1
|
Cen L, Zhang Z, Sun Y, Wu N, Shao J, Qian Z, Tian M, Ke Y, Liu B. Efficacy of MAGE-A4 long peptide as a universal immunoprevention cancer vaccine. Cancer Cell Int 2024; 24:232. [PMID: 38961429 PMCID: PMC11223347 DOI: 10.1186/s12935-024-03421-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The clinical application of peptide vaccines in tumor immunotherapy holds significant promise. Peptide-based tumor vaccines are currently subject to certain limitations in clinical trials, including the challenge of inducing a sustained response from CD4+ T helper cells and cytotoxic T lymphocytes (CTL), as well as human leukocyte antigen (HLA) restrictions. METHODS Through the utilization of biological information methodology, a screening process was conducted to identify three potential long peptides that are specifically targeted by the MAGE-A4 antigen. The candidate long peptides were subjected to in vitro testing using human peripheral blood lymphocytes as samples to evaluate their immunogenicity and immune function. The antitumor properties and preliminary mechanism of the long peptide vaccine were investigated through the use of a mouse model designed for the prevention of triple negative breast cancer (TNBC). RESULTS Three predicted multi-epitope long peptides targeting MAGE-A4 have shown to have a strong immunogenicity, with a total positive rate of 72% across different HLA subtypes in Chinese populations. they can also increase the levels of the costimulatory factor CD137 and tumor necrosis factor-alpha (TNF-α), activate T cells, and boost the cytotoxic activity. Results from an animal study have revealed that the long-peptide vaccine, both on its own and in combination with R848, has displayed impressive anti-tumor and target-specific capabilities. Moreover, it has the ability to increase the expression of effector memory T cells and central memory T cells. CONCLUSIONS This study was the first to screen three multi-epitope long peptides targeting MAGE-A4 and assess their immunogenicity, immune function, and potential as adjuvant peptides. The results showed that the MAGE-A4 long peptide vaccine can be used as a novel immunoprophylaxis method to prevent TNBC. Moreover, the proposed development model is capable of screening multiple target antigens, which lead to its clinical application.
Collapse
Affiliation(s)
- Lanqi Cen
- Department of Oncology, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, 210000, China
| | - Zhe Zhang
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Yi Sun
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210000, China
| | - Nandie Wu
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210000, China
| | - Jie Shao
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210000, China
| | - Zhaoye Qian
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210000, China
| | - Manman Tian
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210000, China
| | - Yaohua Ke
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210000, China
| | - Baorui Liu
- Department of Oncology, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, 210000, China.
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210000, China.
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210000, China.
| |
Collapse
|
2
|
Longo Y, Mascaraque SM, Andreacchio G, Werner J, Katahira I, De Marchi E, Pegoraro A, Lebbink RJ, Köhrer K, Petzsch P, Tao R, Di Virgilio F, Adinolfi E, Drexler I. The purinergic receptor P2X7 as a modulator of viral vector-mediated antigen cross-presentation. Front Immunol 2024; 15:1360140. [PMID: 38711513 PMCID: PMC11070468 DOI: 10.3389/fimmu.2024.1360140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/05/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction Modified Vaccinia Virus Ankara (MVA) is a safe vaccine vector inducing long- lasting and potent immune responses. MVA-mediated CD8+T cell responses are optimally induced, if both, direct- and cross-presentation of viral or recombinant antigens by dendritic cells are contributing. Methods To improve the adaptive immune responses, we investigated the role of the purinergic receptor P2X7 (P2RX7) in MVA-infected feeder cells as a modulator of cross-presentation by non-infected dendritic cells. The infected feeder cells serve as source of antigen and provide signals that help to attract dendritic cells for antigen take up and to license these cells for cross-presentation. Results We demonstrate that presence of an active P2RX7 in major histocompatibility complex (MHC) class I (MHCI) mismatched feeder cells significantly enhanced MVA-mediated antigen cross-presentation. This was partly regulated by P2RX7-specific processes, such as the increased availability of extracellular particles as well as the altered cellular energy metabolism by mitochondria in the feeder cells. Furthermore, functional P2RX7 in feeder cells resulted in a delayed but also prolonged antigen expression after infection. Discussion We conclude that a combination of the above mentioned P2RX7-depending processes leads to significantly increased T cell activation via cross- presentation of MVA-derived antigens. To this day, P2RX7 has been mostly investigated in regards to neuroinflammatory diseases and cancer progression. However, we report for the first time the crucial role of P2RX7 for antigen- specific T cell immunity in a viral infection model.
