1
|
Sanchez S, Dangi T, Awakoaiye B, Lew MH, Irani N, Fourati S, Penaloza-MacMaster P. Delayed reinforcement of costimulation improves the efficacy of mRNA vaccines in mice. J Clin Invest 2024; 134:e183973. [PMID: 39432667 PMCID: PMC11645141 DOI: 10.1172/jci183973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
mRNA vaccines have demonstrated efficacy during the COVID-19 pandemic and are now being investigated for multiple diseases. However, concerns linger about the durability of immune responses, and the high incidence of breakthrough infections among vaccinated individuals highlights the need for improved mRNA vaccines. In this study, we investigated the effects of reinforcing costimulation via 4-1BB, a member of the TNF receptor superfamily, on immune responses elicited by mRNA vaccines. We first immunized mice with mRNA vaccines, followed by treatment with 4-1BB costimulatory antibodies to reinforce the 4-1BB pathway at different time points after vaccination. Consistent with prior studies, reinforcing 4-1BB costimulation on the day of vaccination did not result in a substantial improvement in vaccine responses. However, reinforcing 4-1BB costimulation on day 4 after vaccination, when 4-1BB expression levels were highest, resulted in a profound improvement in CD8+ T cell responses associated with enhanced protection against pathogen challenges. A similar clinical benefit was observed in a therapeutic cancer vaccine model. We also report time-dependent effects with OX40, another costimulatory molecule of the TNF receptor superfamily. These findings demonstrate that delayed reinforcement of costimulation may exert an immunologic benefit, providing insights for the development of more effective mRNA vaccines for infectious diseases and cancer.
Collapse
MESH Headings
- mRNA Vaccines/administration & dosage
- mRNA Vaccines/immunology
- Immunogenicity, Vaccine
- Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
- Vaccination/methods
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- OX40 Ligand/agonists
- OX40 Ligand/immunology
- OX40 Ligand/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation/immunology
- Mice, Inbred C57BL
- Animals
- Mice
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19/virology
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Immunization, Secondary/methods
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Male
- Female
Collapse
Affiliation(s)
| | | | | | | | | | - Slim Fourati
- Department of Medicine, Division of Allergy and Immunology, Feinberg School of Medicine and Center for Human Immunobiology, Northwestern University, Chicago, Illinois, USA
| | | |
Collapse
|
2
|
Sanchez S, Dangi T, Awakoaiye B, Irani N, Fourati S, Richner J, Penaloza-MacMaster P. Time-dependent enhancement of mRNA vaccines by 4-1BB costimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582992. [PMID: 38496467 PMCID: PMC10942304 DOI: 10.1101/2024.03.01.582992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
mRNA vaccines have demonstrated efficacy against COVID-19. However, concerns regarding waning immunity and breakthrough infections have motivated the development of next-generation vaccines with enhanced efficacy. In this study, we investigated the impact of 4-1BB costimulation on immune responses elicited by mRNA vaccines in mice. We first vaccinated mice with an mRNA vaccine encoding the SARS-CoV-2 spike antigen like the Moderna and Pfizer-BioNTech vaccines, followed by administration of 4-1BB costimulatory antibodies at various times post-vaccination. Administering 4-1BB costimulatory antibodies during the priming phase did not enhance immune responses. However, administering 4-1BB costimulatory antibodies after 96 hours elicited a significant improvement in CD8 T cell responses, leading to enhanced protection against breakthrough infections. A similar improvement in immune responses was observed with multiple mRNA vaccines, including vaccines against common cold coronavirus, human immunodeficiency virus (HIV), and arenavirus. These findings demonstrate a time-dependent effect by 4-1BB costimulation and provide insights for developing improved mRNA vaccines.
Collapse
Affiliation(s)
- Sarah Sanchez
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tanushree Dangi
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Bakare Awakoaiye
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nahid Irani
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Slim Fourati
- Department of Medicine, Division of Allergy and Immunology, Feinberg School of Medicine and Center for Human Immunobiology, Northwestern University, Chicago, IL 60611, USA
| | - Justin Richner
- Department of Microbiology & Immunology, University of Illinois Chicago College of Medicine, Chicago, IL 60612, USA
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Malyshkina A, Brüggemann A, Paschen A, Dittmer U. Cytotoxic CD4 + T cells in chronic viral infections and cancer. Front Immunol 2023; 14:1271236. [PMID: 37965314 PMCID: PMC10642198 DOI: 10.3389/fimmu.2023.1271236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
CD4+ T cells play an important role in immune responses against pathogens and cancer cells. Although their main task is to provide help to other effector immune cells, a growing number of infections and cancer entities have been described in which CD4+ T cells exhibit direct effector functions against infected or transformed cells. The most important cell type in this context are cytotoxic CD4+ T cells (CD4+ CTL). In infectious diseases anti-viral CD4+ CTL are mainly found in chronic viral infections. Here, they often compensate for incomplete or exhausted CD8+ CTL responses. The induction of CD4+ CTL is counter-regulated by Tregs, most likely because they can be dangerous inducers of immunopathology. In viral infections, CD4+ CTL often kill via the Fas/FasL pathway, but they can also facilitate the exocytosis pathway of killing. Thus, they are very important effectors to keep persistent virus in check and guarantee host survival. In contrast to viral infections CD4+ CTL attracted attention as direct anti-tumor effectors in solid cancers only recently. Anti-tumor CD4+ CTL are defined by the expression of cytolytic markers and have been detected within the lymphocyte infiltrates of different human cancers. They kill tumor cells in an antigen-specific MHC class II-restricted manner not only by cytolysis but also by release of IFNγ. Thus, CD4+ CTL are interesting tools for cure approaches in chronic viral infections and cancer, but their potential to induce immunopathology has to be carefully taken into consideration.
Collapse
Affiliation(s)
- Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alicia Brüggemann
- Department of Dermatology, Venereology, and Allergology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Annette Paschen
- Department of Dermatology, Venereology, and Allergology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
4
|
Salek-Ardakani S, Zajonc DM, Croft M. Agonism of 4-1BB for immune therapy: a perspective on possibilities and complications. Front Immunol 2023; 14:1228486. [PMID: 37662949 PMCID: PMC10469789 DOI: 10.3389/fimmu.2023.1228486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Costimulatory receptors on immune cells represent attractive targets for immunotherapy given that these molecules can increase the frequency of individual protective immune cell populations and their longevity, as well as enhance various effector functions. 4-1BB, a member of the TNF receptor superfamily, also known as CD137 and TNFRSF9, is one such molecule that is inducible on several cell types, including T cells and NK cells. Preclinical studies in animal models have validated the notion that stimulating 4-1BB with agonist reagents or its natural ligand could be useful to augment conventional T cell and NK cell immunity to protect against tumor growth and against viral infection. Additionally, stimulating 4-1BB can enhance regulatory T cell function and might be useful in the right context for suppressing autoimmunity. Two human agonist antibodies to 4-1BB have been produced and tested in clinical trials for cancer, with variable results, leading to the production of a wealth of second-generation antibody constructs, including bi- and multi-specifics, with the hope of optimizing activity and selectivity. Here, we review the progress to date in agonism of 4-1BB, discuss the complications in targeting the immune system appropriately to elicit the desired activity, together with challenges in engineering agonists, and highlight the untapped potential of manipulating this molecule in infectious disease and autoimmunity.
