fn LPS)-, P. gingivalis LPS (Pg LPS)-, and Fn LPS and Pg LPS (Fn + Pg LPS)-injected groups. CD11b+Ly6G+ neutrophils and CD11b+Ly6G+RANKL+ neutrophils in blood and air pouch exudates were determined by flow cytometry. In blood, compared to the C group, the Fn LPS group showed increases of CD11b+Ly6G+ neutrophils and CD11b+Ly6G+RANKL+ neutrophils whereas the Pg LPS group showed no significant differences. These increases in the Fn LPS group were not different to those in the Ec LPS group. In exudates, Fn LPS and Pg LPS groups showed increases of CD11b+Ly6G+ neutrophils and CD11b+Ly6G+RANKL+ neutrophils compared to the C group. Increased levels in the Fn LPS group were not different to those in the Ec LPS group, but Pg LPS group was lower than those in the Ec LPS group. In blood and exudates, the Fn + Pg LPS group showed no difference in levels of these neutrophils compared to the Ec LPS group. LPSs of F. nucleatum and P. gingivalis increased RANKL-expressing neutrophils although the degrees of increases were different. These suggest that periodontopathogen LPS can act as a stimulant to increase RANKL-expressing neutrophils.
Collapse
Affiliation(s)
- Ae Ri Kim
- Department of Oral Biology, College of Dentistry, Yonsei University, Seoul, Republic of Korea
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Republic of Korea
- BK21 PLUS Project, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Yun Kyong Lim
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Eun-Jung Bak
- Department of Oral Biology, College of Dentistry, Yonsei University, Seoul, Republic of Korea.
| | - Yun-Jung Yoo
- Department of Oral Biology, College of Dentistry, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Immunological Pathways Triggered by Porphyromonas gingivalis and Fusobacterium nucleatum: Therapeutic Possibilities? Mediators Inflamm 2019; 2019:7241312. [PMID: 31341421 PMCID: PMC6612971 DOI: 10.1155/2019/7241312] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/28/2019] [Accepted: 05/19/2019] [Indexed: 02/06/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum) are Gram-negative anaerobic bacteria possessing several virulence factors that make them potential pathogens associated with periodontal disease. Periodontal diseases are chronic inflammatory diseases of the oral cavity, including gingivitis and periodontitis. Periodontitis can lead to tooth loss and is considered one of the most prevalent diseases worldwide. P. gingivalis and F. nucleatum possess virulence factors that allow them to survive in hostile environments by selectively modulating the host's immune-inflammatory response, thereby creating major challenges to host cell survival. Studies have demonstrated that bacterial infection and the host immune responses are involved in the induction of periodontitis. The NLRP3 inflammasome and its effector molecules (IL-1β and caspase-1) play roles in the development of periodontitis. We and others have reported that the purinergic P2X7 receptor plays a role in the modulation of periodontal disease and intracellular pathogen control. Caspase-4/5 (in humans) and caspase-11 (in mice) are important effectors for combating bacterial pathogens via mediation of cell death and IL-1β release. The exact molecular events of the host's response to these bacteria are not fully understood. Here, we review innate and adaptive immune responses induced by P. gingivalis and F. nucleatum infections and discuss the possibility of manipulations of the immune response as therapeutic strategies. Given the global burden of periodontitis, it is important to develop therapeutic targets for the prophylaxis of periodontopathogen infections.
Collapse
|
5
|
Strachan A, Harrington Z, McIlwaine C, Jerreat M, Belfield LA, Kilar A, Jackson SK, Foey A, Zaric S. Subgingival lipid A profile and endotoxin activity in periodontal health and disease. Clin Oral Investig 2018; 23:3527-3534. [PMID: 30543027 DOI: 10.1007/s00784-018-2771-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/05/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Regulation of lipopolysaccharide (LPS) chemical composition, particularly its lipid A domain, is an important, naturally occurring mechanism that drives bacteria-host immune system interactions into either a symbiotic or pathogenic relationship. Members of the subgingival oral microbiota can critically modulate host immuno-inflammatory responses by synthesizing different LPS isoforms. The objectives of this study were to analyze subgingival lipid A profiles and endotoxin activities in periodontal health and disease and to evaluate the use of the recombinant factor C assay as a new, lipid A-based biosensor for personalized, point-of-care periodontal therapy. MATERIALS AND METHODS Subgingival plaque samples were collected from healthy individuals and chronic periodontitis patients before and after periodontal therapy. Chemical composition of subgingival lipid A moieties was determined by ESI-Mass Spectrometry. Endotoxin activity of subgingival LPS extracts was assessed using the recombinant factor C assay, and their inflammatory potential was examined in THP-1-derived macrophages by measuring TNF-α and IL-8 production. RESULTS Characteristic lipid A molecular signatures, corresponding to over-acylated, bi-phosphorylated lipid A isoforms, were observed in diseased samples. Healthy and post-treatment samples were characterized by lower m/z peaks, related to under-acylated, hypo-phosphorylated lipid A structures. Endotoxin activity levels and inflammatory potentials of subgingival LPS extracts from periodontitis patients were significantly higher compared to healthy and post-treatment samples. CONCLUSIONS This is the first study to consider structure-function-clinical implications of different lipid A isoforms present in the subgingival niche and sheds new light on molecular pathogenic mechanisms of subgingival biofilm communities. CLINICAL RELEVANCE Subgingival endotoxin activity (determined by lipid A chemical composition) could be a reliable, bacterially derived biomarker and a risk assessment tool for personalized periodontal care.