Collapse
Affiliation(s)
- Ylenia Longo
- Institute of Virology, Universitätsklinikum Düsseldorf, Düsselorf, Germany
| | | | | | - Julia Werner
- Institute of Molecular Medicine II, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Ichiro Katahira
- Institute of Molecular Medicine II, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Elena De Marchi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Pegoraro
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Robert Jan Lebbink
- Institute of Infection Immunity, University of Utrecht, Utrecht, Netherlands
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ronny Tao
- Institute of Virology, Universitätsklinikum Düsseldorf, Düsselorf, Germany
| | | | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Ingo Drexler
- Institute of Virology, Universitätsklinikum Düsseldorf, Düsselorf, Germany
| |
Collapse
|
3
|
Liu S, Wei S, Sun Y, Xu G, Zhang S, Li J. Molecular Characteristics, Functional Definitions, and Regulatory Mechanisms for Cross-Presentation Mediated by the Major Histocompatibility Complex: A Comprehensive Review. Int J Mol Sci 2023; 25:196. [PMID: 38203367 PMCID: PMC10778590 DOI: 10.3390/ijms25010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The major histocompatibility complexes of vertebrates play a key role in the immune response. Antigen-presenting cells are loaded on MHC I molecules, which mainly present endogenous antigens; when MHC I presents exogenous antigens, this is called cross-presentation. The discovery of cross-presentation provides an important theoretical basis for the study of exogenous antigens. Cross-presentation is a complex process in which MHC I molecules present antigens to the cell surface to activate CD8+ T lymphocytes. The process of cross-representation includes many components, and this article briefly outlines the origins and development of MHC molecules, gene structures, functions, and their classical presentation pathways. The cross-presentation pathways of MHC I molecules, the cell lines that support cross-presentation, and the mechanisms of MHC I molecular transporting are all reviewed. After more than 40 years of research, the specific mechanism of cross-presentation is still unclear. In this paper, we summarize cross-presentation and anticipate the research and development prospects for cross-presentation.
Collapse
Affiliation(s)
| | | | | | | | - Shidong Zhang
- Engineering Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.L.); (S.W.); (Y.S.); (G.X.)
| | - Jianxi Li
- Engineering Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.L.); (S.W.); (Y.S.); (G.X.)
| |
Collapse
|
4
|
Zhang T, Wei X, Li Y, Huang S, Wu Y, Cai S, Aipire A, Li J. Dendritic cell-based vaccine prepared with recombinant Lactococcus lactis enhances antigen cross-presentation and antitumor efficacy through ROS production. Front Immunol 2023; 14:1208349. [PMID: 37711617 PMCID: PMC10498461 DOI: 10.3389/fimmu.2023.1208349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Lactococcus lactis (L.L) is safe and can be used as vehicle. In this study, the immunoregulatory effect of L.L on dendritic cell (DC) activation and mechanism were investigated. The immune responses and antigen cross-presentation mechanism of DC-based vaccine prepared with OVA recombinant L.L were explored. Methods Confocal microscopy and flow cytometry were used to analyze the mechanism of L.L promoting DC maturation, phagosome membrane rupture and antigen presentation. The antitumor effect of DC vaccine prepared with L.L-OVA was assessed in the B16-OVA tumor mouse model. Results L.L significantly promoted DC maturation, which was partially dependent on TLR2 and downstream MAPK and NF-κB signaling pathways. L.L was internalized into DCs by endocytosis and did not co-localized with lysosome. OVA recombinant L.L enhanced antigen cross-presentation of DCs through the phagosome-to-cytosol pathway in a reactive oxygen species (ROS)- and proteasome-dependent manner. In mouse experiments, L.L increased the migration of DCs to draining lymph node and DC vaccine prepared with OVA recombinant L.L induced strong antigen-specific Th1 and cytotoxic T lymphocyte responses, which significantly inhibited B16-OVA tumor growth. Conclusion This study demonstrated that recombinant L.L as an antigen delivery system prepared DC vaccine can enhance the antigen cross-presentation and antitumor efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