Collapse
Affiliation(s)
| | - Dirk M. Zajonc
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Medicine, University of California (UC) San Diego, La Jolla, CA, United States
| |
Collapse
|
5
|
Yin XT, Baugnon NK, Krishnan R, Potter CA, Yarlagadda S, Keadle TL, Stuart PM. CD137 costimulation is associated with reduced herpetic stromal keratitis and with developing normal CD8 + T cells in trigeminal ganglia. J Gen Virol 2022; 103. [PMID: 35766977 PMCID: PMC10027025 DOI: 10.1099/jgv.0.001756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Costimulatory interactions can be critical in developing immune responses to infectious agents. We recently reported that herpes simplex type 1 (HSV-1) infections of the cornea require a functional CD28-CD80/86 interaction to not only reduce the likelihood of encephalitis, but also to mediate herpetic stromal keratitis (HSK) following viral reactivation. In this same spirit we decided to determine the role that CD137 costimulation plays during HSK. Using both B6-CD137L-/- mice, as well as antagonistic and agonistic antibodies to CD137 we characterize the immune response and to what extent CD137 plays an important role during this disease. Immune responses were measured in both the cornea and in the trigeminal ganglia where the virus forms a latent infection. We demonstrate that CD137 costimulation leads to reduced corneal disease. Interestingly, we observed that lack of CD137 costimulation resulted in significantly reduced CD8+ T expansion and function in the trigeminal ganglia. Finally, we showed that viruses that have been genetically altered to express CD137 display significantly reduced corneal disease, though they did present similar levels of trigeminal infection and peripheral virus production following reactivation of a latent infection. CD137 interactions lead to reduced HSK and are necessary to develop robust trigeminal CD8+ T cell responses.
Collapse
Affiliation(s)
- Xiao-Tang Yin
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Nicholas K Baugnon
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Rohini Krishnan
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Chloe A Potter
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Sudha Yarlagadda
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Tammie L Keadle
- Department of Biology, Washington University, St. Louis, MO, USA
| | - Patrick M Stuart
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
6
|
Ajami M, Nazari M, mahmoodzadeh H, Moazzeni SM. Recombinant CD137-Fc, its synthesis, and applications for improving the immune system functions, such as tumor immunotherapy and to reduce the inflammation due to the novel coronavirus. J Cell Biochem 2021; 122:1072-1084. [PMID: 33993519 PMCID: PMC8242381 DOI: 10.1002/jcb.29928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
CD137 (ILA/4-1BB), a member of tumor necrosis factor receptor superfamily, is one of the most important T cell costimulatory molecules. Interaction of this molecule with its ligand transmits a two-way signal that activates both T lymphocyte and antigen presenting cells. The soluble form of CD137 (sCD137) reduces the activity of its membrane isoform and is associated with T lymphocyte activation-induced cell death. Recombinant CD137-Fc may be used to treat cancers, autoimmune disorders and viral infections. It may also be useful for management of coronavirus infection. The 1276 bp DNA sequence encoded CD137-Fc recombinant protein was prepared and subcloned into lentiviral vector and expressed in transduced CHO-K1 eukaryotic cells. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blot analysis, and enzyme-linked immunosorbent assay analysis results demonstrated that the expression of the 70-kDa CD137-Fc molecule was detectable without any degradation. This study helps to confirm previous research suggesting the use of this recombinant protein as a promising solution for the treatment of virus infections. CD137-Fc fusion protein could also make immunotherapy more effective for some diseases. This product is widely used in novel medical treatments, including cell-based immunotherapy such as dendritic cell, CAR T and CAR NK therapy. Its production and usage in research and treatment is noticeable also in current coronavirus disease 2019 pandemic.
Collapse
Affiliation(s)
- Maryam Ajami
- Department of Immunology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Mahboobeh Nazari
- Monoclonal Antibody Research Center, Avicenna Research InstituteACECRTehranIran
| | | | | |
Collapse
|
7
|
Regulatory T Cells Inhibit T Cell Activity by Downregulating CD137 Ligand via CD137 Trogocytosis. Cells 2021; 10:cells10020353. [PMID: 33572150 PMCID: PMC7914903 DOI: 10.3390/cells10020353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
CD137 is a costimulatory molecule expressed on activated T cells. CD137 ligand (CD137L) is expressed by antigen presenting cells (APC), which use the CD137-CD137L system to enhance immune responses. It was, therefore, surprising to discover CD137 expression on regulatory T cells (Treg). The function of CD137 in Treg are controversial. While some studies report that CD137 signalling converts Treg to effector T cells (Teff), other studies find that CD137-expressing Treg display a stronger inhibitory activity than CD137- Treg. Here, we describe that CD137 on Treg binds to CD137L on APC, upon which one of the two molecules is transferred via trogocytosis to the other cell, where CD137-CD137L forms a complex that is internalized and deprives APC of the immune-stimulatory CD137L. Truncated forms of CD137 that lack the cytoplasmic domain of CD137 are also able to downregulate CD137L, demonstrating that CD137 signalling is not required. Comparable data have been obtained with human and murine cells, indicating that this mechanism is evolutionarily conserved. These data describe trogocytosis of CD137 and CD137L as a new mechanism employed by Treg to control immune responses by downregulating the immunostimulatory CD137L on APC.
Collapse
|
8
|
Dittmer U, Sutter K, Kassiotis G, Zelinskyy G, Bánki Z, Stoiber H, Santiago ML, Hasenkrug KJ. Friend retrovirus studies reveal complex interactions between intrinsic, innate and adaptive immunity. FEMS Microbiol Rev 2019; 43:435-456. [PMID: 31087035 PMCID: PMC6735856 DOI: 10.1093/femsre/fuz012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Approximately 4.4% of the human genome is comprised of endogenous retroviral sequences, a record of an evolutionary battle between man and retroviruses. Much of what we know about viral immunity comes from studies using mouse models. Experiments using the Friend virus (FV) model have been particularly informative in defining highly complex anti-retroviral mechanisms of the intrinsic, innate and adaptive arms of immunity. FV studies have unraveled fundamental principles about how the immune system controls both acute and chronic viral infections. They led to a more complete understanding of retroviral immunity that begins with cellular sensing, production of type I interferons, and the induction of intrinsic restriction factors. Novel mechanisms have been revealed, which demonstrate that these earliest responses affect not only virus replication, but also subsequent innate and adaptive immunity. This review on FV immunity not only surveys the complex host responses to a retroviral infection from acute infection to chronicity, but also highlights the many feedback mechanisms that regulate and counter-regulate the various arms of the immune system. In addition, the discovery of molecular mechanisms of immunity in this model have led to therapeutic interventions with implications for HIV cure and vaccine development.
Collapse
Affiliation(s)
- Ulf Dittmer
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Medicine, Faculty of Medicine, Imperial College London, St Mary's Hospital, Praed St, Paddington, London W2 1NY, UK
| | - Gennadiy Zelinskyy
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Zoltán Bánki
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Heribert Stoiber
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Mario L Santiago
- University of Colorado School of Medicine, 12700E 19th Ave, Aurora, CO 80045, USA
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, 903S 4th Street, Hamilton, MT 59840, USA
| |
Collapse
|
9
|
Han S, Toker A, Liu ZQ, Ohashi PS. Turning the Tide Against Regulatory T Cells. Front Oncol 2019; 9:279. [PMID: 31058083 PMCID: PMC6477083 DOI: 10.3389/fonc.2019.00279] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Regulatory T (Treg) cells play crucial roles in health and disease through their immunosuppressive properties against various immune cells. In this review we will focus on the inhibitory role of Treg cells in anti-tumor immunity. We outline how Treg cells restrict T cell function based on our understanding of T cell biology, and how we can shift the equilibrium against regulatory T cells. To date, numerous strategies have been proposed to limit the suppressive effects of Treg cells, including Treg cell neutralization, destabilizing Treg cells and rendering T cells resistant to Treg cells. Here, we focus on key mechanisms which render T cells resistant to the suppressive effects of Treg cells. Lastly, we also examine current limitations and caveats of overcoming the inhibitory activity of Treg cells, and briefly discuss the potential to target Treg cell resistance in the context of anti-tumor immunity.
