1
|
Khalafiyan A, Fadaie M, Khara F, Zarrabi A, Moghadam F, Khanahmad H, Cordani M, Boshtam M. Highlighting roles of autophagy in human diseases: a perspective from single-cell RNA sequencing analyses. Drug Discov Today 2024; 29:104224. [PMID: 39521332 DOI: 10.1016/j.drudis.2024.104224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Autophagy, the lysosome-driven breakdown of intracellular components, is pivotal in regulating eukaryotic cellular processes and maintaining homeostasis, making it physiologically important even under normal conditions. Cellular mechanisms involving autophagy include the response to nutrient deprivation, intracellular quality control, early development, and cell differentiation. Despite its established health significance, the role of autophagy in cancer and other diseases remains complex and not fully understood. A comprehensive understanding of autophagy is crucial to facilitate the development of novel therapies and drugs that can protect and improve human health. High-throughput technologies, such as single-cell RNA sequencing (scRNA-seq), have enabled researchers to study transcriptional landscapes at single-cell resolution, significantly advancing our knowledge of autophagy pathways across diverse physiological and pathological contexts. This review discusses the latest advances in scRNA-seq for autophagy research and highlights its potential in the molecular characterization of various diseases.
Collapse
Affiliation(s)
- Anis Khalafiyan
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmood Fadaie
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Khara
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan; Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Fariborz Moghadam
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Wang Q, Wang Y, Li S, Shi J. PACAP-Sirtuin3 alleviates cognitive impairment through autophagy in Alzheimer's disease. Alzheimers Res Ther 2023; 15:184. [PMID: 37891608 PMCID: PMC10605376 DOI: 10.1186/s13195-023-01334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Autophagy is vital in the pathogenesis of neurodegeneration. Thus far, no studies have specifically investigated the relationship between pituitary adenylate cyclase-activating polypeptide (PACAP) and autophagy, particularly in the context of Alzheimer's disease (AD). This study used in vitro and in vivo models, along with clinical samples, to explore interactions between PACAP and autophagy in AD. METHODS AD model mice were administered 6 μl of 0.1 mg/ml PACAP liquid intranasally for 4 weeks, then subjected to behavioral analyses to assess the benefits of PACAP treatment. The underlying mechanisms of PACAP-induced effects were investigated by methods including real-time quantitative polymerase chain reaction, RNA sequencing, immunofluorescence, and western blotting. Exosomes were extracted from human serum and subjected to enzyme-linked immunosorbent assays to examine autophagy pathways. The clinical and therapeutic implications of PACAP and autophagy were extensively investigated throughout the experiment. RESULTS Impaired autophagy was a critical step in amyloid β (Aβ) and Tau deposition; PACAP enhanced autophagy and attenuated cognitive impairment. RNA sequencing revealed three pathways that may be involved in AD progression: PI3K-AKT, mTOR, and AMPK. In vivo and in vitro studies showed that sirtuin3 knockdown diminished the ability of PACAP to restore normal autophagy function, resulting in phagocytosis dysregulation and the accumulation of pTau, Tau, and Aβ. Additionally, the autophagic biomarker MAP1LC3 demonstrated a positive association with PACAP in human serum. CONCLUSIONS PACAP reverses AD-induced cognitive impairment through autophagy, using sirtuin3 as a key mediator. MAP1LC3 has a positive relationship with PACAP in humans. These findings provide insights regarding potential uses of intranasal PACAP and sirtuin3 agonists in AD treatment. TRIAL REGISTRATION NCT04320368.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4Th Ring West Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yue Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4Th Ring West Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Shiping Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4Th Ring West Road, Fengtai District, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Jiong Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4Th Ring West Road, Fengtai District, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Guo Y, Zhang X, Li J, Zhou Z, Zhu S, Liu W, Su J, Chen X, Peng C. TRAF6 regulates autophagy and apoptosis of melanoma cells through c-Jun/ATG16L2 signaling pathway. MedComm (Beijing) 2023; 4:e309. [PMID: 37484971 PMCID: PMC10357248 DOI: 10.1002/mco2.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 07/25/2023] Open
Abstract
Autophagy and apoptosis are essential processes that participate in cell death and maintain cellular homeostasis. Dysregulation of these biological processes results in the development of diseases, including cancers. Therefore, targeting the interaction between apoptosis and autophagy offers a potential strategy for cancer therapy. Melanoma is the most lethal skin cancer. We previously found that tumor necrosis factor receptor-associated factor 6 (TRAF6) is overexpressed in melanoma and benefits the malignant phenotype of melanoma cells. Additionally, TRAF6 promotes the activation of cancer-associated fibroblasts in melanoma. However, the role of TRAF6 in autophagy and apoptosis remains unclear. In this study, we found that knockdown of TRAF6 induced both apoptosis and autophagy in melanoma cells. Transcriptomic data and real-time PCR analysis demonstrated reduced expression of autophagy related 16 like 2 (ATG16L2) in TRAF6-deficient melanoma cells. ATG16L2 knockdown resulted in increased autophagy and apoptosis. Mechanism studies confirmed that TRAF6 regulated ATG16L2 expression through c-Jun. Importantly, targeting TRAF6 with cinchonine, a TRAF6 inhibitor, effectively suppressed the growth of melanoma cells by inducing autophagy and apoptosis through the TRAF6/c-Jun/ATG16L2 signaling pathway. These findings highlight the pivotal role of TRAF6 in regulating autophagy and apoptosis in melanoma, emphasizing its significance as a novel therapeutic target for melanoma treatment.