5
|
Yang SF, Weng MT, Liang JD, Chiou LL, Hsu YC, Lee YT, Liu SY, Wu MC, Chou HC, Wang LF, Yu SH, Lee HS, Sheu JC. Neoantigen vaccination augments antitumor effects of anti-PD-1 on mouse hepatocellular carcinoma. Cancer Lett 2023; 563:216192. [PMID: 37088327 DOI: 10.1016/j.canlet.2023.216192] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/15/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Immune checkpoint inhibitors are groundbreaking resources for cancer therapy. However, only a few patients with hepatocellular carcinoma (HCC) have shown positive responses to anti-PD-1 therapy. Neoantigens are sequence-altered proteins resulting from somatic mutations in cancer. This study identified the neoantigens of Hep-55.1C and Dt81 Hepa1-6 HCCs by comparing their whole exome sequences with those of a normal C57BL/6 mouse liver. Immunogenic long peptides were pooled as peptide vaccines. The vaccination elicited tumor-reactive immune responses in C57BL/6 mice, as demonstrated by IFN-γ ELISPOT and an in vitro killing assay of splenocytes. In the treatment of three mouse HCC models, combined neoantigen vaccination and anti-PD-1 resulted in more significant tumor regression than monotherapies. Flow cytometry of the tumor-infiltrating lymphocytes showed decreased Treg cells and monocytic myeloid-derived suppressor cells, increased CD8+ T cells, enhanced granzyme B expression, and reduced exhaustion-related markers PD-1 and Lag-3 on CD8+ T cells in the combination group. These findings provide a strong rationale for conducting clinical studies of using neoantigen vaccination in combination with anti-PD-1 to treat patients with HCC.
Collapse
Affiliation(s)
- Shih-Feng Yang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.
| | - Meng-Tzu Weng
- Department of Medical Research, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ja-Der Liang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ling-Ling Chiou
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Yu-Chen Hsu
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Ying-Te Lee
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Shin-Yun Liu
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Meng-Chuan Wu
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Huei-Chi Chou
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Li-Fang Wang
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.
| | - Hsuan-Shu Lee
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Jin-Chuan Sheu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| |
Collapse
|
6
|
Nanoscale organization of the MHC I peptide-loading complex in human dendritic cells. Cell Mol Life Sci 2022; 79:477. [PMID: 35947215 PMCID: PMC9365725 DOI: 10.1007/s00018-022-04472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/04/2022] [Accepted: 07/05/2022] [Indexed: 11/03/2022]
Abstract
Dendritic cells (DCs) translate local innate immune responses into long-lasting adaptive immunity by priming antigen-specific T cells. Accordingly, there is an ample interest in exploiting DCs for therapeutic purposes, e.g., in personalized immunotherapies. Despite recent advances in elucidating molecular pathways of antigen processing, in DCs the exact spatial organization of the underlying processes is largely unknown. Here, we unraveled the nanoscale organization of the transporter associated with antigen processing (TAP)-dependent peptide-loading machinery in human monocyte-derived DCs (moDC). We detected an unexpected accumulation of MHC I peptide-loading complexes (PLCs) and TAP-dependent peptide compartmentalization in protrusions of activated DCs. Using single-molecule localization microscopy we revealed that PLCs display homogeneously sized assemblies, independent of the DC activation status or cellular localization. Our data indicate that moDCs show augmentation of subcellular PLC density during DC maturation. We observed a twofold density increase in the cell body, while an even fourfold accumulation was detected in the tips of the protrusions at the mature DC stage in comparison to immature DCs. In these tip regions, PLC assemblies are found along highly compressed tubular ER networks. These findings provide novel insights into nanoscale organization of the antigen presentation machinery, and open new perspectives on the T cell stimulatory capacity of DCs.