Collapse
Affiliation(s)
- Alexander Strachan
- Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Zoe Harrington
- Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Clare McIlwaine
- Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Matthew Jerreat
- Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Louise A Belfield
- Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Aniko Kilar
- Medical School, Institute of Bioanalysis, University of Pécs, Pécs, Hungary
| | - Simon K Jackson
- Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Andrew Foey
- Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Svetislav Zaric
- Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, PL4 8AA, UK.
| |
Collapse
|
6
|
Chow AT, Quah SY, Bergenholtz G, Lim KC, Yu VSH, Tan KS. Bacterial species associated with persistent apical periodontitis exert differential effects on osteogenic differentiation. Int Endod J 2018; 52:201-210. [PMID: 30099741 DOI: 10.1111/iej.12994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/06/2018] [Indexed: 01/11/2023]
Abstract
AIM To determine if bacteria associated with persistent apical periodontitis induce species-specific pro-inflammatory cytokine responses in macrophages, and the effects of this species-specific microenvironment on osteogenic differentiation. METHODOLOGY Macrophages were exposed to Enterococcus faecalis, Streptococcus oralis, Streptococcus mitis, Fusobacterium nucleatum, Treponema denticola or Tannerella forsythia, and levels of TNF-α and IL-1β elicited were determined by immunoassay. Following treatment of MG-63 pre-osteoblasts with conditioned media from bacteria-exposed macrophages, osteogenic differentiation and viability of osteoblasts were analyzed by Alizarin Red Staining and MTS assay, respectively. Statistical analysis was carried out by one-way anova with the Tukey post-hoc test. Differences were considered to be significant if P < 0.05. RESULTS Macrophages exposed to Gram-positive bacteria did not produce significant amounts of cytokines. F. nucleatum-challenged macrophages produced up to four-fold more TNF-α and IL-1β compared to T. denticola or T. forsythia. Only conditioned media from macrophages treated with Gram-negative bacteria decreased mineralization and viability of osteoblasts. CONCLUSIONS Gram-positive bacteria did not impact osteogenic differentiation and appeared innocuous. Gram-negative bacteria, in particular F. nucleatum elicited an enhanced pro-inflammatory response in macrophages, inhibited osteogenic differentiation and reduced cell viability. The findings suggest that the presence of this organism could potentially increase the severity of persistent apical periodontitis.
