1
|
Su QY, Jiang ZQ, Song XY, Zhang SX. Regulatory B cells in autoimmune diseases: Insights and therapeutic potential. J Autoimmun 2024; 149:103326. [PMID: 39520834 DOI: 10.1016/j.jaut.2024.103326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Autoimmune diseases are characterized by the body's immune system attacking its own cells, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). In recent studies, regulatory B cells (Bregs), which play a vital role in maintaining peripheral tolerance and controlling persistent autoimmune diseases (ADs), have shown great potential in treating ADs. This review synthesizes the latest advancements in targeted therapies for ADs, with a particular emphasis on the subgroups, phenotypic markers, and signal pathways associated with Bregs. Following an examination of these elements, the discussion pivots to innovative Breg-based therapeutic approaches for the management of ADs.
Collapse
Affiliation(s)
- Qin-Yi Su
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Zhong-Qing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Xuan-Yi Song
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Sheng-Xiao Zhang
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
2
|
Aharoni R, Milo R, Arnon R. Glatiramer Acetate for the Treatment of Multiple Sclerosis: From First-Generation Therapy to Elucidation of Immunomodulation and Repair. Pharmacol Rev 2024; 76:1133-1158. [PMID: 39406508 DOI: 10.1124/pharmrev.124.000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 10/18/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS), with a putative autoimmune origin and complex pathogenesis. Modification of the natural history of MS by reducing relapses and slowing disability accumulation was first attained in the 1990 s with the development of the first-generation disease-modifying therapies. Glatiramer acetate (GA), a copolymer of L-alanine, L-lysine, L-glutamic acid, and L-tyrosine, was discovered due to its ability to suppress the animal model of MS, experimental autoimmune encephalomyelitis. Extensive clinical trials and long-term assessments established the efficacy and the safety of GA. Furthermore, studies of the therapeutic processes induced by GA in animal models and in MS patients indicate that GA affects various levels of the innate and the adaptive immune response, generating deviation from proinflammatory to anti-inflammatory pathways. This includes competition for binding to antigen presenting cells; driving dendritic cells, monocytes, and B-cells toward anti-inflammatory responses; and stimulating T-helper 2 and T-regulatory cells. The immune cells stimulated by GA reach the CNS and secrete in situ anti-inflammatory cytokines alleviating the pathological processes. Furthermore, cumulative findings reveal that in addition to its immunomodulatory effect, GA promotes neuroprotective repair processes such as neurotrophic factors secretion, remyelination, and neurogenesis. This review aims to provide an overview of MS pathology diagnosis and treatment as well as the diverse mechanism of action of GA. SIGNIFICANCE STATEMENT: Understanding the complex MS immune pathogenesis provided multiple targets for therapeutic intervention, resulting in a plethora of agents, with various mechanisms of action, efficacy, and safety profiles. However, promoting repair beyond the body's limited spontaneous extent is still a major challenge. GA, one of the first approved disease-modifying therapies, induces diverse immunomodulatory effects. Furthermore, GA treatment results in elevated neurotrophic factors secretion, remyelination and neurogenesis, supporting the notion that immunomodulatory treatment can support in situ a growth-promoting and repair environment.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| | - Ron Milo
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| | - Ruth Arnon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| |
Collapse
|
3
|
Veh J, Ludwig C, Schrezenmeier H, Jahrsdörfer B. Regulatory B Cells-Immunopathological and Prognostic Potential in Humans. Cells 2024; 13:357. [PMID: 38391970 PMCID: PMC10886933 DOI: 10.3390/cells13040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
The aim of the following review is to shed light on the putative role of regulatory B cells (Bregs) in various human diseases and highlight their potential prognostic and therapeutic relevance in humans. Regulatory B cells are a heterogeneous group of B lymphocytes capable of suppressing inflammatory immune reactions. In this way, Bregs contribute to the maintenance of tolerance and immune homeostasis by limiting ongoing immune reactions temporally and spatially. Bregs play an important role in attenuating pathological inflammatory reactions that can be associated with transplant rejection, graft-versus-host disease, autoimmune diseases and allergies but also with infectious, neoplastic and metabolic diseases. Early studies of Bregs identified IL-10 as an important functional molecule, so the IL-10-secreting murine B10 cell is still considered a prototype Breg, and IL-10 has long been central to the search for human Breg equivalents. However, over the past two decades, other molecules that may contribute to the immunosuppressive function of Bregs have been discovered, some of which are only present in human Bregs. This expanded arsenal includes several anti-inflammatory cytokines, such as IL-35 and TGF-β, but also enzymes such as CD39/CD73, granzyme B and IDO as well as cell surface proteins including PD-L1, CD1d and CD25. In summary, the present review illustrates in a concise and comprehensive manner that although human Bregs share common functional immunosuppressive features leading to a prominent role in various human immunpathologies, they are composed of a pool of different B cell types with rather heterogeneous phenotypic and transcriptional properties.
