1
|
Yu M, Lin A, Baharom F, Li S, Legendre M, Covés-Datson E, Sohlberg E, Schlisio S, Loré K, Markovitz DM, Smed-Sörensen A. A genetically engineered therapeutic lectin inhibits human influenza A virus infection and sustains robust virus-specific CD8 T cell expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608041. [PMID: 39211151 PMCID: PMC11360990 DOI: 10.1101/2024.08.15.608041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Native banana lectin (BanLec) is antiviral but highly mitogenic, which limits its therapeutic value. In contrast, the genetically engineered H84T BanLec (H84T) is not mitogenic but remains effective against influenza A virus (IAV) infection in mouse models. However, the potency and effect of H84T on human immune cells and IAV-specific immune responses is undetermined. We found that H84T efficiently inhibited IAV replication in human dendritic cells (DCs) from blood and tonsils, which preserved DC viability and allowed acquisition and presentation of viral antigen. Consequently, H84T-treated DCs initiated effective expansion of IAV-specific CD8 T cells. Furthermore, H84T preserved the capacity of IAV-exposed DCs to present a second non-IAV antigen and induce robust CD8 T cell expansion. This supports H84T as a potent antiviral in humans as it effectively inhibits IAV infection without disrupting DC function, and preserves induction of antigen-specific adaptive immune responses against diverse antigens, which likely is clinically beneficial.
Collapse
|
2
|
Oda H, Kubo S, Tada A, Yago T, Sugita C, Yoshida H, Toida T, Tanaka M, Kurokawa M. Effects of Bovine Lactoferrin on the Maintenance of Respiratory and Systemic Physical Conditions in Healthy Adults-A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2023; 15:3959. [PMID: 37764743 PMCID: PMC10537451 DOI: 10.3390/nu15183959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVES We investigated the effects of bovine lactoferrin (LF) on the maintenance of the respiratory and systemic physical conditions. METHODS A randomized, double-blind, placebo-controlled trial was conducted. Healthy adults at Kyushu University of Health and Welfare ingested a placebo or bovine LF (200 mg/day) for 12 weeks. The primary endpoints were the total respiratory and systemic symptom scores. The secondary endpoint was the activity of plasmacytoid dendritic cells (pDCs) in peripheral blood. RESULTS A total of 157 subjects were randomized (placebo, n = 79; LF, n = 78), of whom, 12 dropped out. The remaining 145 participants were included in the full analysis set (placebo group, n = 77; LF group, n = 68). The total scores for respiratory and systemic symptoms during the intervention were significantly lower in the LF group than in the placebo group. The expression of CD86 and HLA-DR on pDCs was significantly higher in the LF group than in the placebo group at week 12. Adverse events were comparable between the groups, and no adverse drug reactions were observed. CONCLUSIONS These results suggest that orally ingested LF supports the normal immune system via maintaining pDC activity, and maintains respiratory and systemic physical conditions in healthy adults.