Collapse
|
7
|
Lee W, Suresh M. Vaccine adjuvants to engage the cross-presentation pathway. Front Immunol 2022; 13:940047. [PMID: 35979365 PMCID: PMC9376467 DOI: 10.3389/fimmu.2022.940047] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Adjuvants are indispensable components of vaccines for stimulating optimal immune responses to non-replicating, inactivated and subunit antigens. Eliciting balanced humoral and T cell-mediated immunity is paramount to defend against diseases caused by complex intracellular pathogens, such as tuberculosis, malaria, and AIDS. However, currently used vaccines elicit strong antibody responses, but poorly stimulate CD8 cytotoxic T lymphocyte (CTL) responses. To elicit potent CTL memory, vaccines need to engage the cross-presentation pathway, and this requirement has been a crucial bottleneck in the development of subunit vaccines that engender effective T cell immunity. In this review, we focus on recent insights into DC cross-presentation and the extent to which clinically relevant vaccine adjuvants, such as aluminum-based nanoparticles, water-in oil emulsion (MF59) adjuvants, saponin-based adjuvants, and Toll-like receptor (TLR) ligands modulate DC cross-presentation efficiency. Further, we discuss the feasibility of using carbomer-based adjuvants as next generation of adjuvant platforms to elicit balanced antibody- and T-cell based immunity. Understanding of the molecular mechanism of DC cross-presentation and the mode of action of adjuvants will pave the way for rational design of vaccines for infectious diseases and cancer that require balanced antibody- and T cell-based immunity.
Collapse
|
8
|
Harryvan TJ, Visser M, de Bruin L, Plug L, Griffioen L, Mulder A, van Veelen PA, van der Heden van Noort GJ, Jongsma ML, Meeuwsen MH, Wiertz EJ, Santegoets SJ, Hardwick JC, Van Hall T, Neefjes J, Van der Burg SH, Hawinkels LJ, Verdegaal EM. Enhanced antigen cross-presentation in human colorectal cancer-associated fibroblasts through upregulation of the lysosomal protease cathepsin S. J Immunother Cancer 2022; 10:jitc-2021-003591. [PMID: 35264435 PMCID: PMC8915372 DOI: 10.1136/jitc-2021-003591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 12/18/2022] Open
Abstract
Background Cross-presentation of exogenous antigens in HLA-class I molecules by professional antigen presenting cells (APCs) is crucial for CD8+ T cell function. Recent murine studies show that several non-professional APCs, including cancer-associated fibroblasts (CAFs) also possess this capacity. Whether human CAFs are able to cross-present exogenous antigen, which molecular pathways are involved in this process and how this ultimately affects tumor-specific CD8+ T cell function is unknown. Methods In this study, we investigated the ability of human colorectal cancer (CRC)-derived CAFs to cross-present neoantigen-derived synthetic long peptides (SLPs), corresponding to tumor-derived mutant peptides, and how this affects tumor-specific T-cell function. Processing of the SLP was studied by targeting components of the cross-presentation machinery through CRISPR/Cas9 and siRNA-mediated genetic ablation to identify the key molecules involved in fibroblast-mediated cross-presentation. Multispectral flow cytometry and killing assays were performed to study the effect of fibroblast cross-presentation on T cell function. Results Here, we show that human CRC-derived CAFs display an enhanced capacity to cross-present neoantigen-derived SLPs when compared with normal colonic fibroblasts. Cross-presentation of antigens by fibroblasts involved the lysosomal protease cathepsin S. Cathepsin S expression by CAFs was detected in situ in human CRC tissue, was upregulated in ex vivo cultured CRC-derived CAFs and showed increased expression in normal fibroblasts after exposure to CRC-conditioned medium. Cognate interaction between CD8+ T cells and cross-presenting CAFs suppressed T cell function, reflected by decreased cytotoxicity, reduced activation (CD137) and increased exhaustion (TIM3, LAG3 and CD39) marker expression. Conclusion These data indicate that CAFs may directly suppress tumor-specific T cell function in an antigen-dependent fashion in human CRC.