Collapse
Affiliation(s)
- Johanna Veh
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| | - Carolin Ludwig
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| |
Collapse
|
4
|
Mahroum N, Elsalti A, Alwani A, Seida I, Alrais M, Seida R, Esirgun SN, Abali T, Kiyak Z, Zoubi M, Shoenfeld Y. The mosaic of autoimmunity - Finally discussing in person. The 13 th international congress on autoimmunity 2022 (AUTO13) Athens. Autoimmun Rev 2022; 21:103166. [PMID: 35932955 PMCID: PMC9349027 DOI: 10.1016/j.autrev.2022.103166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022]
Abstract
While autoimmunity is a branch of medicine linked to every single organ system via direct and indirect pathways, meeting in person to discuss autoimmunity during the 13th international congress on autoimmunity (AUTO13) with participants from all over the world had a very good reason. The mechanisms involved in autoimmune diseases are of extreme importance and in fact critical in understanding the course of diseases as well as selecting proper therapies. COVID-19 has served as a great example of how autoimmunity is deeply involved in the disease and directly correlated to severity, morbidity, and mortality. For instance, initially the term cytokine storm dominated, then COVID-19 was addressed as the new member of the hyperferritinemic syndrome, and also the use of immunosuppressants in patients with COVID-19 throughout the pandemic, all shed light on the fundamental role of autoimmunity. Unsurprisingly, SARS-CoV-2 was called the “autoimmune virus” during AUTO13. Subsequently, the correlation between autoimmunity and COVID-19 vaccines and post-COVID, all were discussed from different autoimmune aspects during the congress. In addition, updates on the mechanisms of diseases, autoantibodies, novel diagnostics and therapies in regard to autoimmune diseases such as antiphospholipid syndrome, systemic lupus erythematosus, systemic sclerosis and others, were discussed in dedicated sessions. Due to the magnificence of the topics discussed, we aimed to bring in our article hereby, the pearls of AUTO13 in terms of updates, new aspects of autoimmunity, and interesting findings. While more than 500 abstract were presented, concluding all the topics was not in reach, hence major findings were summarized.
Collapse
Affiliation(s)
- Naim Mahroum
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| | - Abdulrahman Elsalti
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Abdulkarim Alwani
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Isa Seida
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Mahmoud Alrais
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ravend Seida
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Sevval Nil Esirgun
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Tunahan Abali
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Zeynep Kiyak
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Majdi Zoubi
- Department of Internal Medicine B, HaEmek Medical Center, Afula, Israel, Affiliated to Technion, Faculty of Medicine, Haifa, Israel
| | | |
Collapse
|
5
|
Monaghan TM, Duggal NA, Rosati E, Griffin R, Hughes J, Roach B, Yang DY, Wang C, Wong K, Saxinger L, Pučić-Baković M, Vučković F, Klicek F, Lauc G, Tighe P, Mullish BH, Blanco JM, McDonald JAK, Marchesi JR, Xue N, Dottorini T, Acharjee A, Franke A, Li Y, Wong GKS, Polytarchou C, Yau TO, Christodoulou N, Hatziapostolou M, Wang M, Russell LA, Kao DH. A Multi-Factorial Observational Study on Sequential Fecal Microbiota Transplant in Patients with Medically Refractory Clostridioides difficile Infection. Cells 2021; 10:3234. [PMID: 34831456 PMCID: PMC8624539 DOI: 10.3390/cells10113234] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is highly effective in recurrent Clostridioides difficile infection (CDI); increasing evidence supports FMT in severe or fulminant Clostridioides difficile infection (SFCDI). However, the multifactorial mechanisms