Collapse
Affiliation(s)
- Hirotsugu Oda
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan
| | - Shutaro Kubo
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan
| | - Asuka Tada
- International BtoB Business Department, International Division, Morinaga Milk Industry Co., Ltd., 5-33-1, Shiba, Minato 108-8384, Japan
| | - Takumi Yago
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan
| | - Chihiro Sugita
- Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1, Yoshino, Nobeoka 882-8508, Japan
| | - Hiroki Yoshida
- Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1, Yoshino, Nobeoka 882-8508, Japan
| | - Tatsunori Toida
- School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1, Yoshino, Nobeoka 882-8508, Japan
| | - Miyuki Tanaka
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan
| | - Masahiko Kurokawa
- Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1, Yoshino, Nobeoka 882-8508, Japan
| |
Collapse
|
3
|
Vangeti S, Falck-Jones S, Yu M, Österberg B, Liu S, Asghar M, Sondén K, Paterson C, Whitley P, Albert J, Johansson N, Färnert A, Smed-Sörensen A. Human influenza virus infection elicits distinct patterns of monocyte and dendritic cell mobilization in blood and the nasopharynx. eLife 2023; 12:77345. [PMID: 36752598 PMCID: PMC9977282 DOI: 10.7554/elife.77345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/07/2023] [Indexed: 02/09/2023] Open
Abstract
During respiratory viral infections, the precise roles of monocytes and dendritic cells (DCs) in the nasopharynx in limiting infection and influencing disease severity are incompletely described. We studied circulating and nasopharyngeal monocytes and DCs in healthy controls (HCs) and in patients with mild to moderate infections (primarily influenza A virus [IAV]). As compared to HCs, patients with acute IAV infection displayed reduced DC but increased intermediate monocytes frequencies in blood, and an accumulation of most monocyte and DC subsets in the nasopharynx. IAV patients had more mature monocytes and DCs in the nasopharynx, and higher levels of TNFα, IL-6, and IFNα in plasma and the nasopharynx than HCs. In blood, monocytes were the most frequent cellular source of TNFα during IAV infection and remained responsive to additional stimulation with TLR7/8L. Immune responses in older patients skewed towards increased monocyte frequencies rather than DCs, suggesting a contributory role for monocytes in disease severity. In patients with other respiratory virus infections, we observed changes in monocyte and DC frequencies in the nasopharynx distinct from IAV patients, while differences in blood were more similar across infection groups. Using SomaScan, a high-throughput aptamer-based assay to study proteomic changes between patients and HCs, we found differential expression of innate immunity-related proteins in plasma and nasopharyngeal secretions of IAV and SARS-CoV-2 patients. Together, our findings demonstrate tissue-specific and pathogen-specific patterns of monocyte and DC function during human respiratory viral infections and highlight the importance of comparative investigations in blood and the nasopharynx.
Collapse
Affiliation(s)
- Sindhu Vangeti
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Sara Falck-Jones
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Meng Yu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Björn Österberg
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Sang Liu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Muhammad Asghar
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska InstitutetStockholmSweden
- Department of Infectious Diseases, Karolinska University HospitalStockholmSweden
| | - Klara Sondén
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska InstitutetStockholmSweden
- Department of Infectious Diseases, Karolinska University HospitalStockholmSweden
| | | | | | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska InstitutetStockholmSweden
- Department of Clinical Microbiology, Karolinska University HospitalStockholmSweden
| | - Niclas Johansson
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska InstitutetStockholmSweden
- Department of Infectious Diseases, Karolinska University HospitalStockholmSweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska InstitutetStockholmSweden
- Department of Infectious Diseases, Karolinska University HospitalStockholmSweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| |
Collapse
|
4
|
Falck‐Jones S, Österberg B, Smed‐Sörensen A. Respiratory and systemic monocytes, dendritic cells, and myeloid-derived suppressor cells in COVID-19: Implications for disease severity. J Intern Med 2023; 293:130-143. [PMID: 35996885 PMCID: PMC9538918 DOI: 10.1111/joim.13559] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since the beginning of the SARS-CoV-2 pandemic in 2020, researchers worldwide have made efforts to understand the mechanisms behind the varying range of COVID-19 disease severity. Since the respiratory tract is the site of infection, and immune cells differ depending on their anatomical location, studying blood is not sufficient to understand the full immunopathogenesis in patients with COVID-19. It is becoming increasingly clear that monocytes, dendritic cells (DCs), and monocytic myeloid-derived suppressor cells (M-MDSCs) are involved in the immunopathology of COVID-19 and may play important roles in determining disease severity. Patients with mild COVID-19 display an early antiviral (interferon) response in the nasopharynx, expansion of activated intermediate monocytes, and low levels of M-MDSCs in blood. In contrast, patients with severe COVID-19 seem to lack an early efficient induction of interferons, and skew towards a more suppressive response in blood. This is characterized by downregulation of activation markers and decreased functional capacity of blood monocytes and DCs, reduced circulating DCs, and increased levels of HLA-DRlo CD14+ M-MDSCs. These suppressive characteristics could potentially contribute to delayed T-cell responses in severe COVID-19 cases. In contrast, airways of patients with severe COVID-19 display hyperinflammation with elevated levels of inflammatory monocytes and monocyte-derived macrophages, and reduced levels of tissue-resident alveolar macrophages. These monocyte-derived cells contribute to excess inflammation by producing cytokines and chemokines. Here, we review the current knowledge on the role of monocytes, DCs, and M-MDSCs in COVID-19 and how alterations and the anatomical distribution of these cell populations may relate to disease severity.