Collapse
Affiliation(s)
- A T Chow
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - S Y Quah
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - G Bergenholtz
- The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - K C Lim
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - V S H Yu
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - K S Tan
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Marinho ACS, To TT, Darveau RP, Gomes BPFA. Detection and function of lipopolysaccharide and its purified lipid A after treatment with auxiliary chemical substances and calcium hydroxide dressings used in root canal treatment. Int Endod J 2018; 51:1118-1129. [PMID: 29505121 DOI: 10.1111/iej.12920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/27/2018] [Indexed: 02/02/2023]
Abstract
AIM To investigate the influence of auxiliary chemical substances (ACSs) and calcium hydroxide [Ca(OH)2 ] dressings on lipopolysaccharides (LPS)/lipid A detection and its functional ability in activating Toll-like receptor 4 (TLR4). METHODOLOGY Fusobacterium nucleatum pellets were exposed to antimicrobial agents as following: (i) ACS: 5.25%, 2.5% and 1% sodium hypochlorite solutions (NaOCl), 2% chlorhexidine (CHX) (gel and solution) and 17% ethylenediaminetetraacetic acid (EDTA); (ii) intracanal medicament: Ca(OH)2 paste for various periods (1 h, 24 h, 7 days, 14 days and 30 days); (iii) combination of substances: (a) 2.5% NaOCl (1 h), followed by 17% EDTA (3 min) and Ca(OH)2 (7 days); (b) 2% CHX (1 h), afterwards, 17% EDTA (3 min) followed by Ca(OH)2 (7 days). Saline solution was the control. Samples were submitted to LPS isolation and lipid A purification. Lipid A peaks were assessed by matrix-assisted laser desorption ionization time-of-flight mass spectrom (MALDI-TOF MS) whilst LPS bands by SDS-PAGE separation and silver staining. TLR4 activation determined LPS function activities. Statistical comparisons were carried out using one-way anova with Tukey-Kramer post-hoc tests at the 5% significance level. RESULTS Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of control lipid A demonstrated the ion cluster at mass/charge (m/z) 1882 and an intense band in SDS-PAGE followed by silver staining of control LPS. In parallel, LPS control induced a robust TLR4 activation when compared to ACS (P ≤ .001). 5.25% NaOCl treatment led to the absence of lipid A peaks and LPS bands, whilst no changes occurred to lipid A/LPS after treatment with others ACS. Concomitantly, 5.25% NaOCl-treated LPS did not activate TLR4 (P < .0001). As for Ca(OH)2 , lipid A was not detected by MALDI-TOF nor by gel electrophoresis within 24 h. LPS treated with Ca(OH)2 was a weak TLR4 activator (P < .0001). From 24 h onwards, no significant differences were found amongst the time periods tested (P > 0.05). The addition of Ca(OH)2 for 7 days to cells treated either with 2.5% NaOCl or 2% CHX led to the absence of lipid A peaks and LPS bands, leading to a lower activation of TLR4. CONCLUSION 5.25% NaOCl and Ca(OH)2 dressings from 24 h onwards were able to induce both, loss of lipid A peaks and no detection of LPS bands, rendering a diminished immunostimulatory activity through TLR4.
Collapse
Affiliation(s)
- A C S Marinho
- Department of Restorative Dentistry, Endodontics Division, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - T T To
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA, USA
| | - R P Darveau
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA, USA
| | - B P F A Gomes
- Department of Restorative Dentistry, Endodontics Division, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| |
Collapse
|
8
|
Shin HS, Baek DH, Lee SH. Inhibitory effect of Lactococcus lactis on the bioactivity of periodontopathogens. J GEN APPL MICROBIOL 2018; 64:55-61. [DOI: 10.2323/jgam.2017.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Hyun-Seung Shin
- Department of Periodontology, College of Dentistry, Dankook University
| | - Dong-Heon Baek
- Department of Oral Microbiology and Immunology, College of Dentistry, Dankook University
| | - Sung-Hoon Lee
- Department of Oral Microbiology and Immunology, College of Dentistry, Dankook University
| |
Collapse
|
9
|
Kumar A, Thotakura PL, Tiwary BK, Krishna R. Target identification in Fusobacterium nucleatum by subtractive genomics approach and enrichment analysis of host-pathogen protein-protein interactions. BMC Microbiol 2016; 16:84. [PMID: 27176600 PMCID: PMC4866016 DOI: 10.1186/s12866-016-0700-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