Collapse
Affiliation(s)
- Tom J Harryvan
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marten Visser
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda de Bruin
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Léonie Plug
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa Griffioen
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Arend Mulder
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Marlieke Lm Jongsma
- Department of Cell & Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Miranda H Meeuwsen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emmanuel Jhj Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Saskia J Santegoets
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - James Ch Hardwick
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thorbald Van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell & Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd H Van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Lukas Jac Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Els Me Verdegaal
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Mantel I, Sadiq BA, Blander JM. Spotlight on TAP and its vital role in antigen presentation and cross-presentation. Mol Immunol 2022; 142:105-119. [PMID: 34973498 PMCID: PMC9241385 DOI: 10.1016/j.molimm.2021.12.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/18/2021] [Accepted: 12/16/2021] [Indexed: 02/03/2023]
Abstract
In the late 1980s and early 1990s, the hunt for a transporter molecule ostensibly responsible for the translocation of peptides across the endoplasmic reticulum (ER) membrane yielded the successful discovery of transporter associated with antigen processing (TAP) protein. TAP is a heterodimer complex comprised of TAP1 and TAP2, which utilizes ATP to transport cytosolic peptides into the ER across its membrane. In the ER, together with other components it forms the peptide loading complex (PLC), which directs loading of high affinity peptides onto nascent major histocompatibility complex class I (MHC-I) molecules that are then transported to the cell surface for presentation to CD8+ T cells. TAP also plays a crucial role in transporting peptides into phagosomes and endosomes during cross-presentation in dendritic cells (DCs). Because of the critical role that TAP plays in both classical MHC-I presentation and cross-presentation, its expression and function are often compromised by numerous types of cancers and viruses to evade recognition by cytotoxic CD8 T cells. Here we review the discovery and function of TAP with a major focus on its role in cross-presentation in DCs. We discuss a recently described emergency route of noncanonical cross-presentation that is mobilized in DCs upon TAP blockade to restore CD8 T cell cross-priming. We also discuss the various strategies employed by cancer cells and viruses to target TAP expression or function to evade immunosurveillance - along with some strategies by which the repertoire of peptides presented by cells which downregulate TAP can be targeted as a therapeutic strategy to mobilize a TAP-independent CD8 T cell response. Lastly, we discuss TAP polymorphisms and the role of TAP in inherited disorders.
Collapse
Affiliation(s)
- Ian Mantel
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, 10021, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| | - Barzan A Sadiq
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, 10021, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, 10021, USA
| | - J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, 10021, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, 10021, USA; Department of Microbiology and Immunology, New York, NY, 10021, USA; Sandra and Edward Meyer Cancer Center, New York, NY, 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA.
| |
Collapse
|
10
|
Lu Y, Shi Y, You J. Strategy and clinical application of up-regulating cross presentation by DCs in anti-tumor therapy. J Control Release 2021; 341:184-205. [PMID: 34774890 DOI: 10.1016/j.jconrel.2021.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022]
Abstract
The cross presentation of exogenous antigen (Ag) by dendritic cells (DCs) facilitates a diversified mode of T-cell activation, orchestrates specific humoral and cellular immunity, and contributes to an efficient anti-tumor immune response. DCs-mediated cross presentation is subject to both intrinsic and extrinsic factors, including the homing and phenotype of DCs, the spatiotemporal trafficking and degradation kinetics of Ag, and multiple microenvironmental clues, with many details largely unexplored. Here, we systemically review the current mechanistic understanding and regulation strategies of cross presentation by heterogeneous DC populations. We also provide insights into the future exploitation of DCs cross presentation for a better clinical efficacy in anti-tumor therapy.
Collapse
Affiliation(s)
- Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
11
|
van Eck van der Sluijs J, van Ens D, Thordardottir S, Vodegel D, Hermens I, van der Waart AB, Falkenburg JHF, Kester MGD, de Rink I, Heemskerk MHM, Borst J, Schaap NPM, Jansen JH, Xiao Y, Dolstra H, Hobo W. Clinically applicable CD34 +-derived blood dendritic cell subsets exhibit key subset-specific features and potently boost anti-tumor T and NK cell responses. Cancer Immunol Immunother 2021; 70:3167-3181. [PMID: 33796917 PMCID: PMC8505305 DOI: 10.1007/s00262-021-02899-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/22/2021] [Indexed: 11/24/2022]
Abstract
Allogeneic stem cell transplantation (alloSCT), following induction chemotherapy, can be curative for hemato-oncology patients due to powerful graft-versus-tumor immunity. However, disease recurrence remains the major cause of treatment failure, emphasizing the need for potent adjuvant immunotherapy. In this regard, dendritic cell (DC) vaccination is highly attractive, as DCs are the key orchestrators of innate and adaptive immunity. Natural DC subsets are postulated to be more powerful compared with monocyte-derived DCs, due to their unique functional properties and cross-talk capacity. Yet, obtaining sufficient numbers of natural DCs, particularly type 1 conventional DCs (cDC1s), is challenging due to low frequencies in human blood. We developed a clinically applicable culture protocol using donor-derived G-CSF mobilized CD34+ hematopoietic progenitor cells (HPCs) for simultaneous generation of high numbers of cDC1s, cDC2s and plasmacytoid DCs (pDCs). Transcriptomic analyses demonstrated that these ex vivo-generated DCs highly resemble their in vivo blood counterparts. In more detail, we demonstrated that the CD141+CLEG9A+ cDC1 subset exhibited key features of in vivo cDC1s, reflected by high expression of co-stimulatory molecules and release of IL-12p70 and TNF-α. Furthermore, cDC1s efficiently primed alloreactive T cells, potently cross-presented long-peptides and boosted expansion of minor histocompatibility antigen-experienced T cells. Moreover, they strongly enhanced NK cell activation, degranulation and anti-leukemic reactivity. Together, we developed a robust culture protocol to generate highly functional blood DC subsets for in vivo application as tailored adjuvant immunotherapy to boost innate and adaptive anti-tumor immunity in alloSCT patients.