that underpin the efficacy of FMT are not fully understood. Systems biology approaches using high-throughput technologies may help with mechanistic dissection of host-microbial interactions. Here, we have undertaken a deep phenomics study on four adults receiving sequential FMT for SFCDI, in which we performed a longitudinal, integrative analysis of multiple host factors and intestinal microbiome changes. Stool samples were profiled for changes in gut microbiota and metabolites and blood samples for alterations in targeted epigenomic, metabonomic, glycomic, immune proteomic, immunophenotyping, immune functional assays, and T-cell receptor (TCR) repertoires, respectively. We characterised temporal trajectories in gut microbial and host immunometabolic data sets in three responders and one non-responder to sequential FMT. A total of 562 features were used for analysis, of which 78 features were identified, which differed between the responders and the non-responder. The observed dynamic phenotypic changes may potentially suggest immunosenescent signals in the non-responder and may help to underpin the mechanisms accompanying successful FMT, although our study is limited by a small sample size and significant heterogeneity in patient baseline characteristics. Our multi-omics integrative longitudinal analytical approach extends the knowledge regarding mechanisms of efficacy of FMT and highlights preliminary novel signatures, which should be validated in larger studies.
Collapse
Affiliation(s)
- Tanya M. Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Niharika A. Duggal
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK;
| | - Elisa Rosati
- Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Christian-Albrecht University of Kiel, 24105 Kiel, Germany; (E.R.); (A.F.)
| | - Ruth Griffin
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK;
- Synthetic Biology Research Centre, The University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Jamie Hughes
- Synthetic Biology Research Centre, The University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Brandi Roach
- Division of Gastroenterology, Department of Medicine, University of Alberta; Edmonton, Alberta, AB T6G 2G3, Canada; (B.R.); (D.Y.Y.); (C.W.); (K.W.)
| | - David Y. Yang
- Division of Gastroenterology, Department of Medicine, University of Alberta; Edmonton, Alberta, AB T6G 2G3, Canada; (B.R.); (D.Y.Y.); (C.W.); (K.W.)
| | - Christopher Wang
- Division of Gastroenterology, Department of Medicine, University of Alberta; Edmonton, Alberta, AB T6G 2G3, Canada; (B.R.); (D.Y.Y.); (C.W.); (K.W.)
| | - Karen Wong
- Division of Gastroenterology, Department of Medicine, University of Alberta; Edmonton, Alberta, AB T6G 2G3, Canada; (B.R.); (D.Y.Y.); (C.W.); (K.W.)
| | - Lynora Saxinger
- Division of Infectious Diseases, Department of Medicine, University of Alberta; Edmonton, Alberta, AB T6G 2G3, Canada;
| | - Maja Pučić-Baković
- Glycoscience Research Laboratory, Genos Ltd., Borongajska cesta 83H, 10000 Zagreb, Croatia; (M.P.-B.); (F.V.); (F.K.); (G.L.)
| | - Frano Vučković
- Glycoscience Research Laboratory, Genos Ltd., Borongajska cesta 83H, 10000 Zagreb, Croatia; (M.P.-B.); (F.V.); (F.K.); (G.L.)
| | - Filip Klicek
- Glycoscience Research Laboratory, Genos Ltd., Borongajska cesta 83H, 10000 Zagreb, Croatia; (M.P.-B.); (F.V.); (F.K.); (G.L.)
| | - Gordan Lauc
- Glycoscience Research Laboratory, Genos Ltd., Borongajska cesta 83H, 10000 Zagreb, Croatia; (M.P.-B.); (F.V.); (F.K.); (G.L.)
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Paddy Tighe
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Benjamin H. Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (B.H.M.); (J.M.B.); (J.A.K.M.); (J.R.M.)
| | - Jesus Miguens Blanco
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (B.H.M.); (J.M.B.); (J.A.K.M.); (J.R.M.)
| | - Julie A. K. McDonald
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (B.H.M.); (J.M.B.); (J.A.K.M.); (J.R.M.)