Collapse
Affiliation(s)
- Yeye Guo
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisHunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Xu Zhang
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisHunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Jie Li
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisHunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Zhe Zhou
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisHunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Susi Zhu
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisHunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Waner Liu
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisHunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Juan Su
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisHunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Xiang Chen
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisHunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Cong Peng
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisHunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| |
Collapse
|
4
|
Vianello C, Salluzzo M, Anni D, Boriero D, Buffelli M, Carboni L. Increased Expression of Autophagy-Related Genes in Alzheimer's Disease-Type 2 Diabetes Mellitus Comorbidity Models in Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20054540. [PMID: 36901549 PMCID: PMC10002426 DOI: 10.3390/ijerph20054540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 05/31/2023]
Abstract
The association between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) has been extensively demonstrated, but despite this, the pathophysiological mechanisms underlying it are still unknown. In previous work, we discovered a central role for the autophagy pathway in the common alterations observed between AD and T2DM. In this study, we further investigate the role of genes belonging to this pathway, measuring their mRNA expression and protein levels in 3xTg-AD transgenic mice, an animal model of AD. Moreover, primary mouse cortical neurons derived from this model and the human H4Swe cell line were used as cellular models of insulin resistance in AD brains. Hippocampal mRNA expression showed significantly different levels for Atg16L1, Atg16L2, GabarapL1, GabarapL2, and Sqstm1 genes at different ages of 3xTg-AD mice. Significantly elevated expression of Atg16L1, Atg16L2, and GabarapL1 was also observed in H4Swe cell cultures, in the presence of insulin resistance. Gene expression analysis confirmed that Atg16L1 was significantly increased in cultures from transgenic mice when insulin resistance was induced. Taken together, these results emphasise the association of the autophagy pathway in AD-T2DM co-morbidity, providing new evidence about the pathophysiology of both diseases and their mutual interaction.
Collapse
Affiliation(s)
- Clara Vianello
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Marco Salluzzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Daniela Anni
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Diana Boriero
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Mario Buffelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
5
|
Abstract
Macroautophagy and microautophagy are highly conserved eukaryotic cellular processes that degrade cytoplasmic material in lysosomes. Both pathways involve characteristic membrane dynamics regulated by autophagy-related proteins and other molecules, some of which are shared between the two pathways. Over the past few years, the application of new technologies, such as cryo-electron microscopy, coevolution-based structural prediction and in vitro reconstitution, has revealed the functions of individual autophagy gene products, especially in autophagy induction, membrane reorganization and cargo recognition. Concomitantly, mutations in autophagy genes have been linked to human disorders, particularly neurodegenerative diseases, emphasizing the potential pathogenic implications of autophagy defects. Accumulating genome data have also illuminated the evolution of autophagy genes within eukaryotes as well as their transition from possible ancestral elements in prokaryotes.