Collapse
Affiliation(s)
- SeongJun Han
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aras Toker
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
| | - Zhe Qi Liu
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Söderström LÅ, Tarnawski L, Olofsson PS. CD137: A checkpoint regulator involved in atherosclerosis. Atherosclerosis 2018; 272:66-72. [PMID: 29571029 DOI: 10.1016/j.atherosclerosis.2018.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/08/2018] [Accepted: 03/02/2018] [Indexed: 12/16/2022]
Abstract
Inflammation is associated with atherosclerotic plaque development and precipitation of myocardial infarction and stroke, and anti-inflammatory therapy may reduce disease severity. Costimulatory molecules are key regulators of immune cell activity and inflammation, and are associated with disease development in atherosclerosis. Accumulating evidence indicates that a costimulatory molecule of the Tumor Necrosis Factor Receptor superfamily, the checkpoint regulator CD137, promotes atherosclerosis and vascular inflammation in experimental models. In light of the burgeoning consideration of CD137-targeted therapy in the clinic, it will be important to better understand costimulator immunobiology in development of cardiovascular disease. Here, we review available data on the costimulator CD137 and its potential role in atherosclerosis.
Collapse
Affiliation(s)
- Leif Å Söderström
- Experimental Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Perioperative Medicine and Intensive Care Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Laura Tarnawski
- Experimental Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Peder S Olofsson
- Experimental Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA.
| |
Collapse
|
11
|
Abstract
Tight regulation of immune responses is not only critical for preventing autoimmune diseases but also for preventing immunopathological damage during infections in which overactive immune responses may be more harmful for the host than the pathogen itself. Regulatory T cells (Tregs) play a critical role in this regulation, which was discovered using the Friend retrovirus (FV) mouse model. Subsequent FV studies revealed basic biological information about Tregs, including their suppressive activity on effector cells as well as the molecular mechanisms of virus-induced Treg expansion. Treg suppression not only limits immunopathology but also prevents complete elimination of pathogens contributing to chronic infections. Therefore, Tregs play a complex role in the pathogenesis of persistent retroviral infections. New therapeutic concepts to reactivate effector T-cell responses in chronic viral infections by manipulating Tregs also came from work with the FV model. This knowledge initiated many studies to characterize the role of Tregs in HIV pathogenesis in humans, where a complex picture is emerging. On one hand, Tregs suppress HIV-specific effector T-cell responses and are themselves targets of infection, but on the other hand, Tregs suppress HIV-induced immune hyperactivation and thus slow the infection of conventional CD4+ T cells and limit immunopathology. In this review, the basic findings from the FV mouse model are put into perspective with clinical and basic research from HIV studies. In addition, the few Treg studies performed in the simian immunodeficiency virus (SIV) monkey model will also be discussed. The review provides a comprehensive picture of the diverse role of Tregs in different retroviral infections and possible therapeutic approaches to treat retroviral chronicity and pathogenesis by manipulating Treg responses. Regulatory T cells (Tregs) play a very complex role in retroviral infections, and the balance of beneficial versus detrimental effects from Tregs can change between the acute and chronic phase of infection. Therefore, the development of therapeutics to treat chronic retroviral infections via modulation of Tregs requires detailed information regarding both the positive and negative contributions of Tregs in a particular phase of a specific infection. Here, we review the molecular mechanisms that initiate and control Treg responses in retroviral infections as well as the target cells that are functionally manipulated by Tregs. Basic findings from the Friend retrovirus mouse model that initiated this area of research are put into perspective with clinical and basic research from HIV studies. The targeted manipulation of Treg responses holds a bright future for enhancing immune responses to infections, vaccine responses, and for cure or functional cure of chronic retroviral infections.
Collapse
Affiliation(s)
- Kim J. Hasenkrug
- Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Claire A. Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
12
|
Mercadante ER, Lorenz UM. T Cells Deficient in the Tyrosine Phosphatase SHP-1 Resist Suppression by Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:129-137. [PMID: 28550200 DOI: 10.4049/jimmunol.1602171] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/24/2017] [Indexed: 12/19/2022]
Abstract
The balance between activation of T cells and their suppression by regulatory T cells (Tregs) is dysregulated in autoimmune diseases and cancer. Autoimmune diseases feature T cells that are resistant to suppression by Tregs, whereas in cancer, T cells are unable to mount antitumor responses due to the Treg-enriched suppressive microenvironment. In this study, we observed that loss of the tyrosine phosphatase SHP-1, a negative regulator of TCR signaling, renders naive CD4+ and CD8+ T cells resistant to Treg-mediated suppression in a T cell-intrinsic manner. At the intracellular level, SHP-1 controlled the extent of Akt activation, which has been linked to the induction of T cell resistance to Treg suppression. Finally, under conditions of homeostatic expansion, SHP-1-deficient CD4+ T cells resisted Treg suppression in vivo. Collectively, these data establish SHP-1 as a critical player in setting the threshold downstream of TCR signaling and identify a novel function of SHP-1 as a regulator of T cell susceptibility to Treg-mediated suppression in vitro and in vivo. Thus, SHP-1 could represent a potential novel immunotherapeutic target to modulate susceptibility of T cells to Treg suppression.
Collapse
Affiliation(s)
- Emily R Mercadante
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908; and.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908
| | - Ulrike M Lorenz
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908; and .,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
13
|
Mercadante ER, Lorenz UM. Breaking Free of Control: How Conventional T Cells Overcome Regulatory T Cell Suppression. Front Immunol 2016; 7:193. [PMID: 27242798 PMCID: PMC4870238 DOI: 10.3389/fimmu.2016.00193] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/02/2016] [Indexed: 01/10/2023] Open
Abstract
Conventional T (Tcon) cells are crucial in shaping the immune response, whether it is protection against a pathogen, a cytotoxic attack on tumor cells, or an unwanted response to self-antigens in the context of autoimmunity. In each of these immune settings, regulatory T cells (Tregs) can potentially exert control over the Tcon cell response, resulting in either suppression or activation of the Tcon cells. Under physiological conditions, Tcon cells are able to transiently overcome Treg-imposed restraints to mount a protective response against an infectious threat, achieving clonal expansion, differentiation, and effector function. However, evidence has accumulated in recent years to suggest that Tcon cell resistance to Treg-mediated suppression centrally contributes to the pathogenesis of autoimmune disease. Tipping the balance too far in the other direction, cancerous tumors utilize Tregs to establish an overly suppressive microenvironment, preventing antitumor Tcon cell responses. Given the wide-ranging clinical importance of the Tcon/Treg interaction, this review aims to provide a better understanding of what determines whether a Tcon cell is susceptible to Treg-mediated suppression and how perturbations to this finely tuned balance play a role in pathological conditions. Here, we focus in detail on the complex array of factors that confer Tcon cells with resistance to Treg suppression, which we have divided into two categories: (1) extracellular factor-mediated signaling and (2) intracellular signaling molecules. Further, we explore the therapeutic implications of manipulating the phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway, which is proposed to be the convergence point of signaling pathways that mediate Tcon resistance to suppression. Finally, we address important unresolved questions on the timing and location of acquisition of resistance, and the stability of the “Treg-resistant” phenotype.
Collapse
Affiliation(s)
- Emily R Mercadante
- Department of Microbiology Immunology and Cancer Biology, Beirne Carter Center for Immunology Research, University of Virginia , Charlottesville, VA , USA
| | - Ulrike M Lorenz
- Department of Microbiology Immunology and Cancer Biology, Beirne Carter Center for Immunology Research, University of Virginia , Charlottesville, VA , USA
| |
Collapse
|
14
|
Makkouk A, Chester C, Kohrt HE. Rationale for anti-CD137 cancer immunotherapy. Eur J Cancer 2016; 54:112-119. [PMID: 26751393 DOI: 10.1016/j.ejca.2015.09.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/21/2015] [Accepted: 09/21/2015] [Indexed: 11/29/2022]
Abstract
The consideration of the complex interplay between the tumour microenvironment (TME) and the immune response is the key for designing effective immunotherapies. Therapeutic strategies that harness co-stimulatory receptors have recently gained momentum in the clinic. One such strategy with promising clinical applications is the targeting of CD137, a member of the tumour necrosis factor receptor superfamily. Its expression on both innate and adaptive immune cells, coupled with its unique ability to potentiate antitumour responses through modulating the TME and to ameliorate autoimmune responses, has established it as an appealing target. In this review, we will discuss the various CD137-targeted immunotherapeutics that have reached clinical development, with a focus on recent advances and novel modalities such as CD137 chimeric antigen receptors and CD137 bispecific antibodies. We will also highlight the effect of CD137 targeting on the TME and discuss the importance of probing TME changes for predicting and testing the efficacy of CD137-mediated immunotherapy.