Collapse
Affiliation(s)
- Jesper van Eck van der Sluijs
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Diede van Ens
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Soley Thordardottir
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Denise Vodegel
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Inge Hermens
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Anniek B van der Waart
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Michel G D Kester
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Iris de Rink
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jannie Borst
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Nicolaas P M Schaap
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joop H Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Yanling Xiao
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Harry Dolstra
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Willemijn Hobo
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Çetin G, Klafack S, Studencka-Turski M, Krüger E, Ebstein F. The Ubiquitin-Proteasome System in Immune Cells. Biomolecules 2021; 11:biom11010060. [PMID: 33466553 PMCID: PMC7824874 DOI: 10.3390/biom11010060] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin–proteasome system (UPS) is the major intracellular and non-lysosomal protein degradation system. Thanks to its unique capacity of eliminating old, damaged, misfolded, and/or regulatory proteins in a highly specific manner, the UPS is virtually involved in almost all aspects of eukaryotic life. The critical importance of the UPS is particularly visible in immune cells which undergo a rapid and profound functional remodelling upon pathogen recognition. Innate and/or adaptive immune activation is indeed characterized by a number of substantial changes impacting various cellular processes including protein homeostasis, signal transduction, cell proliferation, and antigen processing which are all tightly regulated by the UPS. In this review, we summarize and discuss recent progress in our understanding of the molecular mechanisms by which the UPS contributes to the generation of an adequate immune response. In this regard, we also discuss the consequences of UPS dysfunction and its role in the pathogenesis of recently described immune disorders including cancer and auto-inflammatory diseases.
Collapse
|
13
|
Beijnen EMS, van Haren SD. Vaccine-Induced CD8 + T Cell Responses in Children: A Review of Age-Specific Molecular Determinants Contributing to Antigen Cross-Presentation. Front Immunol 2020; 11:607977. [PMID: 33424857 PMCID: PMC7786054 DOI: 10.3389/fimmu.2020.607977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Infections are most common and most severe at the extremes of age, the young and the elderly. Vaccination can be a key approach to enhance immunogenicity and protection against pathogens in these vulnerable populations, who have a functionally distinct immune system compared to other age groups. More than 50% of the vaccine market is for pediatric use, yet to date vaccine development is often empiric and not tailored to molecular distinctions in innate and adaptive immune activation in early life. With modern vaccine development shifting from whole-cell based vaccines to subunit vaccines also comes the need for formulations that can elicit a CD8+ T cell response when needed, for example, by promoting antigen cross-presentation. While our group and others have identified many cellular and molecular determinants of successful activation of antigen-presenting cells, B cells and CD4+ T cells in early life, much less is known about the ontogeny of CD8+ T cell induction. In this review, we summarize the literature pertaining to the frequency and phenotype of newborn and infant CD8+ T cells, and any evidence of induction of CD8+ T cells by currently licensed pediatric vaccine formulations. In addition, we review the molecular determinants of antigen cross-presentation on MHC I and successful CD8+ T cell induction and discuss potential distinctions that can be made in children. Finally, we discuss recent advances in development of novel adjuvants and provide future directions for basic and translational research in this area.