Collapse
Affiliation(s)
- Sara Falck‐Jones
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Björn Österberg
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Anna Smed‐Sörensen
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska InstitutetKarolinska University HospitalStockholmSweden
| |
Collapse
|
5
|
Kubo S, Miyakawa M, Tada A, Oda H, Motobayashi H, Iwabuchi S, Tamura S, Tanaka M, Hashimoto S. Lactoferrin and its digestive peptides induce interferon-α production and activate plasmacytoid dendritic cells ex vivo. Biometals 2022; 36:563-573. [PMID: 36018422 PMCID: PMC10181974 DOI: 10.1007/s10534-022-00436-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) recognise viral single-stranded RNA (ssRNA) or CpG DNA via Toll-like receptor (TLR)-7 and TLR9, and produce interferon (IFN)-α. Activated pDCs upregulate human leukocyte antigen (HLA)-DR and CD86 expression levels. Ingestion of bovine lactoferrin (LF) activates pDCs, but little is known about its effects. In this study, the effects of LF and its pepsin hydrolysate (LFH) on the production of IFN-α from peripheral blood mononuclear cells (PBMCs) and pDCs were examined. PBMCs were prepared from peripheral blood of healthy adults and incubated with LF, LFH, or lactoferricin (LFcin) in the absence or presence of ssRNA derived from human immunodeficiency virus. The concentration of IFN-α in the supernatant and the expression levels of IFN-α, HLA-DR, and CD86 in pDCs were quantified by enzyme-linked immunosorbent assay and flow cytometry. In the absence of ssRNA, the concentration of IFN-α was negligible and LF had no effect on it. In the presence of ssRNA, IFN-α was detected at a certain level, and LF and LFH significantly increased its concentration. The increase caused by LFH and LFcin were comparable. In addition, LF significantly upregulated the expression levels of IFN-α, HLA-DR, and CD86 in pDCs. LF and its digestive peptides induced IFN-α production and activated pDCs in the presence of ssRNA, suggesting that LF modulates the immune system by promoting pDC activation upon viral recognition.
Collapse
Affiliation(s)
- Shutaro Kubo
- Food Ingredients and Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 1-83, 5, Higashihara, Zama, Kanagawa, Japan.