Collapse
Affiliation(s)
- Amani Makkouk
- Department of Medicine, Division of Oncology, Stanford University, Stanford, CA 94305 USA
| | - Cariad Chester
- Department of Medicine, Division of Oncology, Stanford University, Stanford, CA 94305 USA; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Holbrook E Kohrt
- Department of Medicine, Division of Oncology, Stanford University, Stanford, CA 94305 USA.
| |
Collapse
|
15
|
Akhmetzyanova I, Zelinskyy G, Littwitz-Salomon E, Malyshkina A, Dietze KK, Streeck H, Brandau S, Dittmer U. CD137 Agonist Therapy Can Reprogram Regulatory T Cells into Cytotoxic CD4+T Cells with Antitumor Activity. THE JOURNAL OF IMMUNOLOGY 2015; 196:484-92. [DOI: 10.4049/jimmunol.1403039] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 10/30/2015] [Indexed: 12/28/2022]
|
16
|
Wortzman ME, Clouthier DL, McPherson AJ, Lin GHY, Watts TH. The contextual role of TNFR family members in CD8+T-cell control of viral infections. Immunol Rev 2013; 255:125-48. [DOI: 10.1111/imr.12086] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 04/29/2013] [Indexed: 12/22/2022]
Affiliation(s)
| | - Derek L. Clouthier
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Ann J. McPherson
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Gloria H. Y. Lin
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Tania H. Watts
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| |
Collapse
|
17
|
Jensen BAH, Pedersen SR, Christensen JP, Thomsen AR. The availability of a functional tumor targeting T-cell repertoire determines the anti-tumor efficiency of combination therapy with anti-CTLA-4 and anti-4-1BB antibodies. PLoS One 2013; 8:e66081. [PMID: 23785471 PMCID: PMC3681965 DOI: 10.1371/journal.pone.0066081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/01/2013] [Indexed: 02/03/2023] Open
Abstract
It has previously been found that combination therapy with anti-CTLA-4 and anti-4-1BB antibodies may enhance tumor immunity. However, this treatment is not efficient against all tumors, and it has been suggested that variations in tumor control may reflect differences in the immunogenicity of different tumors. In the present report, we have formally tested this hypothesis. Comparing the efficiency of combination antibody therapy against two antigenically distinct variants of the B16.F10 melanoma cell line, we observed that antibody therapy delayed the growth of a variant expressing an exogenous antigen (P<0.0001), while this treatment failed to protect against the non-transfected parental line (P = 0.1850) consistent with published observations. As both cell lines are poorly immunogenic in wild type mice, these observations suggested that the magnitude of the tumor targeting T-cell repertoire plays a major role in deciding the efficiency of this antibody treatment. To directly test this assumption, we made use of mice expressing the exogenous antigen as a self-antigen and therefore carrying a severely purged T-cell repertoire directed against the major tumor antigen. Notably, combination therapy completely failed to inhibit tumor growth in the latter mice (P = 0.8584). These results underscore the importance of a functionally intact T-cell population as a precondition for the efficiency of treatment with immunomodulatory antibodies. Clinically, the implication is that this type of antibody therapy should be attempted as an early form of tumor-specific immunotherapy before extensive exhaustion of the tumor-specific T-cell repertoire has occurred.
Collapse
Affiliation(s)
- Benjamin A. H. Jensen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of International Health, Immunology and Microbiology, Blegdamsvej 3C, Copenhagen, Denmark
| | - Sara R. Pedersen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of International Health, Immunology and Microbiology, Blegdamsvej 3C, Copenhagen, Denmark
| | - Jan P. Christensen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of International Health, Immunology and Microbiology, Blegdamsvej 3C, Copenhagen, Denmark
| | - Allan R. Thomsen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of International Health, Immunology and Microbiology, Blegdamsvej 3C, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
18
|
Myers L, Joedicke JJ, Carmody AB, Messer RJ, Kassiotis G, Dudley JP, Dittmer U, Hasenkrug KJ. IL-2-independent and TNF-α-dependent expansion of Vβ5+ natural regulatory T cells during retrovirus infection. THE JOURNAL OF IMMUNOLOGY 2013; 190:5485-95. [PMID: 23645880 DOI: 10.4049/jimmunol.1202951] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Friend virus infection of mice induces the expansion and activation of regulatory T cells (Tregs) that dampen acute immune responses and promote the establishment and maintenance of chronic infection. Adoptive transfer experiments and the expression of neuropilin-1 indicate that these cells are predominantly natural Tregs rather than virus-specific conventional CD4(+) T cells that converted into induced Tregs. Analysis of Treg TCR Vβ chain usage revealed a broadly distributed polyclonal response with a high proportionate expansion of the Vβ5(+) Treg subset, which is known to be responsive to endogenous retrovirus-encoded superantigens. In contrast to the major population of Tregs, the Vβ5(+) subset expressed markers of terminally differentiated effector cells, and their expansion was associated with the level of the antiviral CD8(+) T cell response rather than the level of Friend virus infection. Surprisingly, the expansion and accumulation of the Vβ5(+) Tregs was IL-2 independent but dependent on TNF-α. These experiments reveal a subset-specific Treg induction by a new pathway.
Collapse
Affiliation(s)
- Lara Myers
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhao X, Su H, Huang X, Xie L, Liu Z, Liu X, Suo X. Molecular cloning and protein characterization of swine 4-1BB. Vet Immunol Immunopathol 2013; 153:35-44. [PMID: 23453329 DOI: 10.1016/j.vetimm.2013.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 01/03/2013] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
Abstract
4-1BB is expressed on activated T cells and other immune and non-immune cells. It plays important roles in human and mouse T cell function. However, the swine 4-1BB sequence remains unknown and its role in swine T cell response has not been studied. In the present study, we for the first time described the cloning of the swine 4-1BB gene and the property of the protein. Two 4-1BB variants were detected in swine. The coding sequences of variant 1 and variant 2 were 768 and 726 nucleotides in length, respectively, and both variants were coded by 7 exons in the swine genome. Comparison of nucleotide and amino acid sequences showed that both swine 4-1BB variants were more closely related to bovine and human sequences than to either the mouse or rat sequence. Prediction analysis showed that swine 4-1BB belonged to the tumor necrosis factor receptor (TNFR) superfamily like human and mouse 4-1BB and the tertiary structures of the swine 4-1BB variants were much more similar to mouse 4-1BB than to human 4-1BB. The 1556bp 5' regulatory sequence cloned by nested PCR efficiently induced green fluorescent protein expression in porcine peripheral blood mononuclear cells (PBMC) post nucleofection. Moreover, 4-1BB protein was widely expressed in pig tissues and both variants of swine 4-1BB protein were transmembrane proteins and expressed on the membrane of porcine PBMCs.
Collapse
Affiliation(s)
- Xinxin Zhao
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Gao J, Bernatchez C, Sharma P, Radvanyi LG, Hwu P. Advances in the development of cancer immunotherapies. Trends Immunol 2012; 34:90-8. [PMID: 23031830 DOI: 10.1016/j.it.2012.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 12/31/2022]
Abstract
Manipulating the immune system in order to induce clinically relevant responses against cancer is a longstanding goal. Interventions to enhance tumor-specific immunity through vaccination, sustaining effector T cell activation, or increasing the numbers of tumor-specific T cells using ex vivo expansion, have all resulted in clinical successes. Here, we examine recent clinical advances and major ongoing studies in the field of cancer immunotherapy. Single agents have so far benefited a limited proportion of patients, and future studies combining different types of immunotherapies and other therapeutic modalities, such as drugs against specific signaling pathways driving cancer cell growth, are needed to pave the way for the development of effective anticancer treatments causing durable responses.