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Julian R. Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (B.H.M.); (J.M.B.); (J.A.K.M.); (J.R.M.)
| | - Ning Xue
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham NG7 2UH, UK; (N.X.); (T.D.)
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham NG7 2UH, UK; (N.X.); (T.D.)
| | - Animesh Acharjee
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, UK;
| | - Andre Franke
- Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Christian-Albrecht University of Kiel, 24105 Kiel, Germany; (E.R.); (A.F.)
| | - Yingrui Li
- Shenzhen Digital Life Institute, Shenzhen 518016, China;
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, Department of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Christos Polytarchou
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Health Aging and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (C.P.); (T.O.Y.); (N.C.); (M.H.)
| | - Tung On Yau
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Health Aging and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (C.P.); (T.O.Y.); (N.C.); (M.H.)
| | - Niki Christodoulou
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Health Aging and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (C.P.); (T.O.Y.); (N.C.); (M.H.)
| | - Maria Hatziapostolou
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Health Aging and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (C.P.); (T.O.Y.); (N.C.); (M.H.)
| | - Minkun Wang
- Shenzhen Digital Life Institute, Shenzhen 518016, China;
- Innovation Lab, Innovent Biologics, Inc., Suzhou 215011, China
| | - Lindsey A. Russell
- Division of Gastroenterology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Dina H. Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta; Edmonton, Alberta, AB T6G 2G3, Canada; (B.R.); (D.Y.Y.); (C.W.); (K.W.)
| |
Collapse
|
6
|
Iperi C, Bordron A, Dueymes M, Pers JO, Jamin C. Metabolic Program of Regulatory B Lymphocytes and Influence in the Control of Malignant and Autoimmune Situations. Front Immunol 2021; 12:735463. [PMID: 34650560 PMCID: PMC8505885 DOI: 10.3389/fimmu.2021.735463] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Metabolic pathways have been studied for a while in eukaryotic cells. During glycolysis, glucose enters into the cells through the Glut1 transporter to be phosphorylated and metabolized generating ATP molecules. Immune cells can use additional pathways to adapt their energetic needs. The pentose phosphate pathway, the glutaminolysis, the fatty acid oxidation and the oxidative phosphorylation generate additional metabolites to respond to the physiological requirements. Specifically, in B lymphocytes, these pathways are activated to meet energetic demands in relation to their maturation status and their functional orientation (tolerance, effector or regulatory activities). These metabolic programs are differentially involved depending on the receptors and the co-activation molecules stimulated. Their induction may also vary according to the influence of the microenvironment, i.e. the presence of T cells, cytokines … promoting the expression of particular transcription factors that direct the energetic program and modulate the number of ATP molecule produced. The current review provides recent advances showing the underestimated influence of the metabolic pathways in the control of the B cell physiology, with a particular focus on the regulatory B cells, but also in the oncogenic and autoimmune evolution of the B cells.
Collapse
Affiliation(s)
| | - Anne Bordron
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
| | - Maryvonne Dueymes
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France.,Service d'Odontologie, CHU de Brest, Brest, France
| | - Jacques-Olivier Pers
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France.,Service d'Odontologie, CHU de Brest, Brest, France
| | - Christophe Jamin
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France.,Laboratoire d'Immunologie et Immunothérapie, CHU de Brest, Brest, France
| |
Collapse
|
7
|
Jansen K, Cevhertas L, Ma S, Satitsuksanoa P, Akdis M, van de Veen W. Regulatory B cells, A to Z. Allergy 2021; 76:2699-2715. [PMID: 33544905 DOI: 10.1111/all.14763] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
B cells play a central role in the immune system through the production of antibodies. During the past two decades, it has become increasingly clear that B cells also have the capacity to regulate immune responses through mechanisms that extend beyond antibody production. Several types of human and murine regulatory B cells have been reported that suppress inflammatory responses in autoimmune disease, allergy, infection, transplantation, and cancer. Key suppressive molecules associated with regulatory B-cell function include the cytokines IL-10, IL-35, and TGF-β as well as cell membrane-bound molecules such as programmed death-ligand 1, CD39, CD73, and aryl hydrocarbon receptor. Regulatory B cells can be induced by a range of different stimuli, including microbial products such as TLR4 or TLR9 ligands, inflammatory cytokines such as IL-6, IL-1β, and IFN-α, as well as CD40 ligation. This review provides an overview of our current knowledge on regulatory B cells. We discuss different types of regulatory B cells, the mechanisms through which they exert their regulatory functions, factors that lead to induction of regulatory B cells and their role in the alteration of inflammatory responses in different diseases.