| | - Momoko Miyakawa
- Food Ingredients and Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 1-83, 5, Higashihara, Zama, Kanagawa, Japan
| | - Asuka Tada
- Food Ingredients and Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 1-83, 5, Higashihara, Zama, Kanagawa, Japan
| | - Hirotsugu Oda
- Food Ingredients and Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 1-83, 5, Higashihara, Zama, Kanagawa, Japan
| | - Hideki Motobayashi
- Second Department of Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, Japan
| | - Shinobu Tamura
- Department of Hematology/Oncology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, Japan
| | - Miyuki Tanaka
- Food Ingredients and Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 1-83, 5, Higashihara, Zama, Kanagawa, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, Japan
| |
Collapse
|
6
|
Said EA, Al-Dughaishi S, Al-Hatmi W, Al-Reesi I, Al-Riyami M, Al-Balushi MS, Al-Bimani A, Al-Busaidi JZ, Al-Khabori M, Al-Kindi S, Procopio FA, Al-Rashdi A, Al-Ansari A, Babiker H, Koh CY, Al-Naamani K, Pantaleo G, Al-Jabri AA. Human macrophages and monocyte-derived dendritic cells stimulate the proliferation of endothelial cells through midkine production. PLoS One 2022; 17:e0267662. [PMID: 35476724 PMCID: PMC9045650 DOI: 10.1371/journal.pone.0267662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 04/12/2022] [Indexed: 11/19/2022] Open
Abstract
The cytokine midkine (MK) is a growth factor that is involved in different physiological processes including tissue repair, inflammation, the development of different types of cancer and the proliferation of endothelial cells. The production of MK by primary human macrophages and monocyte-derived dendritic cells (MDDCs) was never described. We investigated whether MK is produced by primary human monocytes, macrophages and MDDCs and the capacity of macrophages and MDDCs to modulate the proliferation of endothelial cells through MK production. The TLR stimulation of human monocytes, macrophages and MDDCs induced an average of ≈200-fold increase in MK mRNA and the production of an average of 78.2, 62, 179 pg/ml MK by monocytes, macrophages and MDDCs respectively (p < 0.05). MK production was supported by its detection in CD11c+ cells, CLEC4C+ cells and CD68+ cells in biopsies of human tonsils showing reactive lymphoid follicular hyperplasia. JSH-23, which selectively inhibits NF-κB activity, decreased the TLR-induced production of MK in PMBCs, macrophages and MDDCs compared to the control (p < 0.05). The inhibition of MK production by macrophages and MDDCs using anti-MK siRNA decreased the capacity of their supernatants to stimulate the proliferation of endothelial cells (p = 0.01 and 0.04 respectively). This is the first study demonstrating that the cytokine MK is produced by primary human macrophages and MDDCs upon TLR triggering, and that these cells can stimulate endothelial cell proliferation through MK production. Our results also suggest that NF-κB plays a potential role in the production of MK in macrophages and MDDCs upon TLR stimulation. The production of MK by macrophages and MDDCs and the fact that these cells can enhance the proliferation of endothelial cells by producing MK are novel immunological phenomena that have potentially important therapeutic implications.
Collapse
Affiliation(s)
- Elias A. Said
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- * E-mail:
| | - Sumaya Al-Dughaishi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Wadha Al-Hatmi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Iman Al-Reesi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Marwa Al-Riyami
- Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mohammed S. Al-Balushi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Atika Al-Bimani
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Juma Z. Al-Busaidi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Murtadha Al-Khabori
- Department of Hematology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Salam Al-Kindi
- Department of Hematology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Francesco A. Procopio
- Laboratory of AIDS Immunopathogenesis, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) University of Lausanne, Lauzane, Switzerland
| | - Afrah Al-Rashdi
- Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Aliyaa Al-Ansari
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Hamza Babiker
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Crystal Y. Koh
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | | | - Giuseppe Pantaleo
- Laboratory of AIDS Immunopathogenesis, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) University of Lausanne, Lauzane, Switzerland
| | - Ali A. Al-Jabri
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
7
|
Cuypers F, Schäfer A, Skorka SB, Surabhi S, Tölken LA, Paulikat AD, Kohler TP, Otto SA, Mettenleiter TC, Hammerschmidt S, Blohm U, Siemens N. Innate immune responses at the asymptomatic stage of influenza A viral infections of Streptococcus pneumoniae colonized and non-colonized mice. Sci Rep 2021; 11:20609. [PMID: 34663857 PMCID: PMC8523748 DOI: 10.1038/s41598-021-00211-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
Seasonal Influenza A virus (IAV) infections can promote dissemination of upper respiratory tract commensals such as Streptococcus pneumoniae to the lower respiratory tract resulting in severe life-threatening pneumonia. Here, we aimed to compare innate immune responses in the lungs of healthy colonized and non-colonized mice after IAV challenge at the initial asymptomatic stage of infection. Responses during a severe bacterial pneumonia were profiled for comparison. Cytokine and innate immune cell imprints of the lungs were analyzed. Irrespective of the colonization status, mild H1N1 IAV infection was characterized by a bi-phasic disease progression resulting in full recovery of the animals. Already at the asymptomatic stage of viral infection, the pro-inflammatory cytokine response was as high as in pneumococcal pneumonia. Flow cytometry analyses revealed an early influx of inflammatory monocytes into the lungs. Neutrophil influx was mostly limited to bacterial infections. The majority of cells, except monocytes, displayed an activated phenotype characterized by elevated CCR2 and MHCII expression. In conclusion, we show that IAV challenge of colonized healthy mice does not automatically result in severe co-infection. However, a general local inflammatory response was noted at the asymptomatic stage of infection irrespective of the infection type.