Collapse
Affiliation(s)
- Hayashi Yamamoto
- grid.26999.3d0000 0001 2151 536XDepartment of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan ,grid.410821.e0000 0001 2173 8328Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Sidi Zhang
- grid.26999.3d0000 0001 2151 536XDepartment of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noboru Mizushima
- grid.26999.3d0000 0001 2151 536XDepartment of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Abstract
Macroautophagy/autophagy, a fundamental cell process for nutrient recycling and defense against pathogens (termed xenophagy), is crucial to human health. ATG16L2 (autophagy related 16 like 2) is an autophagic protein and a paralog of ATG16L1. Both proteins are implicated in similar diseases such as cancer and other chronic diseases; however, most autophagy studies to date have primarily focused on the function of ATG16L1, with ATG16L2 remaining uncharacterized and understudied. Overexpression of ATG16L2 has been reported in various cancers including colorectal, gastric, and prostate carcinomas, whereas altered methylation of ATG16L2 has been associated with lung cancer formation and poorer response to therapy in leukemia. In addition, ATG16L2 polymorphisms have been implicated in a range of other diseases including inflammatory bowel diseases and neurodegenerative disorders. Despite this likely role in human health, the function of this enigmatic protein in autophagy remains unknown. Here, we review current studies on ATG16L2 and collate evidence that suggests that this protein is a potential modulator of autophagy as well as the implications this has on pathogenesis.Abbreviations: ATG5: autophagy related 5; ATG12: autophagy related 12; ATG16L1: autophagy related 16 like 1; ATG16L2: autophagy related 16 like 2; CD: Crohn disease; IBD: inflammatory bowel diseases; IRGM: immunity related GTPase M; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PE: phosphatidylethanolamine; RB1CC1: RB1 inducible coiled-coil 1; SLE: systemic lupus erythematosus; WIPI2B: WD repeat domain, phosphoinositide interacting 2B.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia,CONTACT Laurence Don Wai Luu School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Nadeem O. Kaakoush
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Natalia Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia,Natalia Castaño-Rodríguez School of Biotechnology and Biomolecular Sciences, Faculty of Science, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Kang Z, Yang J. Construction and validation of an autophagy-related long non-coding RNA signature to predict the prognosis of kidney renal papillary cell carcinoma. J Investig Med 2022; 70:1536-1544. [PMID: 35725019 DOI: 10.1136/jim-2022-002379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2022] [Indexed: 12/18/2022]
Abstract
To identify the autophagy-related long non-coding RNAs (ARlncRNAs) associated with the prognosis of kidney renal papillary cell carcinoma (KIRP), thereby establishing a clinical prognostic model. The gene expression matrix and clinical survival information of patients with KIRP were downloaded from The Cancer Genome Atlas database, and were divided into the training and testing groups. ARlncRNAs associated with the KIRP prognosis were analyzed by univariate, Least Absolute Shrinkage and Selection Operator (LASSO(, and multivariate Cox regression to construct a signature. We combined clinical factors associated with the prognosis with ARlncRNAs to establish a prognostic model of patients with KIRP. A nomogram was established to predict 1-year, 3-year, and 5-year survival of patients with KIRP. Besides, we built the lncRNA-messenger RNA co-expression network and used Kyoto Encyclopedia of Genes and Genomes and Gene Set Enrichment Analysis to detect the biological functions of ARlncRNAs. LEF1-AS1, CU634019.6, C2orf48, AC027228.2, and AC107464.3 were identified. A prognosis-related ARlncRNAs signature was constructed in the training group and validated in the testing group. Patients with KIRP with a low risk score had significantly longer survival time than those with a high risk score. The risk score significantly affected the prognosis of patients, thereby being used for modeling. The area under the receiver operating characteristic curve values of 1-year, 3-year, and 5-year overall survival were 0.80, 0.78, and 0.84 in the training group, respectively. The signature had high concordance index and good accuracy in predicting the prognosis, which were confirmed by the nomogram. The prognosis-related ARlncRNAs signature we identified had a more accurate prediction for the prognosis of patients with KIRP.
Collapse
Affiliation(s)
- Zhen Kang
- Department of Urology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,College of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Junfeng Yang
- Department of Urology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China .,College of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
8
|
González-Rodríguez P, Klionsky DJ, Joseph B. Autophagy regulation by RNA alternative splicing and implications in human diseases. Nat Commun 2022; 13:2735. [PMID: 35585060 PMCID: PMC9117662 DOI: 10.1038/s41467-022-30433-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
Autophagy and RNA alternative splicing are two evolutionarily conserved processes involved in overlapping physiological and pathological processes. However, the extent of functional connection is not well defined. Here, we consider the role for alternative splicing and generation of autophagy-related gene isoforms in the regulation of autophagy in recent work. The impact of changes to the RNA alternative splicing machinery and production of alternative spliced isoforms on autophagy are reviewed with particular focus on disease relevance. The use of drugs targeting both alternative splicing and autophagy as well as the selective regulation of single autophagy-related protein isoforms, are considered as therapeutic strategies.