Collapse
Affiliation(s)
- Jianjun Gao
- Center for Cancer Immunology Research, GU and Melanoma Medical Oncology Department, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
21
|
Garrison K, Hahn T, Lee WC, Ling LE, Weinberg AD, Akporiaye ET. The small molecule TGF-β signaling inhibitor SM16 synergizes with agonistic OX40 antibody to suppress established mammary tumors and reduce spontaneous metastasis. Cancer Immunol Immunother 2011; 61:511-21. [PMID: 21971588 DOI: 10.1007/s00262-011-1119-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/22/2011] [Indexed: 12/22/2022]
Abstract
Effective tumor immunotherapy may require not only activation of anti-tumor effector cells, but also abrogation of tumor-mediated immunosuppression. The cytokine TGF-β, is frequently elevated in the tumor microenvironment and is a potent immunosuppressive agent and promoter of tumor metastasis. OX40 (CD134) is a member of the TNF-α receptor superfamily and ligation by agonistic antibody (anti-OX40) enhances effector function, expansion, and survival of activated T cells. In this study, we examined the therapeutic efficacy and anti-tumor immune response induced by the combination of a small molecule TGF-β signaling inhibitor, SM16, plus anti-OX40 in the poorly immunogenic, highly metastatic, TGF-β-secreting 4T1 mammary tumor model. Our data show that SM16 and anti-OX40 mutually enhanced each other to elicit a potent anti-tumor effect against established primary tumors, with a 79% reduction in tumor size, a 95% reduction in the number of metastatic lung nodules, and a cure rate of 38%. This positive treatment outcome was associated with a 3.2-fold increase of tumor-infiltrating, activated CD8+ T cells, an overall accumulation of CD4+ and CD8+ T cells, and an increased tumor-specific effector T cell response. Complete abrogation of the therapeutic effect in vivo following depletion of CD4+ and CD8+ T cells suggests that the anti-tumor efficacy of SM16+ anti-OX40 therapy is T cell dependent. Mice that were cured of their tumors were able to reject tumor re-challenge and manifested a significant tumor-specific peripheral memory IFN-γ response. Taken together, these data suggest that combining a TGF-β signaling inhibitor with anti-OX40 is a viable approach for treating metastatic breast cancer.
Collapse
Affiliation(s)
- Kendra Garrison
- Providence Portland Medical Center, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, 2N85, 4805 NE Glisan St, Portland, OR 97213, USA
| | | | | | | | | | | |
Collapse
|
22
|
Nair S, Bayer W, Ploquin MJY, Kassiotis G, Hasenkrug KJ, Dittmer U. Distinct roles of CD4+ T cell subpopulations in retroviral immunity: lessons from the Friend virus mouse model. Retrovirology 2011; 8:76. [PMID: 21943070 PMCID: PMC3193819 DOI: 10.1186/1742-4690-8-76] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/26/2011] [Indexed: 12/21/2022] Open
Abstract
It is well established that CD4+ T cells play an important role in immunity to infections with retroviruses such as HIV. However, in recent years CD4+ T cells have been subdivided into several distinct populations that are differentially regulated and perform widely varying functions. Thus, it is important to delineate the separate roles of these subsets, which range from direct antiviral activities to potent immunosuppression. In this review, we discuss contributions from the major CD4+ T cell subpopulations to retroviral immunity. Fundamental concepts obtained from studies on numerous viral infections are presented along with a more detailed analysis of studies on murine Friend virus. The relevance of these studies to HIV immunology and immunotherapy is reviewed.
Collapse
Affiliation(s)
- Savita Nair
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Pastor F, Kolonias D, McNamara JO, Gilboa E. Targeting 4-1BB costimulation to disseminated tumor lesions with bi-specific oligonucleotide aptamers. Mol Ther 2011; 19:1878-86. [PMID: 21829171 DOI: 10.1038/mt.2011.145] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The paucity of costimulation at the tumor site compromises the ability of tumor-specific T cells to eliminate the tumor. Here, we show that bi-specific oligonucleotide aptamer conjugates can deliver costimulatory ligands to tumor cells in situ and enhance antitumor immunity. In poorly immunogenic subcutaneously implanted tumor and lung metastasis models, systemic delivery of an agonistic 4-1BB aptamer ligand conjugated to a prostate specific membrane antigen (PSMA)-binding tumor-targeting aptamer led to inhibition of tumor growth, was more effective than, and synergized with, vaccination, and exhibited a superior therapeutic index compared to costimulation with 4-1BB antibodies. Tumor inhibition was dependent on homing to PSMA-expressing tumor cells and 4-1BB costimulation. Aptamer targeted costimulation is a broadly applicable and clinically feasible approach to enhance the costimulatory environment of disseminated tumor lesions. This study suggests that potentiating naturally occurring antitumor immunity via tumor-targeted costimulation could be an effective approach to elicit protective immunity to control tumor progression in cancer patients.
Collapse
Affiliation(s)
- Fernando Pastor
- Department of Microbiology and Immunology, Dodson Interdisciplinary Immunotherapy Institute and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | | | | | |
Collapse
|
24
|
Vezys V, Penaloza-MacMaster P, Barber DL, Ha SJ, Konieczny B, Freeman GJ, Mittler RS, Ahmed R. 4-1BB signaling synergizes with programmed death ligand 1 blockade to augment CD8 T cell responses during chronic viral infection. THE JOURNAL OF IMMUNOLOGY 2011; 187:1634-42. [PMID: 21742975 DOI: 10.4049/jimmunol.1100077] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previous studies have identified the inhibitory role that the programmed death 1 (PD-1) pathway plays during chronic infection. Blockade of this pathway results in rescue of viral-specific CD8 T cells, as well as reduction of viral loads in mice chronically infected with lymphocytic choriomeningitis virus (LCMV). We tested the effect of combining PD ligand 1 (PD-L1) blockade with an agonistic regimen that induces 4-1BB costimulation during chronic LCMV infection. There is a boosting effect in the rescue of LCMV-specific CD8 T cell responses after dual treatment with PD-L1 blockade and 4-1BB agonistic Abs when the amount and timing of 4-1BB costimulation are carefully controlled. When PD-L1-blocking Abs are given together with a single low dose of anti-4-1BB agonistic Abs, there is an enhanced and stable expansion of viral-specific CD8 T cells. Conversely, when blocking Abs to PD-L1 are given with a repetitive high dose of anti-4-1BB, there is an initial synergistic expansion of viral-specific CD8 T cells by day 7, followed by dramatic apoptosis by day 14. Viral control paralleled CD8 T cell kinetics after dual treatment. By day 7 posttreatment, viral titers were lower in both of the combined regimens (compared with PD-L1 blockade alone). However, whereas the high dose of anti-4-1BB plus PD-L1 blockade resulted in rebound of viral titers to original levels, the low dose of anti-4-1BB plus PD-L1 blockade resulted in a stable reduction of viral loads. These findings demonstrate the importance of carefully manipulating the balance between activating and inhibitory signals to enhance T cell responses during chronic infection.