Background Fusobacterium nucleatum, a well studied bacterium in periodontal diseases, appendicitis, gingivitis, osteomyelitis and pregnancy complications has recently gained attention due to its association with colorectal cancer (CRC) progression. Treatment with berberine was shown to reverse F. nucleatum-induced CRC progression in mice by balancing the growth of opportunistic pathogens in tumor microenvironment. Intestinal microbiota imbalance and the infections caused by F. nucleatum might be regulated by therapeutic intervention. Hence, we aimed to predict drug target proteins in F. nucleatum, through subtractive genomics approach and host-pathogen protein-protein interactions (HP-PPIs). We also carried out enrichment analysis of host interacting partners to hypothesize the possible mechanisms involved in CRC progression due to F. nucleatum. Results In subtractive genomics approach, the essential, virulence and resistance related proteins were retrieved from RefSeq proteome of F. nucleatum by searching against Database of Essential Genes (DEG), Virulence Factor Database (VFDB) and Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT) tool respectively. A subsequent hierarchical screening to identify non-human homologous, metabolic pathway-independent/pathway-specific and druggable proteins resulted in eight pathway-independent and 27 pathway-specific druggable targets. Co-aggregation of F. nucleatum with host induces proinflammatory gene expression thereby potentiates tumorigenesis. Hence, proteins from IBDsite, a database for inflammatory bowel disease (IBD) research and those involved in colorectal adenocarcinoma as interpreted from The Cancer Genome Atlas (TCGA) were retrieved to predict drug targets based on HP-PPIs with F. nucleatum proteome. Prediction of HP-PPIs exhibited 186 interactions contributed by 103 host and 76 bacterial proteins. Bacterial interacting partners were accounted as putative targets. And enrichment analysis of host interacting partners showed statistically enriched terms that were in positive correlation with CRC, atherosclerosis, cardiovascular, osteoporosis, Alzheimer’s and other diseases. Conclusion Subtractive genomics analysis provided a set of target proteins suggested to be indispensable for survival and pathogenicity of F. nucleatum. These target proteins might be considered for designing potent inhibitors to abrogate F. nucleatum infections. From enrichment analysis, it was hypothesized that F. nucleatum infection might enhance CRC progression by simultaneously regulating multiple signaling cascades which could lead to up-regulation of proinflammatory responses, oncogenes, modulation of host immune defense mechanism and suppression of DNA repair system. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0700-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amit Kumar
- Centre for Bioinformatics, Pondicherry University, Puducherry, 605014, India
| | | | - Basant Kumar Tiwary
- Centre Head, Centre for Bioinformatics, Pondicherry University, Puducherry, 605014, India
| | - Ramadas Krishna
- Centre for Bioinformatics, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
10
|
Zhou Z, Xu MJ, Gao B. Hepatocytes: a key cell type for innate immunity. Cell Mol Immunol 2015; 13:301-15. [PMID: 26685902 PMCID: PMC4856808 DOI: 10.1038/cmi.2015.97] [Citation(s) in RCA: 286] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023] Open
Abstract
Hepatocytes, the major parenchymal cells in the liver, play pivotal roles in metabolism, detoxification, and protein synthesis. Hepatocytes also activate innate immunity against invading microorganisms by secreting innate immunity proteins. These proteins include bactericidal proteins that directly kill bacteria, opsonins that assist in the phagocytosis of foreign bacteria, iron-sequestering proteins that block iron uptake by bacteria, several soluble factors that regulate lipopolysaccharide signaling, and the coagulation factor fibrinogen that activates innate immunity. In this review, we summarize the wide variety of innate immunity proteins produced by hepatocytes and discuss liver-enriched transcription factors (e.g. hepatocyte nuclear factors and CCAAT/enhancer-binding proteins), pro-inflammatory mediators (e.g. interleukin (IL)-6, IL-22, IL-1β and tumor necrosis factor-α), and downstream signaling pathways (e.g. signal transducer and activator of transcription factor 3 and nuclear factor-κB) that regulate the expression of these innate immunity proteins. We also briefly discuss the dysregulation of these innate immunity proteins in chronic liver disease, which may contribute to an increased susceptibility to bacterial infection in patients with cirrhosis.
Collapse
Affiliation(s)
- Zhou Zhou
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Bethesda, MD, USA
| | - Ming-Jiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Bethesda, MD, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Kabanov DS, Grachev SV, Prokhorenko IR. Role of CD11b/CD18 in priming of human leukocytes by endotoxin glycoforms from Escherichia coli. BIOCHEMISTRY (MOSCOW) 2015; 79:812-9. [PMID: 25365491 DOI: 10.1134/s0006297914080094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The primary objective of this study was to determine the role of β2 integrin α-subunit (CD11b) in the mechanism of human polymorphonuclear leukocyte (PML) priming by S or Re endotoxin glycoforms from Escherichia coli for fMLP-induced respiratory burst. Similar priming activity of S and Re endotoxin glycoforms for fMLP-induced reactive oxygen species (ROS) generation from primed PML was found. Anti-CD11b antibodies (clone ICRF 44) as well as isotype-matched immunoglobulin G1 (clone MOPC-21) do not influence the fMLP-induced ROS generation from unprimed PML. Antibodies against CD11b do not change fMLP-induced ROS generation from endotoxin-primed PML as well. The involvement of different isoforms of Fcγ receptors in fMLP-induced ROS generation from activated PML is proposed.