Collapse
Affiliation(s)
- Patricia González-Rodríguez
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Daniel J Klionsky
- Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Wang D, Yuan T, Liu J, Wen Z, Shen Y, Tang J, Wang Z, Wu X. ATG16L2 inhibits NLRP3 inflammasome activation through promoting ATG5‐12‐16L1 complex assembly and autophagy. Eur J Immunol 2022; 52:1321-1334. [PMID: 35426127 DOI: 10.1002/eji.202149764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/24/2022] [Accepted: 04/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Dongyang Wang
- Department of Gastrointestinal Surgery Renji Hospital Affiliated Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| | - Tianli Yuan
- Department of Gastrointestinal Surgery Renji Hospital Affiliated Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| | - Jiamin Liu
- Hongqiao International Institute of Medicine Shanghai Tongren Hospital/Faculty of Basic Medicine Shanghai Institute of Immunology Department of Immunology and Microbiology Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| | - Zhoujin Wen
- Department of Gastrointestinal Surgery Renji Hospital Affiliated Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| | - Yuguang Shen
- Department of Gastrointestinal Surgery Renji Hospital Affiliated Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| | - Jian Tang
- Department of Gastrointestinal Surgery Renji Hospital Affiliated Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| | - Zheng Wang
- Department of Gastrointestinal Surgery Renji Hospital Affiliated Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| | - Xuefeng Wu
- Hongqiao International Institute of Medicine Shanghai Tongren Hospital/Faculty of Basic Medicine Shanghai Institute of Immunology Department of Immunology and Microbiology Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| |
Collapse
|
10
|
Baker F, Polat IH, Abou-El-Ardat K, Alshamleh I, Thoelken M, Hymon D, Gubas A, Koschade SE, Vischedyk JB, Kaulich M, Schwalbe H, Shaid S, Brandts CH. Metabolic Rewiring Is Essential for AML Cell Survival to Overcome Autophagy Inhibition by Loss of ATG3. Cancers (Basel) 2021; 13:6142. [PMID: 34885250 PMCID: PMC8657081 DOI: 10.3390/cancers13236142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 01/05/2023] Open
Abstract
Autophagy is an important survival mechanism that allows recycling of nutrients and removal of damaged organelles and has been shown to contribute to the proliferation of acute myeloid leukemia (AML) cells. However, little is known about the mechanism by which autophagy- dependent AML cells can overcome dysfunctional autophagy. In our study we identified autophagy related protein 3 (ATG3) as a crucial autophagy gene for AML cell proliferation by conducting a CRISPR/Cas9 dropout screen with a library targeting around 200 autophagy-related genes. shRNA-mediated loss of ATG3 impaired autophagy function in AML cells and increased their mitochondrial activity and energy metabolism, as shown by elevated mitochondrial ROS generation and mitochondrial respiration. Using tracer-based NMR metabolomics analysis we further demonstrate that the loss of ATG3 resulted in an upregulation of glycolysis, lactate production, and oxidative phosphorylation. Additionally, loss of ATG3 strongly sensitized AML cells to the inhibition of mitochondrial metabolism. These findings highlight the metabolic vulnerabilities that AML cells acquire from autophagy inhibition and support further exploration of combination therapies targeting autophagy and mitochondrial metabolism in AML.
Collapse
Affiliation(s)
- Fatima Baker
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
| | - Ibrahim H. Polat
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
| | - Khalil Abou-El-Ardat
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany;
| | - Islam Alshamleh
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Marlyn Thoelken
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
| | - Daniel Hymon
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Andrea Gubas
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, 60590 Frankfurt am Main, Germany;
| | - Sebastian E. Koschade
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany;
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, 60590 Frankfurt am Main, Germany;
| | - Jonas B. Vischedyk
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany;
| | - Manuel Kaulich
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany;
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, 60590 Frankfurt am Main, Germany;
- Cardio-Pulmonary Institute, 60590 Frankfurt am Main, Germany
| | - Harald Schwalbe
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Shabnam Shaid
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
- University Cancer Center Frankfurt (UCT), University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
| | - Christian H. Brandts
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany;
- University Cancer Center Frankfurt (UCT), University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Tang J, Wang D, Shen Y, Xue F. ATG16L2 overexpression is associated with a good prognosis in colorectal cancer. J Gastrointest Oncol 2021; 12:2192-2202. [PMID: 34790384 DOI: 10.21037/jgo-21-495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