Collapse
Affiliation(s)
- Vaiva Vezys
- Emory Vaccine Center, Emory University, Atlanta, GA 30329, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
De Keersmaecker B, Heirman C, Corthals J, Empsen C, van Grunsven LA, Allard SD, Pen J, Lacor P, Thielemans K, Aerts JL. The combination of 4-1BBL and CD40L strongly enhances the capacity of dendritic cells to stimulate HIV-specific T cell responses. J Leukoc Biol 2011; 89:989-99. [DOI: 10.1189/jlb.0810466] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
26
|
Pauza CD, Riedel DJ, Gilliam BL, Redfield RR. Targeting γδ T cells for immunotherapy of HIV disease. Future Virol 2011; 6:73-84. [PMID: 21339853 DOI: 10.2217/fvl.10.78] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Disruption of circulating γδ T-cell populations is an early and common outcome of HIV infection. T-cell receptor (TCR)-γ2δ2 cells (expressing the Vγ2 and Vδ2 chains of the γδ TCR) are depleted, even though they are minimally susceptible to direct HIV infection, and exemplify indirect cell depletion mechanisms that are important in the progression to AIDS. Among individuals with common or normally progressing HIV disease, the loss of TCR-γ2δ2 cells has a broad impact on viral immunity, control of opportunistic pathogens and resistance to malignant disease. Advanced HIV disease can result in complete loss of TCR-γ2δ2 cells that are not recovered even during antiretroviral therapy with complete virus suppression. However, normal levels of TCR-γ2δ2 were observed among natural virus suppressors (low or undetectable virus without antiretroviral therapy) irrespective of their MHC haplotype, consistent with their disease-free status. The pattern of loss and recovery of TCR-γ2δ2 cells revealed their unique features and functional capacities, and encourage the development of immune-based therapies to activate and expand this T-cell subset. New research has identified drugs that might reconstitute the TCR-γ2δ2 population, recover their functional contributions, and improve control of HIV replication and disease. Here, we review research on HIV and TCR-γδ T cells to highlight the consequences of depleting this subset and the unique features of TCR-γδ biology that argue in favor of clinical strategies to reconstitute this T-cell subset in individuals with HIV/AIDS.
Collapse
Affiliation(s)
- C David Pauza
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
27
|
Galligan CL, Pennell LM, Murooka TT, Baig E, Majchrzak-Kita B, Rahbar R, Fish EN. Interferon-beta is a key regulator of proinflammatory events in experimental autoimmune encephalomyelitis. Mult Scler 2010; 16:1458-73. [PMID: 20935030 DOI: 10.1177/1352458510381259] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Interferon (IFN)-β is an effective therapy for relapsing-remitting multiple sclerosis, yet its mechanism of action remains ill-defined. OBJECTIVES Our objective was to characterize the role of IFN-β in immune regulation in experimental autoimmune encephalomyelitis (EAE). METHODS IFN-β(+/+) and IFN-β(-/-) mice were immunized with myelin oligodendrocyte glycoprotein peptide in the presence or absence of IFN-β, to induce EAE. Disease pathogenesis was monitored in the context of incidence, time of onset, clinical score, and immune cell activation in the brains, spleens and lymph nodes of affected mice. RESULTS Compared with IFN-β(+/+) mice, IFN-β(-/-) mice exhibited an earlier onset and a more rapid progression of EAE, increased numbers of CD11b(+) leukocytes infiltrating affected brains and an increased percentage of Th17 cells in the central nervous system and draining lymph nodes. IFN-β treatment delayed disease onset and reduced disease severity. Ex vivo experiments revealed that the lack of IFN-β results in enhanced generation of autoreactive T cells, a likely consequence of the absence of IFN-β-regulated events in both the CD4(+) T cells and antigen-presenting dendritic cells. Gene expression analysis of IFN-β-treated bone marrow macrophages (CD11b(+)) identified modulation of genes affecting T cell proliferation and Th17 differentiation. CONCLUSIONS We conclude that IFN-β acts to suppress the generation of autoimmune-inducing Th17 cells during the development of disease as well as modulating pro-inflammatory mediators.
Collapse
Affiliation(s)
- C L Galligan
- Toronto General Research Institute, University Health Network, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Among the microorganisms that cause diseases of medical or veterinary importance, the only group that is entirely dependent on the host, and hence not easily amenable to therapy via pharmaceuticals, is the viruses. Since viruses are obligate intracellular pathogens, and therefore depend a great deal on cellular processes, direct therapy of viral infections is difficult. Thus, modifying or targeting nonspecific or specific immune responses is an important aspect of intervention of ongoing viral infections. However, as a result of the unavailability of effective vaccines and the extended duration of manifestation, chronic viral infections are the most suitable for immunotherapies. We present an overview of various immunological strategies that have been applied for treating viral infections after exposure to the infectious agent.
Collapse
Affiliation(s)
- Nagendra R Hegde
- Bharat Biotech Foundation, Genome Valley, Turkapally, Shameerpet Mandal, Hyderabad 500078, India.
| | | | | | | |
Collapse
|
29
|
Sharma RK, Schabowsky RH, Srivastava AK, Elpek KG, Madireddi S, Zhao H, Zhong Z, Miller RW, Macleod KJ, Yolcu ES, Shirwan H. 4-1BB ligand as an effective multifunctional immunomodulator and antigen delivery vehicle for the development of therapeutic cancer vaccines. Cancer Res 2010; 70:3945-54. [PMID: 20406989 DOI: 10.1158/0008-5472.can-09-4480] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Therapeutic subunit vaccines based on tumor-associated antigens (TAA) represent an attractive approach for the treatment of cancer. However, poor immunogenicity of TAAs requires potent adjuvants for therapeutic efficacy. We recently proposed the tumor necrosis factor family costimulatory ligands as potential adjuvants for therapeutic vaccines and, hence, generated a soluble form of 4-1BBL chimeric with streptavidin (SA-4-1BBL) that has pleiotropic effects on cells of innate, adaptive, and regulatory immunity. We herein tested whether these effects can translate into effective cancer immunotherapy when SA-4-1BBL was also used as a vehicle to deliver TAAs in vivo to dendritic cells (DCs) constitutively expressing the 4-1BB receptor. SA-4-1BBL was internalized by DCs upon receptor binding and immunization with biotinylated antigens conjugated to SA-4-1BBL resulted in increased antigen uptake and cross-presentation by DCs, leading to the generation of effective T-cell immune responses. Conjugate vaccines containing human papillomavirus 16 E7 oncoprotein or survivin as a self-TAA had potent therapeutic efficacy against TC-1 cervical and 3LL lung carcinoma tumors, respectively. Therapeutic efficacy of the vaccines was associated with increased CD4(+) T and CD8(+) T-cell effector and memory responses and higher intratumoral CD8(+) T effector/CD4(+)CD25(+)Foxp3(+) T regulatory cell ratio. Thus, potent pleiotropic immune functions of SA-4-1BBL combined with its ability to serve as a vehicle to increase the delivery of antigens to DCs in vivo endow this molecule with the potential to serve as an effective immunomodulatory component of therapeutic vaccines against cancer and chronic infections.
Collapse
Affiliation(s)
- Rajesh K Sharma
- Department of Microbiology and Immunology, James Brown Cancer Center, Institute for Cellular Therapeutics, University of Louisville and ApoImmune, Inc, Louisville, Kentucky, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ponte JF, Ponath P, Gulati R, Slavonic M, Paglia M, O'Shea A, Tone M, Waldmann H, Vaickus L, Rosenzweig M. Enhancement of humoral and cellular immunity with an anti-glucocorticoid-induced tumour necrosis factor receptor monoclonal antibody. Immunology 2010; 130:231-42. [PMID: 20201988 DOI: 10.1111/j.1365-2567.2009.03228.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adjuvants, including antibodies to tumour necrosis factor receptor superfamily members, augment immune responses. One member of this family, glucocorticoid-induced tumour necrosis factor receptor (GITR), is expressed at low levels on naive/resting T cells, B cells and macrophages, but at higher levels on T regulatory cells. The aim of this study was to determine the ability of a rat anti-mouse GITR monoclonal antibody, 2F8, to stimulate murine humoral and cellular immunity in a prime boost model with particular attention to posology and antigen-specific effects. 2F8 enhanced the humoral immune response to ovalbumin and haemagglutinin (HA) compared with controls and this enhancement was equal to or greater than that obtained in mice dosed with standard adjuvants. 2F8 F(ab')(2) fragments were as effective as intact antibody in boosting humoral immunity, indicating that FcR-mediated cross-linking of 2F8 is not required for efficacy. Moreover, the enhanced response was durable and antigen specific. Administration of 2F8 shifted the immune response towards a T helper type 1 response with significant enhancement of immunoglobulin G2a- and G2b-specific anti-HA antibodies, as well as enhanced cellular immunity as measured by ELISPOT. 2F8-treated mice also generated significantly more neutralizing antibodies to HA than control mice. Our findings show that anti-GITR is a robust, versatile adjuvant that, unlike commonly used adjuvants that primarily enhance humoral immunity, enhances both humoral and cellular immunity. These results support the continued development of anti-GITR for such indications as haematological and solid tumours, chronic viral infections, and as a vaccine adjuvant.