Collapse
Affiliation(s)
- Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Medical Immunology Institute of Health SciencesBursa Uludag University Bursa Turkey
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Siyuan Ma
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Otolaryngology Head and Neck Surgery+ Beijing TongRen HospitalCapital Medical University Beijing China
| | | | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| |
Collapse
|
8
|
Tacke S, Braune S, Rovituso DM, Ziemssen T, Lehmann PV, Dikow H, Bergmann A, Kuerten S. B-Cell Activity Predicts Response to Glatiramer Acetate and Interferon in Relapsing-Remitting Multiple Sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/3/e980. [PMID: 33707177 PMCID: PMC7958588 DOI: 10.1212/nxi.0000000000000980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/12/2021] [Indexed: 11/15/2022]
Abstract
Objective We investigated the predictive value of the enzyme-linked immunospot technique (ELISPOT) in identifying patients with relapsing-remitting multiple sclerosis (RRMS) who will respond to treatment with glatiramer acetate (GA) or interferon-β (IFN-β), based on the brain-reactive B-cell activity of peripheral blood cells. Methods In this retrospective, cross-sectional, real-world multicenter study, we identified patients with RRMS in the NeuroTransData MS registry and stratified them based on their documented treatment response (relapse-free in the first 12 months of treatment) to GA or IFN-β. The GA group comprised 73 patients who responded to GA and 35 nonresponders. The IFN-β group comprised 62 responders to IFN-β and 37 nonresponders. Patients with previous or current therapy affecting B-cell activity were excluded. We polyclonally stimulated mononuclear cells from peripheral blood samples (collected after participant selection) and investigated brain-reactive B-cell activity after incubation on brain tissue lysate-coated ELISPOT plates. Validity metrics of the ELISPOT testing results were calculated (Python 3.6.8) in relation to the clinical responsiveness in the 2 treatment groups. Results The ELISPOT B-cell activity assay showed a sensitivity of 0.74, a specificity of 0.76, a positive predictive value of 0.78, a negative predictive value of 0.28, and a diagnostic OR of 8.99 in predicting clinical response to GA vs IFN-β therapy in patients with RRMS. Conclusion Measurement of brain-reactive B-cell activity by ELISPOT provides clinically meaningful predictive probabilities of individual patients' treatment response to GA or IFN-β. The assay has the potential to improve the selection of optimal first-line treatment for individual patients with RRMS. Classification of Evidence This study provides Class II evidence that in patients with RRMS, the brain reactivity of their peripheral-blood B cells predicts clinical response to GA and IFN-β.
Collapse
Affiliation(s)
- Sabine Tacke
- From the Institute of Anatomy and Cell Biology (S.T., D.M.R., S.K.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; NeuroTransData (S.B., H.D., A.B.), Neuburg an der Donau, Germany; Department of Neurology (T.Z.), Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; and Research and Development Department (P.V.L.), Cellular Technology Limited, Shaker Heights, OH
| | - Stefan Braune
- From the Institute of Anatomy and Cell Biology (S.T., D.M.R., S.K.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; NeuroTransData (S.B., H.D., A.B.), Neuburg an der Donau, Germany; Department of Neurology (T.Z.), Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; and Research and Development Department (P.V.L.), Cellular Technology Limited, Shaker Heights, OH
| | - Damiano M Rovituso
- From the Institute of Anatomy and Cell Biology (S.T., D.M.R., S.K.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; NeuroTransData (S.B., H.D., A.B.), Neuburg an der Donau, Germany; Department of Neurology (T.Z.), Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; and Research and Development Department (P.V.L.), Cellular Technology Limited, Shaker Heights, OH
| | - Tjalf Ziemssen
- From the Institute of Anatomy and Cell Biology (S.T., D.M.R., S.K.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; NeuroTransData (S.B., H.D., A.B.), Neuburg an der Donau, Germany; Department of Neurology (T.Z.), Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; and Research and Development Department (P.V.L.), Cellular Technology Limited, Shaker Heights, OH
| | - Paul V Lehmann