Background Colorectal cancer (CRC) is a highly aggressive, high-incidence malignancy. Several biomarkers associated with the prognosis and metastasis of CRC have been identified. Our study aimed to evaluate the value of ATG16L2 protein as a new biomarker to predict the prognosis of patients with CRC. Methods One hundred and fifty-two pairs of paraffin-embedded tissue samples and 19 fresh tissue samples were collected from the Department of Pathology of Renji Hospital, Shanghai Jiao Tong University School of Medicine. All the patients had undergone surgery in the hospital's Department of Gastrointestinal Surgery between 2013 and 2014. The samples were arranged on two tissue microarrays of normal (n=152) and tumor (n=152) tissue. The tissues were immunostained and graded as low (<50%) or high (≥50%) according to the proportion of ATG16L2-positive cells. An overexpression plasmid was constructed and transfected into RKO cells, and the cell proliferation and migration ability were detected. Finally, Flag-ATG16L2 RKO cells subcutaneous injection into the skin of BALB/c nude mice to determine the effects of ATG16L2 on the growth of subcutaneously transplanted tumors. Results ATG16L2 expression was negatively correlated with lymph node metastasis (P<0.05) and tumor-node-metastasis stage (P<0.05). High ATG16L2 expression in tumor tissues was related to a good prognosis, with patients with a high expression of ATG16L2 displaying longer overall survival. In vitro, overexpression of ATG16L2 in a CRC cell line RKO cell led to a decrease in cell proliferation but had no obvious influence on cell migration. In vivo, the mice in the Flag-NC (as control) group exhibited faster tumor growth than those in the experiment group. Conclusions ATG16L2 expression is positively associated with patient prognosis in CRC. Further, ATG16L2 can negatively affect CRC cell proliferation in vitro and in vivo.
Collapse
Affiliation(s)
- Jian Tang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dongyang Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuguang Shen
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Xue
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Zhang S, Hama Y, Mizushima N. The evolution of autophagy proteins - diversification in eukaryotes and potential ancestors in prokaryotes. J Cell Sci 2021; 134:270774. [PMID: 34228793 DOI: 10.1242/jcs.233742] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a degradative pathway for cytoplasmic constituents, and is conserved across eukaryotes. Autophagy-related (ATG) genes have undergone extensive multiplications and losses in different eukaryotic lineages, resulting in functional diversification and specialization. Notably, even though bacteria and archaea do not possess an autophagy pathway, they do harbor some remote homologs of Atg proteins, suggesting that preexisting proteins were recruited when the autophagy pathway developed during eukaryogenesis. In this Review, we summarize our current knowledge on the distribution of Atg proteins within eukaryotes and outline the major multiplication and loss events within the eukaryotic tree. We also discuss the potential prokaryotic homologs of Atg proteins identified to date, emphasizing the evolutionary relationships and functional differences between prokaryotic and eukaryotic proteins.
Collapse
Affiliation(s)
- Sidi Zhang
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yutaro Hama
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Diehl V, Wegner M, Grumati P, Husnjak K, Schaubeck S, Gubas A, Shah V, Polat I, Langschied F, Prieto-Garcia C, Müller K, Kalousi A, Ebersberger I, Brandts C, Dikic I, Kaulich M. Minimized combinatorial CRISPR screens identify genetic interactions in autophagy. Nucleic Acids Res 2021; 49:5684-5704. [PMID: 33956155 PMCID: PMC8191801 DOI: 10.1093/nar/gkab309] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Combinatorial CRISPR-Cas screens have advanced the mapping of genetic interactions, but their experimental scale limits the number of targetable gene combinations. Here, we describe 3Cs multiplexing, a rapid and scalable method to generate highly diverse and uniformly distributed combinatorial CRISPR libraries. We demonstrate that the library distribution skew is the critical determinant of its required screening coverage. By circumventing iterative cloning of PCR-amplified oligonucleotides, 3Cs multiplexing facilitates the generation of combinatorial CRISPR libraries with low distribution skews. We show that combinatorial 3Cs libraries can be screened with minimal coverages, reducing associated efforts and costs at least 10-fold. We apply a 3Cs multiplexing library targeting 12,736 autophagy gene combinations with 247,032 paired gRNAs in viability and reporter-based enrichment screens. In the viability screen, we identify, among others, the synthetic lethal WDR45B-PIK3R4 and the proliferation-enhancing ATG7-KEAP1 genetic interactions. In the reporter-based screen, we identify over 1,570 essential genetic interactions for autophagy flux, including interactions among paralogous genes, namely ATG2A-ATG2B, GABARAP-MAP1LC3B and GABARAP-GABARAPL2. However, we only observe few genetic interactions within paralogous gene families of more than two members, indicating functional compensation between them. This work establishes 3Cs multiplexing as a platform for genetic interaction screens at scale.