Collapse
Affiliation(s)
- Jose F Ponte
- Tolerx, Inc., 300 Technology Square, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Xu L, Xu W, Qiu S, Xiong S. Enrichment of CCR6+Foxp3+ regulatory T cells in the tumor mass correlates with impaired CD8+ T cell function and poor prognosis of breast cancer. Clin Immunol 2010; 135:466-75. [PMID: 20181533 DOI: 10.1016/j.clim.2010.01.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 01/10/2010] [Accepted: 01/25/2010] [Indexed: 12/17/2022]
Abstract
CCR6(+) subset of CD4(+) regulatory T cells, a newly characterized subset of Tregs, has been reported to contribute to local immune inhibition. However, whether CCR6(+) Tregs are present in tumor environment and their relation to the prognosis of tumor remain to be elucidated. In this study, we found that CCR6(+) CD4(+) CD25(high) Tregs, expressing high levels of CD45RO, are dominantly enriched in tumor mass from patients with breast cancer. Furthermore, the frequency of CCR6(+) Tregs, but not CCR6(-) Tregs in tumor infiltrating lymphocytes (TILs), significantly increased in patients during tumor progression, which reversely correlated with decreased frequency of the IFN-gamma(+)CD8(+)T cells in TILs. Most importantly, the frequency of CCR6(+) Tregs, but not CCR6(-) Tregs, reversely correlated to the survival of patients with breast cancer. This study suggested that a new subset of tumor-resident Tregs, CCR6(+) Tregs, may be dominantly responsible for the immunosuppression in tumor immunity and a potential predictor of the poor prognosis of breast cancer.
Collapse
Affiliation(s)
- Lin Xu
- Institute for Immunobiology and Department of Immunology, Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | | | | | | |
Collapse
|
32
|
Schabowsky RH, Elpek KG, Madireddi S, Sharma RK, Yolcu ES, Bandura-Morgan L, Miller R, MacLeod KJ, Mittler RS, Shirwan H. A novel form of 4-1BBL has better immunomodulatory activity than an agonistic anti-4-1BB Ab without Ab-associated severe toxicity. Vaccine 2009; 28:512-22. [PMID: 19836479 DOI: 10.1016/j.vaccine.2009.09.127] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 09/29/2009] [Accepted: 09/30/2009] [Indexed: 01/25/2023]
Abstract
Agonistic Abs to select costimulatory members of CD28 and TNFR family have shown efficacy in various preclinical cancer immunotherapeutic settings. However, the use of agonistic Abs is often associated with severe toxicity due to non-specific activation of lymphocytes. We hypothesized that natural costimulatory ligands may serve as more potent and safer alternative to agonistic Abs for immunotherapy. In this communication, we focused on 4-1BBL as the molecule of choice because of the pleiotropic effects of 4-1BB signaling in the immune system and the demonstrated therapeutic efficacy of 4-1BB agonistic Abs in preclinical cancer and infection models. We report that a novel form of soluble ligand, SA-4-1BBL, delivered more potent and qualitatively different signals to T cells than an agonistic Ab. Importantly, while treatment of naïve mice with the agonistic Ab resulted in severe toxicity, as assessed by enlarged spleen and peripheral LNs, non-specific T cell proliferation, hepatitis, and systemic inflammatory cytokine production, treatment with SA-4-1BBL lacked these immune anomalies. Agonistic Ab treatment produced full toxicity in FcgammaR(-/-) or complement C1q(-/-) or C3(-/-) knockout mice, suggesting lack of involvement of stimulatory FcgammaRs or complement system in the observed toxicity. Naïve and memory T cells served as direct targets of anti-4-1BB Ab-mediated toxicity. Potent immunostimulatory activity combined with lack of toxicity rationalizes further development of soluble SA-4-1BBL as an immunomodulatory component of therapeutic vaccines against cancer and chronic infections.
Collapse
Affiliation(s)
- Rich-Henry Schabowsky
- Institute for Cellular Therapeutics, Department of Microbiology and Immunology, and James Brown Cancer Center, University of Louisville, KY 40202, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
The doctor's dilemma: stimulating T cells. Blood 2009; 114:3361-2. [PMID: 19833848 DOI: 10.1182/blood-2009-08-236778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Myers L, Messer RJ, Carmody AB, Hasenkrug KJ. Tissue-specific abundance of regulatory T cells correlates with CD8+ T cell dysfunction and chronic retrovirus loads. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:1636-43. [PMID: 19587016 PMCID: PMC2775420 DOI: 10.4049/jimmunol.0900350] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Infection of mice with Friend virus induces the activation of CD4(+) regulatory T cells (Tregs) that suppress virus-specific CD8(+) T cells. This suppression leads to incomplete virus clearance and the establishment of virus persistence. We now show that Treg-mediated suppression of CD8(+) T cells is tissue specific, occurring in the spleen but not the liver. Regardless of infection status, there was a 5-fold lower proportion of Tregs in the liver than in the spleen, much lower absolute cell numbers, and the relatively few Tregs present expressed less CD25. Results indicated that reduced expression of CD25 on liver Tregs was due to microenvironmental factors including low levels of IL-2 production by CD4(+) Th cells in that tissue. Low CD25 expression on liver Tregs did not impair their ability to suppress CD8(+) T cells in vitro. Correlating with the decreased proportion of Tregs in the liver was a significantly increased proportion of virus-specific CD8(+) T cells compared with the spleen. The virus-specific CD8(+) T cells from the liver did not appear suppressed given that they produced both IFN-gamma and granzyme B, and they also showed evidence of recent cytolytic activity (CD107a(+)). The functional phenotype of the virus-specific CD8(+) T cells correlated with a 10-fold reduction of chronic Friend virus levels in the liver compared with the spleen. Thus, suppression of CD8(+) T cells by virus-induced Tregs occurs in a tissue-specific manner and correlates with profound effects on localized levels of chronic infection.
Collapse
Affiliation(s)
- Lara Myers
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840
| | - Ronald J. Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840
| | - Aaron B. Carmody
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840
| | - Kim J. Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840
| |
Collapse
|
35
|
Therapeutic effect of CD137 immunomodulation in lymphoma and its enhancement by Treg depletion. Blood 2009; 114:3431-8. [PMID: 19641184 DOI: 10.1182/blood-2009-05-223958] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite the success of passive immunotherapy with monoclonal antibodies (mAbs), many lymphoma patients eventually relapse. Induction of an adaptive immune response may elicit active and long-lasting antitumor immunity, thereby preventing or delaying recurrence. Immunomodulating mAbs directed against immune cell targets can be used to enhance the immune response to achieve efficient antitumor immunity. Anti-CD137 agonistic mAb has demonstrated antitumor efficacy in various tumor models and has now entered clinical trials for the treatment of solid tumors. Here, we investigate the therapeutic potential of anti-CD137 mAb in lymphoma. We found that human primary lymphoma tumors are infiltrated with CD137+ T cells. We therefore hypothesized that lymphoma would be susceptible to treatment with anti-CD137 agonistic mAb. Using a mouse model, we demonstrate that anti-CD137 therapy has potent antilymphoma activity in vivo. The antitumor effect of anti-CD137 therapy was mediated by both natural killer (NK) and CD8 T cells and induced long-lasting immunity. Moreover, the antitumor activity of anti-CD137 mAb could be further enhanced by depletion of regulatory T cell (T(regs)). These results support the evaluation of anti-CD137 therapy in clinical trials for patients with lymphoma.