Collapse
Affiliation(s)
- D S Kabanov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
12
|
Diverse Toll-like receptors mediate cytokine production by Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans in macrophages. Infect Immun 2014; 82:1914-20. [PMID: 24566622 DOI: 10.1128/iai.01226-13] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Toll-like receptors (TLRs) orchestrate a repertoire of immune responses in macrophages against various pathogens. Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans are two important periodontal pathogens. In the present study, we investigated TLR signaling regulating cytokine production of macrophages in response to F. nucleatum and A. actinomycetemcomitans. TLR2 and TLR4 are redundant in the production of cytokines (interleukin-6 [IL-6] and tumor necrosis factor alpha [TNF-α]) in F. nucleatum- and A. actinomycetemcomitans-infected macrophages. The production of cytokines by macrophages in response to F. nucleatum and A. actinomycetemcomitans infection was impaired in MyD88-deficient macrophages. Moreover, cytokine concentrations were lower in MyD88-deficient macrophages than in TLR2/TLR4 (TLR2/4) double-deficient cells. An endosomal TLR inhibitor, chloroquine, reduced cytokine production in TLR2/4-deficient macrophages in response to F. nucleatum and A. actinomycetemcomitans, and DNA from F. nucleatum or A. actinomycetemcomitans induced IL-6 production in bone marrow-derived macrophages (BMDMs), which was abolished by chloroquine. Western blot analysis revealed that TLR2/4 and MyD88 were required for optimal activation of NF-κB and mitogen-activated protein kinases (MAPKs) in macrophages in response to F. nucleatum and A. actinomycetemcomitans, with different kinetics. An inhibitor assay showed that NF-κB and all MAPKs (p38, extracellular signal-regulated kinase [ERK], and Jun N-terminal protein kinase [JNK]) mediate F. nucleatum-induced production of cytokines in macrophages, whereas NF-κB and p38, but not ERK and JNK, are involved in A. actinomycetemcomitans-mediated cytokine production. These findings suggest that multiple TLRs may participate in the cytokine production of macrophages against periodontal bacteria.
Collapse
|
13
|
Goleva E, Jackson LP, Harris JK, Robertson CE, Sutherland ER, Hall CF, Good JT, Gelfand EW, Martin RJ, Leung DYM. The effects of airway microbiome on corticosteroid responsiveness in asthma. Am J Respir Crit Care Med 2014; 188:1193-201. [PMID: 24024497 DOI: 10.1164/rccm.201304-0775oc] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RATIONALE The role of airway microbiome in corticosteroid response in asthma is unknown. OBJECTIVES To examine airway microbiome composition in patients with corticosteroid-resistant (CR) asthma and compare it with patients with corticosteroid-sensitive (CS) asthma and normal control subjects and explore whether bacteria in the airways of subjects with asthma may direct alterations in cellular responses to corticosteroids. METHODS 16S rRNA gene sequencing was performed on bronchoalveolar lavage (BAL) samples of 39 subjects with asthma and 12 healthy control subjects. In subjects with asthma, corticosteroid responsiveness was characterized, BAL macrophages were stimulated with pathogenic versus commensal microorganisms, and analyzed by real-time polymerase chain reaction for the expression of corticosteroid-regulated genes and cellular p38 mitogen-activated protein kinase (MAPK) activation. MEASUREMENTS AND MAIN RESULTS Of the 39 subjects with asthma, 29 were CR and 10 were CS. BAL microbiome from subjects with CR and CS asthma did not differ in richness, evenness, diversity, and community composition at the phylum level, but did differ at the genus level, with distinct genus expansions in 14 subjects with CR asthma. Preincubation of asthmatic airway macrophages with Haemophilus parainfluenzae, a uniquely expanded potential pathogen found only in CR asthma airways, resulted in p38 MAPK activation, increased IL-8 (P < 0.01), mitogen-activated kinase phosphatase 1 mRNA (P < 0.01) expression, and inhibition of corticosteroid responses (P < 0.05). This was not observed after exposure to commensal bacterium Prevotella melaninogenica. Inhibition of transforming growth factor-β-associated kinase-1 (TAK1), upstream activator of MAPK, but not p38 MAPK restored cellular sensitivity to corticosteroids. CONCLUSIONS A subset of subjects with CR asthma demonstrates airway expansion of specific gram-negative bacteria, which trigger TAK1/MAPK activation and induce corticosteroid resistance. TAK1 inhibition restored cellular sensitivity to corticosteroids.