Collapse
Affiliation(s)
- Valentina Diehl
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Martin Wegner
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Paolo Grumati
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Koraljka Husnjak
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Simone Schaubeck
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Andrea Gubas
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Varun Jayeshkumar Shah
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ibrahim H Polat
- Department of Medicine, Hematology/Oncology, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
| | - Felix Langschied
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Cristian Prieto-Garcia
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Konstantin Müller
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Alkmini Kalousi
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIK-F), Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| | - Christian H Brandts
- Department of Medicine, Hematology/Oncology, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), University Hospital, Goethe University, Frankfurt, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, 60590 Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Manuel Kaulich
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, 60590 Frankfurt am Main, Germany
| |
Collapse
|
14
|
Li L, Gong Y, Xu K, Chen W, Xia J, Cheng Z, Li L, Yu R, Mu J, Le X, Xiang Q, Peng W, Tang J, Xiang T. ZBTB28 induces autophagy by regulation of FIP200 and Bcl-XL facilitating cervical cancer cell apoptosis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:150. [PMID: 33931087 PMCID: PMC8086320 DOI: 10.1186/s13046-021-01948-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/14/2021] [Indexed: 12/21/2022]
Abstract
Background Among the common preventable cancers of women, cervical cancer has the highest morbidity. It is curable if detected at an early stage. However, reliable diagnostic and prognostic markers, which relate to physiologic and pathologic regulation of cervical cancer, are not available. In this study, one such potential marker, ZBTB28, was evaluated for its potential usefulness in cervical cancer assessment. Methods Public database analysis, reverse-transcription polymerase chain reaction (PCR), and methylation-specific PCR were employed to analyze ZBTB28 expression and promoter methylation. The importance of ZBTB28 in cervical cancer cells was assessed by cellular and molecular analysis in vitro and in vivo. Results This study assessed the anti-tumor effects of the transcription factor, ZBTB28, which is often silenced in cervical cancer due to CpG methylation of its promoter. We found ZBTB28 to directly affect cervical cancer cell proliferation, apoptosis, autophagy, and tumorigenesis. Also, it increased cancer cell chemosensitivity to Paclitaxel, Cisplatin, and 5-fluorouracil. Ectopic ZBTB28 expression inhibited the growth of cervical cancer xenografts in nude mice. Furthermore, electron microscopy demonstrated ZBTB28 to induce autophagosomes in cervical cancer cells. ZBTB28 induced cellular autophagy by the degradation of Bcl-XL, reduction of the Bcl-XL-BECN1 complex, and by interaction with the autophagy-related gene FIP200. ZBTB28-induced autophagy of cervical cancer cells was shown to mediate cellular apoptosis through the regulation of FIP200. Conclusion These findings identify ZBTB28 as a tumor suppressor gene that can induce autophagy-related apoptosis in cervical cancer cells. As such, ZBTB28 may be a target for the treatment of uterine-cervical carcinoma. Further, ZBTB28 promoter methylation analysis may offer a new objective strategy for cervical cancer screening. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01948-0.
Collapse
Affiliation(s)
- Li Li
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, Yuzhong District, China
| | - Yijia Gong
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, Yuzhong District, China
| | - Ke Xu
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, Yuzhong District, China
| | - Weihong Chen
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, Yuzhong District, China
| | - Jiuyi Xia
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, Yuzhong District, China
| | - Zhaobo Cheng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, Yuzhong District, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Renjie Yu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, Yuzhong District, China
| | - Junhao Mu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, Yuzhong District, China
| | - Xin Le
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, Yuzhong District, China
| | - Qin Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, Yuzhong District, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, Yuzhong District, China
| | - Junying Tang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, Yuzhong District, China.
| |
Collapse
|
15
|
Caliskan M, Brown CD, Maranville JC. A catalog of GWAS fine-mapping efforts in autoimmune disease. Am J Hum Genet 2021; 108:549-563. [PMID: 33798443 PMCID: PMC8059376 DOI: 10.1016/j.ajhg.2021.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Genome-wide association studies (GWASs) have enabled unbiased identification of genetic loci contributing to common complex diseases. Because GWAS loci often harbor many variants and genes, it remains a major challenge to move from GWASs' statistical associations to the identification of causal variants and genes that underlie these association signals. Researchers have applied many statistical and functional fine-mapping strategies to prioritize genetic variants and genes as potential candidates. There is no gold standard in fine-mapping approaches, but consistent results across different approaches can improve confidence in the fine-mapping findings. Here, we combined text mining with a systematic review and formed a catalog of 85 studies with evidence of fine mapping for at least one autoimmune GWAS locus. Across all fine-mapping studies, we compiled 230 GWAS loci with allelic heterogeneity estimates and predictions of causal variants and trait-relevant genes. These 230 loci included 455 combinations of locus-by-disease association signals with 15 autoimmune diseases. Using these estimates, we assessed the probability of mediating disease risk associations across genes in GWAS loci and identified robust signals of causal disease biology. We predict that this comprehensive catalog of GWAS fine-mapping efforts in autoimmune disease will greatly help distill the plethora of information in the field and inform therapeutic strategies.