Collapse
Affiliation(s)
- Elisabeth M. S. Beijnen
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Tanaka K, Enomoto N, Uehara M, Furuhashi K, Sakurai S, Yasui H, Karayama M, Hozumi H, Suzuki Y, Fujisawa T, Inui N, Nakamura Y, Nagata T, Suda T. Development of a novel T cell-oriented vaccine using CTL/Th-hybrid epitope long peptide and biodegradable microparticles, against an intracellular bacterium. Microbiol Immunol 2020; 64:666-678. [PMID: 32786043 DOI: 10.1111/1348-0421.12836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022]
Abstract
Antigen-specific CD8+ T-lymphocytes (cytotoxic T-lymphocytes: CTL), as well as CD4+ T-lymphocytes (helper T-lymphocytes: Th), simultaneously play an important role in the elimination of intracellular bacteria such as Mycobacterium tuberculosis and Listeria monocytogenes. Administration of T-cell epitope short peptide needs large numbers of peptides for effective vaccination due to its easily degradable nature in vivo. In this respect, biocompatible and biodegradable microparticles combined with CTL/Th-hybrid epitope long peptide (long peptide) have been used to diminish the degradation of loaded peptide. The aim of this study is to develop a novel T cell-oriented vaccine against intracellular bacteria that is composed of long peptide and poly (lactic-co-glycolic acid) (PLGA) microparticles. Mouse bone marrow-derived dendritic cells (BMDCs) were loaded with L. monocytogenes listeriolysin O (LLO)-derived or ovalbumin (OVA)-derived long peptide/PLGA or other comparative antigens. The antigen-loaded BMDCs were injected subcutaneously into the flank of mice twice, and then, the spleens were collected and lymphocyte proliferation and interferon-γ production were evaluated. The median diameter of the PLGA spheres was 1.38 μm. Both LLO- and OVA-long peptide/PLGA showed significantly more robust CTL and Th proliferations with higher interferon-γ production than the long peptide alone or CTL and Th short peptides/PLGA vaccination. Furthermore, the LLO-long peptide/PLGA vaccination showed a significantly lower bacterial burden in spleens compared with the long peptide alone or the CTL and Th short peptides/PLGA vaccination after the challenge of lethal amounts of L. monocytogenes. These results suggest that the novel vaccine taking advantages of CTL/Th-hybrid epitope long peptide and PLGA microparticle is effective for protection against intracellular bacteria.
Collapse
Affiliation(s)
- Kazuki Tanaka
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Health Administration Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masahiro Uehara
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Respiratory Medicine, Fujieda Municipal General Hospital, Fujieda, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shogo Sakurai
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Inui
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yutaro Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Toshi Nagata
- Department of Health Science, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
15
|
Chen X, Yang J, Wang L, Liu B. Personalized neoantigen vaccination with synthetic long peptides: recent advances and future perspectives. Theranostics 2020; 10:6011-6023. [PMID: 32483434 PMCID: PMC7255011 DOI: 10.7150/thno.38742] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Therapeutic cancer vaccines are one of the most promising strategies of immunotherapy. Traditional vaccines consisting of tumor-associated antigens have met with limited success. Recently, neoantigens derived from nonsynonymous mutations in tumor cells have emerged as alternatives that can improve tumor-specificity and reduce on-target off-tumor toxicity. Synthetic peptides are a common platform for neoantigen vaccines. It has been suggested that extending short peptides into long peptides can overcome immune tolerance and induce both CD4+ and CD8+ T cell responses. This review will introduce the history of long peptide-based neoantigen vaccines, discuss their advantages, summarize current preclinical and clinical developments, and propose future perspectives.
Collapse
|
16
|
Del Val M, Antón LC, Ramos M, Muñoz-Abad V, Campos-Sánchez E. Endogenous TAP-independent MHC-I antigen presentation: not just the ER lumen. Curr Opin Immunol 2020; 64:9-14. [PMID: 31935516 DOI: 10.1016/j.coi.2019.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022]
Abstract
Altered and infected cells are eliminated by CD8+ cytotoxic T lymphocytes. This requires production of antigenic peptides mostly in the cytosol, transport to the endoplasmic reticulum (ER) by the transporter associated with antigen processing (TAP), and cell surface presentation by major histocompatibility complex class I (MHC-I). Strikingly, antigen presentation occurs without TAP, although it is inefficient and associated to human pathology. TAP-independent peptides derive both from membrane and secreted proteins, as well as cytosolic ones. The efficiency of TAP-independent presentation may be impacted by the availability of receptive MHC-I, and in turn by the functional presence in the ER of the peptide-loading complex, itself anchored on TAP. Without TAP, surface expression of human leukocyte antigen (HLA)-B allotypes varies widely, with those presenting a broader peptide repertoire among the most TAP-independent. Much remains to be learned on the alternative cellular pathways for antigen presentation in the absence of TAP.