- From the Institute of Anatomy and Cell Biology (S.T., D.M.R., S.K.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; NeuroTransData (S.B., H.D., A.B.), Neuburg an der Donau, Germany; Department of Neurology (T.Z.), Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; and Research and Development Department (P.V.L.), Cellular Technology Limited, Shaker Heights, OH
| | - Heidi Dikow
- From the Institute of Anatomy and Cell Biology (S.T., D.M.R., S.K.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; NeuroTransData (S.B., H.D., A.B.), Neuburg an der Donau, Germany; Department of Neurology (T.Z.), Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; and Research and Development Department (P.V.L.), Cellular Technology Limited, Shaker Heights, OH
| | - Arnfin Bergmann
- From the Institute of Anatomy and Cell Biology (S.T., D.M.R., S.K.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; NeuroTransData (S.B., H.D., A.B.), Neuburg an der Donau, Germany; Department of Neurology (T.Z.), Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; and Research and Development Department (P.V.L.), Cellular Technology Limited, Shaker Heights, OH
| | - Stefanie Kuerten
- From the Institute of Anatomy and Cell Biology (S.T., D.M.R., S.K.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; NeuroTransData (S.B., H.D., A.B.), Neuburg an der Donau, Germany; Department of Neurology (T.Z.), Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; and Research and Development Department (P.V.L.), Cellular Technology Limited, Shaker Heights, OH.
| |
Collapse
|
9
|
Xiang W, Xie C, Guan Y. The identification, development and therapeutic potential of IL-10-producing regulatory B cells in multiple sclerosis. J Neuroimmunol 2021; 354:577520. [PMID: 33684831 DOI: 10.1016/j.jneuroim.2021.577520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Regulatory B cells are a rare B-cell subset widely known to exert their immunosuppressive function via the production of interleukin-10 (IL-10) and other mechanisms. B10 cells are a special subset of regulatory B cells with immunoregulatory function that is fully attributed to IL-10. Their unique roles in the animal model of multiple sclerosis (MS) have been described, as well as their relevance in MS patients. This review specifically focuses on the identification and development of B10 cells, the signals that promote IL-10 production in B cells, the roles of B10 cells in MS, and the potential and major challenges of the application of B10-based therapies for MS.
Collapse
Affiliation(s)
- Weiwei Xiang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China
| | - Chong Xie
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China.
| |
Collapse
|
10
|
Melnikov M, Sharanova S, Sviridova A, Rogovskii V, Murugina N, Nikolaeva A, Dagil Y, Murugin V, Ospelnikova T, Boyko A, Pashenkov M. The influence of glatiramer acetate on Th17-immune response in multiple sclerosis. PLoS One 2020; 15:e0240305. [PMID: 33126239 PMCID: PMC7599084 DOI: 10.1371/journal.pone.0240305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Glatiramer acetate (GA) is approved for the treatment of multiple sclerosis (MS). However, the mechanism of action of GA in MS is still unclear. In particular, it is not known whether GA can modulate the pro-inflammatory Th17-type immune response in MS. We investigated the effects of original GA (Copaxone®, Teva, Israel) and generic GA (Timexone®, Biocad, Russia) on Th17- and Th1-type cytokine production in vitro in 25 patients with relapsing-remitting MS and 25 healthy subjects. Both original and generic GA at concentrations 50–200 μg/ml dose-dependently inhibited interleukin-17 and interferon-γ production by anti-CD3/anti-CD28-activated peripheral blood mononuclear cells from MS patients and healthy subjects. This effect of GA was reproduced using purified CD4+ T cells, suggesting that GA can directly modulate the functions of Th17 and Th1 cells. At high concentrations (100–200 μg/ml), GA also suppressed the production of Th17-differentiation cytokines (interleukin-1β and interleukin-6) by lipopolysaccharide (LPS)-activated dendritic cells (DCs). These GA/LPS-treated DCs induced lower interleukin-17 and interferon-γ production by autologous CD4+ T cells compared to LPS-treated DCs. These data suggest that GA can inhibit Th17-immune response and that this inhibitory effect is preferentially exercised by direct influence of GA on T cells. We also demonstrate a comparable ability of original and generic GA to modulate pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Mikhail Melnikov