Collapse
Affiliation(s)
- Minal Caliskan
- Department of Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, NJ 08540, USA.
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph C Maranville
- Department of Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, NJ 08540, USA
| |
Collapse
|
16
|
Hamaoui D, Subtil A. ATG16L1 functions in cell homeostasis beyond autophagy. FEBS J 2021; 289:1779-1800. [PMID: 33752267 DOI: 10.1111/febs.15833] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/17/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Atg16-like (ATG16L) proteins were identified in higher eukaryotes for their resemblance to Atg16, a yeast protein previously characterized as a subunit of the Atg12-Atg5/Atg16 complex. In yeast, this complex catalyzes the lipidation of Atg8 on pre-autophagosomal structures and is therefore required for the formation of autophagosomes. In higher eukaryotes, ATG16L1 is also almost exclusively present as part of an ATG12-ATG5/ATG16L1 complex and has the same essential function in autophagy. However, ATG16L1 is three times bigger than Atg16. It displays, in particular, a carboxy-terminal extension, including a WD40 domain, which provides a platform for interaction with a variety of proteins, and allows for the recruitment of the ATG12-ATG5/ATG16L1 complex to membranes under different contexts. Furthermore, detailed analyses at the cellular level have revealed that some of the ATG16L1-driven activities are independent of the lipidation reaction catalyzed by the ATG12-ATG5/ATG16L1 complex. At the organ level, the use of mice that are hypomorphic for Atg16l1, or with cell-specific ablation of its expression, revealed a large panel of consequences of ATG16L1 dysfunctions. In this review, we recapitulate the current knowledge on ATG16L1 expression and functions. We emphasize, in particular, how it broadly acts as a brake on inflammation, thereby contributing to maintaining cell homeostasis. We also report on independent studies that converge to show that ATG16L1 is an important player in the regulation of intracellular traffic. Overall, autophagy-independent functions of ATG16L1 probably account for more of the phenotypes associated with ATG16L1 deficiencies than currently appreciated.
Collapse
Affiliation(s)
- Daniel Hamaoui
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut Pasteur, UMR3691 CNRS, Paris, France
| | - Agathe Subtil
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut Pasteur, UMR3691 CNRS, Paris, France
| |
Collapse
|
17
|
Mo JJ, Zhang W, Wen QW, Wang TH, Qin W, Zhang Z, Huang H, Cen H, Wu XD. Genetic association analysis of ATG16L1 rs2241880, rs6758317 and ATG16L2 rs11235604 polymorphisms with rheumatoid arthritis in a Chinese population. Int Immunopharmacol 2021; 93:107378. [PMID: 33529915 DOI: 10.1016/j.intimp.2021.107378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/17/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE This study was performed to test whether ATG16L1 rs2241880, rs6758317 and ATG16L2 rs11235604 polymorphisms were associated with RA and further examine the genetic interaction between ATG16L1 and ATG16L2 in RA among a Chinese population. METHODS A total of 594 RA patients and 604 healthy controls were included, and the genetic polymorphisms were genotyped based on HI-SNP technology. RESULTS Significant associations of ATG16L1 rs2241880 polymorphism with RA (T/T versus C/T + C/C, OR = 1.32, 95% CI 1.04-1.67, P = 0.02), cyclic citrullinated peptide (CCP)-positive RA (genotype comparison, P = 5.38 × 10-3; T/T versus C/T + C/C, OR = 1.45, 95% CI 1.12-1.87, P = 4.86 × 10-3) and rheumatoid factor (RF)-positive RA (genotype comparison, P = 0.03; T versus C, OR = 1.23, 95% CI 1.01-1.49, P = 0.04; T/T versus C/T + C/C, OR = 1.44, 95% CI 1.10-1.88, P = 7.62 × 10-3) were found. Significant genetic interaction between ATG16L1 rs2241880 and ATG16L2 rs11235604 was associated RA (P = 0.03), and significant genetic interaction between ATG16L1 rs6758317 and ATG16L2 rs11235604 was associated with RA (P = 7.57 × 10-3), CCP-positive RA (P = 0.01) and RF-positive RA (P = 0.01). Consistently, stratification analysis found that significant associations of RA with ATG16L1 rs2241880, rs6758317 polymorphisms were only detected among individuals carrying C/T genotype of the ATG16L2 rs11235604 polymorphism. CONCLUSIONS Our results indicated that ATG16L1 rs2241880 polymorphism was associated with RA in Chinese population, and provided evidence for genetic interaction between ATG16L1 and ATG16L2 in determing the development of RA, highlighting the involvement of autophagy in the pathogenesis of RA.