Collapse
Affiliation(s)
- Fabian Cuypers
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Alexander Schäfer
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Island of Riems, Germany
| | - Sebastian B Skorka
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Surabhi Surabhi
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Lea A Tölken
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Antje D Paulikat
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Saskia A Otto
- Institute for Marine Ecosystem and Fisheries Science (IMF), Center for Earth System Research and Sustainability (CEN), University of Hamburg, Hamburg, Germany
| | - Thomas C Mettenleiter
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Island of Riems, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany.
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Island of Riems, Germany
| | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
8
|
Falck-Jones S, Vangeti S, Yu M, Falck-Jones R, Cagigi A, Badolati I, Österberg B, Lautenbach MJ, Åhlberg E, Lin A, Lepzien R, Szurgot I, Lenart K, Hellgren F, Maecker H, Sälde J, Albert J, Johansson N, Bell M, Loré K, Färnert A, Smed-Sörensen A. Functional monocytic myeloid-derived suppressor cells increase in blood but not airways and predict COVID-19 severity. J Clin Invest 2021; 131:144734. [PMID: 33492309 DOI: 10.1172/jci144734] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
The immunopathology of coronavirus disease 2019 (COVID-19) remains enigmatic, causing immunodysregulation and T cell lymphopenia. Monocytic myeloid-derived suppressor cells (M-MDSCs) are T cell suppressors that expand in inflammatory conditions, but their role in acute respiratory infections remains unclear. We studied the blood and airways of patients with COVID-19 across disease severities at multiple time points. M-MDSC frequencies were elevated in blood but not in nasopharyngeal or endotracheal aspirates of patients with COVID-19 compared with healthy controls. M-MDSCs isolated from patients with COVID-19 suppressed T cell proliferation and IFN-γ production partly via an arginase 1-dependent (Arg-1-dependent) mechanism. Furthermore, patients showed increased Arg-1 and IL-6 plasma levels. Patients with COVID-19 had fewer T cells and downregulated expression of the CD3ζ chain. Ordinal regression showed that early M-MDSC frequency predicted subsequent disease severity. In conclusion, M-MDSCs expanded in the blood of patients with COVID-19, suppressed T cells, and were strongly associated with disease severity, indicating a role for M-MDSCs in the dysregulated COVID-19 immune response.