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
- Department of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
- * E-mail:
| | - Svetlana Sharanova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anastasiya Sviridova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Vladimir Rogovskii
- Department of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
- Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Nina Murugina
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Anna Nikolaeva
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Yulia Dagil
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Vladimir Murugin
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Tatiana Ospelnikova
- Laboratory of Interferons, I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| | - Alexey Boyko
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Mikhail Pashenkov
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| |
Collapse
|
11
|
Miyazaki Y, Niino M. Regulatory B cells in neuroimmunological diseases. CLINICAL AND EXPERIMENTAL NEUROIMMUNOLOGY 2020; 11:156-162. [DOI: 10.1111/cen3.12588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 01/03/2025]
Abstract
AbstractThe idea that B cells participate in immune regulation was initially postulated from observations in animals in the 1970s. It is now established that certain B‐cell populations, known as regulatory B cells, regulate immune reactions in various animal models of autoimmunity, chiefly through the production of interleukin‐10. Subsequent to these findings in animals, several B‐cell subsets have been identified in human blood that are capable of producing interleukin‐10 when stimulated ex vivo. Although we still do not have direct evidence showing that these interleukin‐10‐producing B cells regulate autoimmunity in humans, their functional and phenotypic homology to regulatory B cells in animals, their abnormalities reported in various autoimmune diseases and their alterations in response to treatments all suggest their regulatory role in humans. In this review, the role of regulatory B cells in three neuroimmunological diseases – multiple sclerosis, neuromyelitis optica spectrum disorder and myasthenia gravis – are discussed.
Collapse
Affiliation(s)
- Yusei Miyazaki
- Department of Clinical Research National Hospital Organization Hokkaido Medical Center Sapporo Japan
- Department of Neurology National Hospital Organization Hokkaido Medical Center Sapporo Japan
| | - Masaaki Niino
- Department of Clinical Research National Hospital Organization Hokkaido Medical Center Sapporo Japan
| |
Collapse
|
12
|
Aharoni R, Eilam R, Schottlender N, Radomir L, Leistner-Segal S, Feferman T, Hirsch D, Sela M, Arnon R. Glatiramer acetate increases T- and B -regulatory cells and decreases granulocyte-macrophage colony-stimulating factor (GM-CSF) in an animal model of multiple sclerosis. J Neuroimmunol 2020; 345:577281. [DOI: 10.1016/j.jneuroim.2020.577281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/21/2023]
|
13
|
Differential Effects of MS Therapeutics on B Cells-Implications for Their Use and Failure in AQP4-Positive NMOSD Patients. Int J Mol Sci 2020; 21:ijms21145021. [PMID: 32708663 PMCID: PMC7404039 DOI: 10.3390/ijms21145021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
B cells are considered major contributors to multiple sclerosis (MS) pathophysiology. While lately approved disease-modifying drugs like ocrelizumab deplete B cells directly, most MS medications were not primarily designed to target B cells. Here, we review the current understanding how approved MS medications affect peripheral B lymphocytes in humans. These highly contrasting effects are of substantial importance when considering these drugs as therapy for neuromyelitis optica spectrum disorders (NMOSD), a frequent differential diagnosis to MS, which is considered being a primarily B cell- and antibody-driven diseases. Data indicates that MS medications, which deplete B cells or induce an anti-inflammatory phenotype of the remaining ones, were effective and safe in aquaporin-4 antibody positive NMOSD. In contrast, drugs such as natalizumab and interferon-β, which lead to activation and accumulation of B cells in the peripheral blood, lack efficacy or even induce catastrophic disease activity in NMOSD. Hence, we conclude that the differential effect of MS drugs on B cells is one potential parameter determining the therapeutic efficacy or failure in antibody-dependent diseases like seropositive NMOSD.