Collapse
|
14
|
Lonez C, Vandenbranden M, Ruysschaert JM. Cationic lipids activate intracellular signaling pathways. Adv Drug Deliv Rev 2012; 64:1749-58. [PMID: 22634161 DOI: 10.1016/j.addr.2012.05.009] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/09/2012] [Indexed: 11/25/2022]
Abstract
Cationic liposomes are commonly used as a transfection reagent for DNA, RNA or proteins and as a co-adjuvant of antigens for vaccination trials. A high density of positive charges close to cell surface is likely to be recognized as a signal of danger by cells or contribute to trigger cascades that are classically activated by endogenous cationic compounds. The present review provides evidence that cationic liposomes activate several cellular pathways like pro-apoptotic and pro-inflammatory cascades. An improved knowledge of the relationship between the cationic lipid properties (nature of the lipid hydrophilic moieties, hydrocarbon tail, mode of organization) and the activation of these pathways opens the way to the use and design of cationic tailored for a specific application (e.g. for gene transport or as adjuvants).
Collapse
|
15
|
Kawasaki K. Complexity of lipopolysaccharide modifications in Salmonella enterica: Its effects on endotoxin activity, membrane permeability, and resistance to antimicrobial peptides. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.01.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007-2008. MASS SPECTROMETRY REVIEWS 2012; 31:183-311. [PMID: 21850673 DOI: 10.1002/mas.20333] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/31/2023]
Abstract
This review is the fifth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2008. The first section of the review covers fundamental studies, fragmentation of carbohydrate ions, use of derivatives and new software developments for analysis of carbohydrate spectra. Among newer areas of method development are glycan arrays, MALDI imaging and the use of ion mobility spectrometry. The second section of the review discusses applications of MALDI MS to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, biopharmaceuticals, glycated proteins, glycolipids, glycosides and various other natural products. There is a short section on the use of MALDI mass spectrometry for the study of enzymes involved in glycan processing and a section on the use of MALDI MS to monitor products of the chemical synthesis of carbohydrates with emphasis on carbohydrate-protein complexes and glycodendrimers. Corresponding analyses by electrospray ionization now appear to outnumber those performed by MALDI and the amount of literature makes a comprehensive review on this technique impractical. However, most of the work relating to sample preparation and glycan synthesis is equally relevant to electrospray and, consequently, those proposing analyses by electrospray should also find material in this review of interest.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
17
|
Li Y, Shibata Y, Zhang L, Kuboyama N, Abiko Y. Periodontal pathogen Aggregatibacter actinomycetemcomitans LPS induces mitochondria-dependent-apoptosis in human placental trophoblasts. Placenta 2010; 32:11-9. [PMID: 21074850 DOI: 10.1016/j.placenta.2010.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/22/2010] [Accepted: 10/07/2010] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Increasing evidence suggests an association between periodontal disease and low birthweight (LBW); however the underlying molecular mechanisms are yet to be fully elucidated. In this study, we performed a microarray analysis to observe the human placental trophoblast-like BeWo cells response to lipopolysaccharide (LPS) from periodontopathogen Aggregatibacter actinomycetemcomitans (Aa), in order to investigate the molecular basis of mechanisms for periodontitis-associated LBW. In vivo pregnant rats were also used to confirm the in vitro results. STUDY DESIGN The effects of Aa-LPS on cultured human placental trophoblast-like BeWo cells were studied using a DNA microarray, Ingenuity Pathway Analysis, real-time PCR and poly-caspase staining. The in vivo effects of Aa-LPS in pregnant rats were examined using TUNEL assays. RESULTS In BeWo cells, Aa-LPS increased levels of cytochrome c, caspase 2, caspase 3, caspase 9 and BCL2-antagonist/killer 1 mRNA, decreased those of B-cell CLL/lymphoma 2, BCL2-like 1 and catalase mRNA and increased poly-caspase activity, all of which are consistent with activation of the mitochondria-dependent apoptotic pathway. TUNEL assays confirmed the increased incidence of apoptosis in placentas of Aa-LPS-treated rats (p < 0.001). CONCLUSION Aa-LPS induces apoptosis in human trophoblasts via the mitochondria-dependent pathway, and this effect may contribute to the pathogenesis of periodontitis-associated LBW.
Collapse
Affiliation(s)
- Y Li
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, 2-870-1, Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan.
| | | | | | | | | |
Collapse
|
18
|
Kabanov DS, Prokhorenko IR. Structural analysis of lipopolysaccharides from Gram-negative bacteria. BIOCHEMISTRY (MOSCOW) 2010; 75:383-404. [PMID: 20618127 DOI: 10.1134/s0006297910040012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review covers data on composition and structure of lipid A, core, and O-polysaccharide of the known lipopolysaccharides from Gram-negative bacteria. The relationship between the structure and biological activity of lipid A is discussed. The data on roles of core and O-polysaccharide in biological activities of lipopolysaccharides are presented. The structural homology of some oligosaccharide sequences of lipopolysaccharides to gangliosides of human cell membranes is considered.