Collapse
Affiliation(s)
- Sara Falck-Jones
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sindhu Vangeti
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Meng Yu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ryan Falck-Jones
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Alberto Cagigi
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Isabella Badolati
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Björn Österberg
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maximilian Julius Lautenbach
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eric Åhlberg
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ang Lin
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Stemirna Therapeutics Inc., Shanghai, China
| | - Rico Lepzien
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Inga Szurgot
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Klara Lenart
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Fredrika Hellgren
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Holden Maecker
- Stanford University Medical Center, Stanford, California, USA
| | - Jörgen Sälde
- Health Care Services Stockholm County (SLSO), Stockholm, Sweden
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology and
| | - Niclas Johansson
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Max Bell
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Alzaid F, Julla J, Diedisheim M, Potier C, Potier L, Velho G, Gaborit B, Manivet P, Germain S, Vidal‐Trecan T, Roussel R, Riveline J, Dalmas E, Venteclef N, Gautier J. Monocytopenia, monocyte morphological anomalies and hyperinflammation characterise severe COVID-19 in type 2 diabetes. EMBO Mol Med 2020; 12:e13038. [PMID: 32816392 PMCID: PMC7461002 DOI: 10.15252/emmm.202013038] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
Early in the COVID-19 pandemic, type 2 diabetes (T2D) was marked as a risk factor for severe disease and mortality. Inflammation is central to the aetiology of both conditions where variations in immune responses can mitigate or aggravate disease course. Identifying at-risk groups based on immunoinflammatory signatures is valuable in directing personalised care and developing potential targets for precision therapy. This observational study characterised immunophenotypic variation associated with COVID-19 severity in T2D. Broad-spectrum immunophenotyping quantified 15 leucocyte populations in peripheral circulation from a cohort of 45 hospitalised COVID-19 patients with and without T2D. Lymphocytopenia and specific loss of cytotoxic CD8+ lymphocytes were associated with severe COVID-19 and requirement for intensive care in both non-diabetic and T2D patients. A morphological anomaly of increased monocyte size and monocytopenia restricted to classical CD14Hi CD16- monocytes was specifically associated with severe COVID-19 in patients with T2D requiring intensive care. Increased expression of inflammatory markers reminiscent of the type 1 interferon pathway (IL6, IL8, CCL2, INFB1) underlaid the immunophenotype associated with T2D. These immunophenotypic and hyperinflammatory changes may contribute to increased voracity of COVID-19 in T2D. These findings allow precise identification of T2D patients with severe COVID-19 as well as provide evidence that the type 1 interferon pathway may be an actionable therapeutic target for future studies.
Collapse
Affiliation(s)
- Fawaz Alzaid
- Cordeliers Research CentreINSERMIMMEDIAB LaboratorySorbonne UniversitéUniversité de ParisParisFrance
| | - Jean‐Baptiste Julla
- Cordeliers Research CentreINSERMIMMEDIAB LaboratorySorbonne UniversitéUniversité de ParisParisFrance
- Department of DiabetesClinical Investigation Centre (CIC‐9504)Lariboisière HospitalAssistance Publique – Hôpitaux de ParisParisFrance
| | - Marc Diedisheim
- Cordeliers Research CentreINSERMIMMEDIAB LaboratorySorbonne UniversitéUniversité de ParisParisFrance
- Department of DiabetologyCochin HospitalAssistance Publique Hôpitaux de ParisUniversité de ParisParisFrance
| | - Charline Potier
- Cordeliers Research CentreINSERMIMMEDIAB LaboratorySorbonne UniversitéUniversité de ParisParisFrance
| | - Louis Potier
- Cordeliers Research CentreINSERMIMMEDIAB LaboratorySorbonne UniversitéUniversité de ParisParisFrance