Collapse
Affiliation(s)
- Ji-Jun Mo
- Department of Physical Examination, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang, PR China
| | - Wei Zhang
- Department of Preventive Medicine, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang 315211, PR China
| | - Qin-Wen Wen
- Department of Rheumatology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, 59 Liuting Road, Ningbo, Zhejiang 315010, PR China
| | - Ting-Hui Wang
- Department of Rheumatology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, 59 Liuting Road, Ningbo, Zhejiang 315010, PR China
| | - Wen Qin
- Department of Rheumatology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, 59 Liuting Road, Ningbo, Zhejiang 315010, PR China
| | - Zhen Zhang
- Department of Rheumatology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, 59 Liuting Road, Ningbo, Zhejiang 315010, PR China
| | - Hua Huang
- Department of Rheumatology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, 59 Liuting Road, Ningbo, Zhejiang 315010, PR China
| | - Han Cen
- Department of Preventive Medicine, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang 315211, PR China.
| | - Xiu-Di Wu
- Department of Rheumatology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, 59 Liuting Road, Ningbo, Zhejiang 315010, PR China.
| |
Collapse
|
18
|
Tamargo-Gómez I, Fernández ÁF, Mariño G. Pathogenic Single Nucleotide Polymorphisms on Autophagy-Related Genes. Int J Mol Sci 2020; 21:ijms21218196. [PMID: 33147747 PMCID: PMC7672651 DOI: 10.3390/ijms21218196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, the study of single nucleotide polymorphisms (SNPs) has gained increasing importance in biomedical research, as they can either be at the molecular origin of a determined disorder or directly affect the efficiency of a given treatment. In this regard, sequence variations in genes involved in pro-survival cellular pathways are commonly associated with pathologies, as the alteration of these routes compromises cellular homeostasis. This is the case of autophagy, an evolutionarily conserved pathway that counteracts extracellular and intracellular stressors by mediating the turnover of cytosolic components through lysosomal degradation. Accordingly, autophagy dysregulation has been extensively described in a wide range of human pathologies, including cancer, neurodegeneration, or inflammatory alterations. Thus, it is not surprising that pathogenic gene variants in genes encoding crucial effectors of the autophagosome/lysosome axis are increasingly being identified. In this review, we present a comprehensive list of clinically relevant SNPs in autophagy-related genes, highlighting the scope and relevance of autophagy alterations in human disease.
Collapse
Affiliation(s)
- Isaac Tamargo-Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Álvaro F. Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
- Correspondence: (Á.F.F.); (G.M.); Tel.: +34-985652416 (G.M.)
| | - Guillermo Mariño
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
- Correspondence: (Á.F.F.); (G.M.); Tel.: +34-985652416 (G.M.)
| |
Collapse
|
19
|
Abstract
Autophagy requires the formation of membrane vesicles, known as autophagosomes, that engulf cellular cargoes and subsequently recruit lysosomal hydrolases for the degradation of their contents. A number of autophagy-related proteins act to mediate the de novo biogenesis of autophagosomes and vesicular trafficking events that are required for autophagy. Of these proteins, ATG16L1 is a key player that has important functions at various stages of autophagy. Numerous recent studies have begun to unravel novel activities of ATG16L1, including interactions with proteins and lipids, and how these mediate its role during autophagy and autophagy-related processes. Various domains have been identified within ATG16L1 that mediate its functions in recognising single and double membranes and activating subsequent autophagy-related enzymatic activities required for the recruitment of lysosomes. These recent findings, as well as the historical discovery of ATG16L1, pathological relevance, unresolved questions and contradictory observations, will be discussed here.
Collapse
Affiliation(s)
- Noor Gammoh
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| |
Collapse
|