Collapse
Affiliation(s)
- D S Kabanov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
19
|
|
20
|
Grigoleit JS, Oberbeck JR, Lichte P, Kobbe P, Wolf OT, Montag T, del Rey A, Gizewski ER, Engler H, Schedlowski M. Lipopolysaccharide-induced experimental immune activation does not impair memory functions in humans. Neurobiol Learn Mem 2010; 94:561-7. [PMID: 20875866 DOI: 10.1016/j.nlm.2010.09.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 09/16/2010] [Accepted: 09/18/2010] [Indexed: 10/19/2022]
Abstract
Systemic immune activation occurring together with release of peripheral cytokines can affect behavior and the functioning of the central nervous system (CNS). However, it remains unknown whether and to what extent cognitive functions like memory and attention are affected during transient immune activation. We employed a human endotoxemia model and standardized neuropsychological tests to assess the cognitive effects of an experimental inflammation in two groups of 12 healthy young men before and after intravenous injection of lipopolysaccharide (LPS, Escherichia coli, 0.4 ng/kg) or physiological saline. Endotoxin administration caused a profound transient physiological response with elevations in body temperature, number of circulating neutrophils, and increases in plasma cytokine levels [interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α], and concentrations of norepinephrine, ACTH and cortisol. However, these changes in immune and neuroendocrine parameters were not associated with alterations of memory performance, selective attention or executive functions.
Collapse
Affiliation(s)
- Jan-Sebastian Grigoleit
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Keelan JA, Wong PM, Bird PS, Mitchell MD. Innate inflammatory responses of human decidual cells to periodontopathic bacteria. Am J Obstet Gynecol 2010; 202:471.e1-11. [PMID: 20452492 DOI: 10.1016/j.ajog.2010.02.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/14/2009] [Accepted: 02/10/2010] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The purpose of this study was to test the hypothesis that periodontopathic bacteria exert potent proinflammatory effects in human decidua. STUDY DESIGN The immunostimulatory effects of Gram-positive and negative periodontopathic bacteria and their lipopolysaccharides were tested in human decidual cell cultures in comparison with Escherichia coli. Cytokine production was measured by enzyme-linked immunosorbent assay; inflammatory gene expression was measured by oligonucleotide arrays and quantitative real time-polymerase chain reaction. RESULTS All bacteria that were tested elicited an inflammatory response, although concentration-dependence and efficacy varied considerably with organism and culture. Lipopolysaccharides were more potent stimuli than intact bacterial cells, although bacteria exerted greater effects at high concentrations. Of 112 genes on the arrays, 18 genes were stimulated significantly by one or more lipopolysaccharide preparation. CONCLUSION The ability of periodontopathic bacteria to stimulate a decidual inflammatory response is highly variable and partly dependent on the presence and structure of constituent lipopolysaccharides. This adds to our understanding of the causal association between periodontal disease and preterm birth.
Collapse
Affiliation(s)
- Jeffrey A Keelan
- School of Women's and Infants' Health, University of Western Australia, Perth, WA, Australia
| | | | | | | |
Collapse
|
22
|
Legat A, Thomas S, Hermand P, Van Mechelen M, Goldman M, De Wit D. CD14-independent responses induced by a synthetic lipid A mimetic. Eur J Immunol 2010; 40:797-802. [PMID: 20039305 DOI: 10.1002/eji.200939992] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
CRX-527 belongs to a new family of synthetic lipid A mimetics, the aminoalkyl glucosaminide 4-phosphates, which are considered as potential vaccine adjuvants or stand-alone immunotherapeutics to harness innate immune defenses. Since natural lipid A from bacterial LPS depends on membrane-bound (mCD14) or soluble CD14 for its TLR4 ligand activity, we investigated the involvement of both forms of CD14 in the responses elicited by CRX-527. First, we found that CRX-527 induces NF-kappaB and interferon regulatory factor-3 (IRF-3) activation in human embryonic kidney cells transfected with TLR4 and MD-2 genes alone, whereas the responses to LPS require either co-transfection of the gene encoding mCD14 or addition of soluble CD14. We then observed that monocyte-derived DC, which are devoid of mCD14 respond to CRX-527 but not to LPS in serum-free medium. Furthermore, we found that, in contrast to LPS, CRX-527 induces the production of cytokines in whole blood of a patient with paroxysmal nocturnal hemoglobinuria, a disease in which mCD14-dependent responses are defective. Finally, we demonstrated that splenocytes from CD14-deficient mice produce cytokines in response to CRX-527 but not to LPS. We conclude that the lipid A mimetic CRX-527 does not require the CD14 co-receptor to elicit TLR4-mediated responses.