Collapse
|
36
|
Wang C, Lin GHY, McPherson AJ, Watts TH. Immune regulation by 4-1BB and 4-1BBL: complexities and challenges. Immunol Rev 2009; 229:192-215. [PMID: 19426223 DOI: 10.1111/j.1600-065x.2009.00765.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SUMMARY The tumor necrosis factor receptor family member 4-1BB plays a key role in the survival of activated and memory CD8(+) T cells. Depending on the disease model, 4-1BB can participate at different stages and influence different aspects of the immune response, likely due to the differential expression of receptor and ligand relative to other costimulatory molecules. Studies comparing mild versus severe influenza infection of mice suggest that the immune system uses inducible receptors such as 4-1BB to prolong the immune response when pathogens take longer to clear. The expression of 4-1BB on diverse cell types, evidence for bidirectional as well as receptor-independent signaling by 4-1BBL, the unexpected hyperproliferation of 4-1BB-deficient T cells, and complex effects of agonistic anti-4-1BB therapy have revealed additional roles for the 4-1BB/4-1BBL receptor/ligand pair in the immune system. In this review, we discuss these diverse roles of 4-1BB and its ligand in the immune response, exploring possible mechanisms for the observed complexities and implications for therapeutic applications of 4-1BB/4-1BBL.
Collapse
Affiliation(s)
- Chao Wang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
37
|
Abstract
Friend virus (FV) is a murine retrovirus that causes acute disease leading to lethal erythroleukemia in most strains of mice. Strains of mice that mount strong and rapid immune responses can recover from acute infection, but nevertheless develop life-long chronic infections. The study of this infection has revealed the types of immune responses required for both recovery from the acute phase and the control of the chronic phase of infection. This knowledge has led to vaccines and therapeutics to prevent and treat infections and associated disease states. The FV model has provided insights into immunological mechanisms found to be relevant to human infections with retroviruses such as HIV-1 and HTLV-1.
Collapse
Affiliation(s)
- Lara Myers
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, 903 S. 4th St, Hamilton, MT 59840, USA
| | | |
Collapse
|
38
|
Sharma RK, Elpek KG, Yolcu ES, Schabowsky RH, Zhao H, Bandura-Morgan L, Shirwan H. Costimulation as a platform for the development of vaccines: a peptide-based vaccine containing a novel form of 4-1BB ligand eradicates established tumors. Cancer Res 2009; 69:4319-26. [PMID: 19435920 DOI: 10.1158/0008-5472.can-08-3141] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vaccines represent an attractive treatment modality for the management of cancer primarily because of their specificity and generation of immunologic memory important for controlling recurrences. However, the efficacy of therapeutic vaccines may require formulations that not only generate effective immune responses but also overcome immune evasion mechanisms employed by progressing tumor. Costimulatory molecules play critical roles in modulating innate, adaptive, and regulatory immunity and have potential to serve as effective immunomodulatory components of therapeutic vaccines. In this study, we tested the function of a novel soluble form of 4-1BB ligand (4-1BBL) costimulatory molecule in modulating innate, adaptive, and regulatory immunity and assessed its therapeutic efficacy in the HPV-16 E7-expressing TC-1 cervical cancer and survivin-expressing 3LL lung carcinoma mouse models. Vaccination with 4-1BBL activated dendritic cells and enhanced antigen uptake, generated CD8(+) T-cell effector/memory responses, and endowed T effector cells refractory to suppression by CD4(+)CD25(+)FoxP3(+) T regulatory cells. Immunization with 4-1BBL in combination with an E7 peptide or survivin protein resulted in eradication of TC-1 and 3LL tumors, respectively. 4-1BBL was more effective than TLR agonists LPS, MPL, and CpG and an agonistic 4-1BB antibody as a component of E7 peptide-based therapeutic vaccine for the generation of immune responses and eradication of TC-1 established tumors in the absence of detectable toxicity. Therapeutic efficacy was associated with reversal of tumor-mediated nonresponsiveness/anergy as well as establishment of long-term CD8(+) T-cell memory. Potent pleiotropic immunomodulatory activities combined with lack of toxicity highlight the potential of 4-1BBL molecule as an effective component of therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Rajesh K Sharma
- Institute for Cellular Therapeutics, Department of Microbiology and Immunology, and James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Interactions that occur between several tumour necrosis factor (TNF)-TNF receptors that are expressed by T cells and various other immune and non-immune cell types are central to T-cell function. In this Review, I discuss the biology of four different ligand-receptor interactions - OX40 ligand and OX40, 4-1BB ligand and 4-1BB, CD70 and CD27, and TL1A and death receptor 3 - and their potential to be exploited for therapeutic benefit. Manipulating these interactions can be effective for treating diseases in which T cells have an important role, including inflammatory conditions, autoimmunity and cancer. Here, I explore how blocking or inducing the signalling pathways that are triggered by these different interactions can be an effective way to modulate immune responses.
Collapse
Affiliation(s)
- Michael Croft
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA.
| |
Collapse
|
40
|
Crawford A, Wherry EJ. The diversity of costimulatory and inhibitory receptor pathways and the regulation of antiviral T cell responses. Curr Opin Immunol 2009; 21:179-86. [PMID: 19264470 DOI: 10.1016/j.coi.2009.01.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 01/26/2009] [Indexed: 12/22/2022]
Abstract
T cell responses are regulated by integrating positive and negative signals from costimulatory and inhibitory receptors. While the function of specific T cell costimulatory molecules during infections has been appreciated for some time, recent observations have now revealed a crucial role for inhibitory receptors in regulating T cell responses to pathogens, especially during chronic infections. A key emerging principle is that there is considerable diversity in the number and type of inhibitory receptors that can be expressed by T cells during both acute and chronic infections. These distinct inhibitory pathways appear to cooperate in regulating T cell function, could have distinct mechanisms of action, and are likely to provide novel therapeutic targets during persisting infections and other diseases.
Collapse
Affiliation(s)
- Alison Crawford
- Immunology Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | | |
Collapse
|
41
|
Peggs KS, Quezada SA, Allison JP. Cancer immunotherapy: co-stimulatory agonists and co-inhibitory antagonists. Clin Exp Immunol 2009; 157:9-19. [PMID: 19659765 DOI: 10.1111/j.1365-2249.2009.03912.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The generation and maintenance of immune responses are controlled by both co-stimulatory and co-inhibitory signalling through T cell co-receptors, many of which belong to the immunoglobulin-like superfamily or the tumour necrosis factor receptor superfamily. Agonistic or antagonistic monoclonal antibodies targeting these co-receptors have the potential to enhance immunity. Furthermore, their activity on the immunosuppressive regulatory T cell populations which are prevalent within many tumours provides an additional rationale for their use as anti-cancer therapies. This review summarizes the interactions between cancer and the immune system, highlighting the ways in which these new classes of immunostimulatory antibodies might enhance anti-tumour immunity and summarizing early clinical experience with their use.
Collapse
Affiliation(s)
- K S Peggs
- Department of Haematology, UCL Cancer Institute, Paul O'Gorman Building, University College London, London, UK.
| | | | | |
Collapse
|
42
|
Multi-layered action mechanisms of CD137 (4-1BB)-targeted immunotherapies. Trends Pharmacol Sci 2008; 29:383-90. [DOI: 10.1016/j.tips.2008.05.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/15/2008] [Accepted: 05/22/2008] [Indexed: 01/03/2023]
|