Collapse
|
14
|
Talotta R, Atzeni F, Laska MJ. Therapeutic peptides for the treatment of systemic lupus erythematosus: a place in therapy. Expert Opin Investig Drugs 2020; 29:845-867. [PMID: 32500750 DOI: 10.1080/13543784.2020.1777983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Studies in vitro and in vivo have identified several peptides that are potentially useful in treating systemic lupus erythematosus (SLE). The rationale for their use lies in the cost-effective production, high potency, target selectivity, low toxicity, and a peculiar mechanism of action that is mainly based on the induction of immune tolerance. Three therapeutic peptides have entered clinical development, but they have yielded disappointing results. However, some subsets of patients, such as those with the positivity of anti-dsDNA antibodies, appear more likely to respond to these medications. AREAS COVERED This review evaluates the potential use of therapeutic peptides for SLE and gives an opinion on how they may offer advantages for SLE treatment. EXPERT OPINION Given their acceptable safety profile, therapeutic peptides could be added to agents traditionally used to treat SLE and this may offer a synergistic and drug-sparing effect, especially in selected patient populations. Moreover, they could temporarily be utilized to manage SLE flares, or be administered as a vaccine in subjects at risk. Efforts to ameliorate bioavailability, increase the half-life and prevent immunogenicity are ongoing. The formulation of hybrid compounds, like peptibodies or peptidomimetic small molecules, is expected to yield renewed treatments with a better pharmacologic profile and increased efficacy.
Collapse
Affiliation(s)
- Rossella Talotta
- Department of Clinical and Experimental Medicine, Rheumatology Unit, Azienda Ospedaliera "Gaetano Martino", University of Messina , Messina, Italy
| | - Fabiola Atzeni
- Department of Clinical and Experimental Medicine, Rheumatology Unit, Azienda Ospedaliera "Gaetano Martino", University of Messina , Messina, Italy
| | | |
Collapse
|
15
|
Anselmo F, Tatomir A, Boodhoo D, Mekala AP, Nguyen V, Rus V, Rus H. JNK and phosphorylated Bcl-2 predict multiple sclerosis clinical activity and glatiramer acetate therapeutic response. Clin Immunol 2019; 210:108297. [PMID: 31698073 DOI: 10.1016/j.clim.2019.108297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/15/2019] [Accepted: 11/03/2019] [Indexed: 01/04/2023]
Abstract
In this study, we investigated the role of JNK and phospho-Bcl-2 as possible biomarkers of multiple sclerosis (MS) relapse and of glatiramer acetate (GA) therapeutic response in relapsing-remitting MS patients. We enrolled a cohort of 15 GA-treated patients and measured the expression of JNK1, JNK2, phospho-JNK and phospho-Bcl-2 through Western blotting of lysates from peripheral blood mononuclear cells collected at 0, 3, 6, and 12 months after initiating GA therapy. We found significantly higher levels of JNK1 p54 and JNK2 p54 and significantly lower levels of p-Bcl-2 in relapse patients and in GA non-responders. By using receiver operating characteristic analysis, we found that the probability of accurately detecting relapse and response to GA was: 92% and 75.5%, respectively, for JNK1 p54 and 86% and 94.6%, respectively, for p-Bcl-2. Our data suggest that JNK1 and p-Bcl-2 could serve as potential biomarkers for MS relapse and the therapeutic response to GA.
Collapse
Affiliation(s)
- Freidrich Anselmo
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexandru Tatomir
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Armugam P Mekala
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vinh Nguyen
- Department of Medicine, Division of Rheumatology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Violeta Rus
- Department of Medicine, Division of Rheumatology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Horea Rus
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA; Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, USA.
| |
Collapse
|
16
|
Understanding regulatory B cells in autoimmune diseases: the case of multiple sclerosis. Curr Opin Immunol 2019; 61:26-32. [PMID: 31445312 DOI: 10.1016/j.coi.2019.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 01/04/2023]
Abstract
The suppressive function of B cells is mediated mostly through their provision of cytokines with anti-inflammatory properties, in particular interleukin-10. This B cell activity has been convincingly described in mice with autoimmune, infectious, as well as malignant diseases, and evidence is accumulating of its relevance in human. This review provides a personal view of this B cell function using multiple sclerosis and its animal model experimental autoimmune encephalomyelitis as representative examples, in an attempt to bridge observations obtained in mice and human, with the goal of providing a coherent transversal framework to further explore this field, and eventually manipulate this B cell function therapeutically.
Collapse
|