Collapse
Affiliation(s)
- Amandine Legat
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | | | | | | | | | | |
Collapse
|
23
|
Tipton D, Legan Z, Dabbous M. Methamphetamine cytotoxicity and effect on LPS-stimulated IL-1β production by human monocytes. Toxicol In Vitro 2010; 24:921-7. [DOI: 10.1016/j.tiv.2009.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 12/19/2022]
|
24
|
Ribeiro CMS, Hermsen T, Taverne-Thiele AJ, Savelkoul HFJ, Wiegertjes GF. Evolution of Recognition of Ligands from Gram-Positive Bacteria: Similarities and Differences in the TLR2-Mediated Response between Mammalian Vertebrates and Teleost Fish. THE JOURNAL OF IMMUNOLOGY 2010; 184:2355-68. [DOI: 10.4049/jimmunol.0900990] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Kocgozlu L, Elkaim R, Tenenbaum H, Werner S. Variable cell responses to P. gingivalis lipopolysaccharide. J Dent Res 2009; 88:741-5. [PMID: 19734462 DOI: 10.1177/0022034509341166] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Porphyromonas gingivalis is a major etiological agent of chronic periodontal diseases, the virulence of which has been attributed to different factors, including lipopolysaccharide (LPS). We investigated the differential responses induced by P. gingivalis LPS stimulation of human umbilical vein endothelial cells and human oral epithelial cells. RT-PCR analysis showed that P. gingivalis LPS used Toll-like receptor 2 (TLR2) to activate epithelial cells and Toll-like receptor 4 (TLR4) to activate endothelial cells. Both cell types were stimulated by P. gingivalis LPS to produce pro-inflammatory cytokines. Cytokine Array assay showed that although patterns of cytokine expression were similar in both cell types, some cytokines were specifically secreted by the endothelial cells, and others were specific to epithelial cells. These results support the idea that the same LPS preparation can act as a TLR2 or TLR4 agonist, depending on TLR expression of the host cell, inducing cytokine profiles that differ according to the cell type.
Collapse
Affiliation(s)
- L Kocgozlu
- ERT-1061 internal to unit INSERM UMR-977, Dental Faculty, University of Strasbourg, 11 rue Humann, 67000 Strasbourg, France
| | | | | | | |
Collapse
|
26
|
Natsuka M, Uehara A, Yang S, Echigo S, Takada H. A polymer-type water-soluble peptidoglycan exhibited both Toll-like receptor 2- and NOD2-agonistic activities, resulting in synergistic activation of human monocytic cells. Innate Immun 2009; 14:298-308. [PMID: 18809654 DOI: 10.1177/1753425908096518] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacterial peptidoglycan (PGN) has been reported to be sensed by cell-surface Toll-like receptor (TLR)2. On the other hand, intracellular NOD-like receptors recognize PGN partial structures: NOD1 and NOD2 recognize the peptide moiety containing diaminopimelic acid, and the muramyldipeptide (MDP) moiety, respectively. In this study, we examined in human monocytic THP-1 cells the pro-inflammatory cytokine-inducing abilities of PGNs and their fragments enzymatically prepared from Staphylococcus epidermidis ATCC 155: a polymer-type water-soluble PGN possessing an intact glycan chain (SEPS) and a monomer-type PGN (SEPS-M). The water-soluble PGN polymer, SEPS, exhibited considerably stronger activities to induce pro-inflammatory cytokines than parent PGNs and the PGN monomer, SEPS-M. Short interference RNA targeting TLR2 and NOD2 markedly reduced the activities of SEPS. In the same experiments, the activities of PGNs were mainly reduced in TLR2-silenced cells, whereas the activities of SEPS-M as well as a synthetic MDP were markedly reduced in NOD2-silenced cells. Furthermore, the PGNs and a reference PGN from Staphylococcus aureus in combination with MDP synergistically induced interleukin-8 in THP-1 cells. These findings strongly suggested that a polymer-type water-soluble PGN fragment, SEPS, exhibits both TLR2-and NOD2-agonistic activities, which induced the synergistic activation of human monocytic cells.
Collapse
Affiliation(s)
- Mizuho Natsuka
- Department of Microbiology and Immunology, Tohoku University School of Dentistry, Aoba-ku, Sendai, Japan
| | | | | | | | | |
Collapse
|