Collapse
Affiliation(s)
- Margarita Del Val
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - Luis C Antón
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Manuel Ramos
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Víctor Muñoz-Abad
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Elena Campos-Sánchez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
17
|
Colbert JD, Cruz FM, Rock KL. Cross-presentation of exogenous antigens on MHC I molecules. Curr Opin Immunol 2020; 64:1-8. [PMID: 31927332 DOI: 10.1016/j.coi.2019.12.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022]
Abstract
In order to get recognized by CD8 T cells, most cells present peptides from endogenously expressed self or foreign proteins on MHC class I molecules. However, specialized antigen-presenting cells, such as DCs and macrophages, can present exogenous antigen on MHC-I in a process called cross-presentation. This pathway plays key roles in antimicrobial and antitumor immunity, and also immune tolerance. Recent advances have broadened our understanding of the underlying mechanisms of cross-presentation. Here, we review some of these recent advances, including the distinct pathways that result in the cross-priming of CD8 T cells and the source of the class I molecules presenting exogenous peptides.
Collapse
Affiliation(s)
- Jeff D Colbert
- Department of Pathology, University of Massachusetts Medical School, United States
| | - Freidrich M Cruz
- Department of Pathology, University of Massachusetts Medical School, United States
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, United States.
| |
Collapse
|
18
|
Montealegre S, Abramova A, Manceau V, de Kanter AF, van Endert P. The role of MHC class I recycling and Arf6 in cross-presentation by murine dendritic cells. Life Sci Alliance 2019; 2:2/6/e201900464. [PMID: 31740564 PMCID: PMC6861705 DOI: 10.26508/lsa.201900464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 11/24/2022] Open
Abstract
Cross-presentation by MHC class I molecules (MHC-I) is critical for priming of cytotoxic T cells. Peptides derived from cross-presented antigens can be loaded on MHC-I in the endoplasmic reticulum and in endocytic or phagocytic compartments of murine DCs. However, the origin of MHC-I in the latter compartments is poorly understood. Recently, Rab22-dependent MHC-I recycling through a Rab11+ compartment has been suggested to be implicated in cross-presentation. We have examined the existence of MHC-I recycling and the role of Arf6, described to regulate recycling in nonprofessional antigen presenting cells, in murine DCs. We confirm folded MHC-I accumulation in a juxtanuclear Rab11+ compartment and partially localize Arf6 to this compartment. MHC-I undergo fast recycling, however, both folded and unfolded internalized MHC-I fail to recycle to the Rab11+Arf6+ compartment. Therefore, the source of MHC-I molecules in DC endocytic compartments remains to be identified. Functionally, depletion of Arf6 compromises cross-presentation of immune complexes but not of soluble, phagocytosed or mannose receptor-targeted antigen, suggesting a role of Fc receptor-regulated Arf6 trafficking in cross-presentation of immune complexes.
Collapse
Affiliation(s)
- Sebastian Montealegre
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Paris, France.,Université Paris Descartes, Faculté de Médecine, Paris, France.,Centre National de la Recherche Scientifique, UMR8253, Paris, France
| | - Anastasia Abramova
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Paris, France.,Université Paris Descartes, Faculté de Médecine, Paris, France.,Centre National de la Recherche Scientifique, UMR8253, Paris, France
| | - Valerie Manceau
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Paris, France.,Université Paris Descartes, Faculté de Médecine, Paris, France.,Centre National de la Recherche Scientifique, UMR8253, Paris, France
| | - Anne-Floor de Kanter
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Paris, France.,Université Paris Descartes, Faculté de Médecine, Paris, France.,Centre National de la Recherche Scientifique, UMR8253, Paris, France
| | - Peter van Endert
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Paris, France .,Université Paris Descartes, Faculté de Médecine, Paris, France.,Centre National de la Recherche Scientifique, UMR8253, Paris, France
| |
Collapse
|