- Department of Diabetology, Endocrinology and NutritionBichat HospitalAssistance Publique ‐ Hôpitaux de ParisParisFrance
| | - Gilberto Velho
- Cordeliers Research CentreINSERMIMMEDIAB LaboratorySorbonne UniversitéUniversité de ParisParisFrance
| | | | - Philippe Manivet
- Endocrinology, Metabolic Diseases and Nutrition DepartmentAssistance Publique Hôpitaux de MarseilleMarseilleFrance
- Centre de Ressources Biologique “biobank Lariboisière”BB‐0033-00064APHPNordUniversité de ParisParis DiderotHôpital LariboisièreParisFrance
| | - Stéphane Germain
- Center for Interdisciplinary Research in Biology (CIRB)College de France – Centre National de la Recherche Scientifique (CNRS)Institut National de la Santé et de la Recherche Médicale (INSERM)Paris Sciences et Lettres (PSL) Research UniversityParisFrance
| | - Tiphaine Vidal‐Trecan
- Department of DiabetesClinical Investigation Centre (CIC‐9504)Lariboisière HospitalAssistance Publique – Hôpitaux de ParisParisFrance
| | - Ronan Roussel
- Cordeliers Research CentreINSERMIMMEDIAB LaboratorySorbonne UniversitéUniversité de ParisParisFrance
- Department of Diabetology, Endocrinology and NutritionBichat HospitalAssistance Publique ‐ Hôpitaux de ParisParisFrance
| | - Jean‐Pierre Riveline
- Cordeliers Research CentreINSERMIMMEDIAB LaboratorySorbonne UniversitéUniversité de ParisParisFrance
- Department of DiabetesClinical Investigation Centre (CIC‐9504)Lariboisière HospitalAssistance Publique – Hôpitaux de ParisParisFrance
| | - Elise Dalmas
- Cordeliers Research CentreINSERMIMMEDIAB LaboratorySorbonne UniversitéUniversité de ParisParisFrance
| | - Nicolas Venteclef
- Cordeliers Research CentreINSERMIMMEDIAB LaboratorySorbonne UniversitéUniversité de ParisParisFrance
| | - Jean‐François Gautier
- Cordeliers Research CentreINSERMIMMEDIAB LaboratorySorbonne UniversitéUniversité de ParisParisFrance
- Department of DiabetesClinical Investigation Centre (CIC‐9504)Lariboisière HospitalAssistance Publique – Hôpitaux de ParisParisFrance
| |
Collapse
|
10
|
Xi S, Liu K, Xiao C, Hameed M, Ou A, Shao D, Li B, Wei J, Qiu Y, Miao D, Ma Z. Establishment and characterization of the pig tonsil epithelial (PT) cell line as a new model for persist infection of Japanese Encephalitis Virus. Vet Microbiol 2020; 242:108587. [PMID: 32122591 DOI: 10.1016/j.vetmic.2020.108587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 11/17/2022]
Abstract
Japanese encephalitis virus (JEV) causes a serious zoonotic disease worldwide, pig is the reservoir and amplifying host of JEV. JEV can persist infect tonsil in pig, but the relation between persist infection in tonsil and reservoir are not clear until now. A stable pig tonsil cell line is necessary for JEV persist infection research. In this study, we established a continuous epithelial cell line, named PT cell, from the pig tonsil. This cell is susceptible to JEV. We determined the growth characteristics, molecular properties, microstructure profiles of PT cell. JEV is easy to enter PT cell which may partly explain the reason of persist infection. We further determined that LMAN2L, a mannose lectin proteins, is the primary viral receptors for JEV entry in PT cell. IFITM3, an cellular surface antiviral factor, is underexpression in PT cell after JEV infection. All these results provide solid evidence that PT cell will promote additional research on JEV persist infection in pig tonsil.
Collapse
Affiliation(s)
- Shumin Xi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai, 200241, PR China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai, 200241, PR China
| | - Changguang Xiao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai, 200241, PR China
| | - Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai, 200241, PR China
| | - Anni Ou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai, 200241, PR China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai, 200241, PR China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai, 200241, PR China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai, 200241, PR China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai, 200241, PR China
| | - Denian Miao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai, 200241, PR China.
| |
Collapse
|
11
|
The Role of Innate Leukocytes during Influenza Virus Infection. J Immunol Res 2019; 2019:8028725. [PMID: 31612153 PMCID: PMC6757286 DOI: 10.1155/2019/8028725] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023] Open
Abstract
Influenza virus infection is a serious threat to humans and animals, with the potential to cause severe pneumonia and death. Annual vaccination strategies are a mainstay to prevent complications related to influenza. However, protection from the emerging subtypes of influenza A viruses (IAV) even in vaccinated individuals is challenging. Innate immune cells are the first cells to respond to IAV infection in the respiratory tract. Virus replication-induced production of cytokines from airway epithelium recruits innate immune cells to the site of infection. These leukocytes, namely, neutrophils, monocytes, macrophages, dendritic cells, eosinophils, natural killer cells, innate lymphoid cells, and γδ T cells, become activated in response to IAV, to contain the virus and protect the airway epithelium while triggering the adaptive arm of the immune system. This review addresses different anti-influenza virus schemes of innate immune cells and how these cells fine-tune the balance between immunoprotection and immunopathology during IAV infection. Detailed understanding on how these innate responders execute anti-influenza activity will help to identify novel therapeutic targets to halt IAV replication and associated immunopathology.
Collapse
|
12
|
Balan S, Saxena M, Bhardwaj N. Dendritic cell subsets and locations. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:1-68. [PMID: 31810551 DOI: 10.1016/bs.ircmb.2019.07.004] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dendritic cells (DCs) are a unique class of immune cells that act as a bridge between innate and adaptive immunity. The discovery of DCs by Cohen and Steinman in 1973 laid the foundation for DC biology, and the advances in the field identified different versions of DCs with unique properties and functions. DCs originate from hematopoietic stem cells, and their differentiation is modulated by Flt3L. They are professional antigen-presenting cells that patrol the environmental interphase, sites of infection, or infiltrate pathological tissues looking for antigens that can be used to activate effector cells. DCs are critical for the initiation of the cellular and humoral immune response and protection from infectious diseases or tumors. DCs can take up antigens using specialized surface receptors such as endocytosis receptors, phagocytosis receptors, and C type lectin receptors. Moreover, DCs are equipped with an array of extracellular and intracellular pattern recognition receptors for sensing different danger signals. Upon sensing the danger signals, DCs get activated, upregulate costimulatory molecules, produce various cytokines and chemokines, take up antigen and process it and migrate to lymph nodes where they present antigens to both CD8 and CD4 T cells. DCs are classified into different subsets based on an integrated approach considering their surface phenotype, expression of unique and conserved molecules, ontogeny, and functions. They can be broadly classified as conventional DCs consisting of two subsets (DC1 and DC2), plasmacytoid DCs, inflammatory DCs, and Langerhans cells.
Collapse
Affiliation(s)
- Sreekumar Balan
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Mansi Saxena
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nina Bhardwaj
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
13
|
Sprooten J, Ceusters J, Coosemans A, Agostinis P, De Vleeschouwer S, Zitvogel L, Kroemer G, Galluzzi L, Garg AD. Trial watch: dendritic cell vaccination for cancer immunotherapy. Oncoimmunology 2019; 8:e1638212. [PMID: 31646087 PMCID: PMC6791419 DOI: 10.1080/2162402x.2019.1638212] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Dendritic- cells (DCs) have received considerable attention as potential targets for the development of anticancer vaccines. DC-based anticancer vaccination relies on patient-derived DCs pulsed with a source of tumor-associated antigens (TAAs) in the context of standardized maturation-cocktails, followed by their reinfusion. Extensive evidence has confirmed that DC-based vaccines can generate TAA-specific, cytotoxic T cells. Nonetheless, clinical efficacy of DC-based vaccines remains suboptimal, reflecting the widespread immunosuppression within tumors. Thus, clinical interest is being refocused on DC-based vaccines as combinatorial partners for T cell-targeting immunotherapies. Here, we summarize the most recent preclinical/clinical development of anticancer DC vaccination and discuss future perspectives for DC-based vaccines in immuno-oncology.
Collapse
Affiliation(s)
- Jenny Sprooten
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jolien Ceusters
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
- Department of Gynecology and Obstetrics, UZ Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
- Center for Cancer Biology (CCB), VIB, Leuven, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
- Université de Paris Descartes, Paris, France
| | - Abhishek D. Garg
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|