1
|
Alencar-Silva T, de Barcelos SM, Silva-Carvalho A, Sousa MGDC, Rezende TMB, Pogue R, Saldanha-Araújo F, Franco OL, Boroni M, Zonari A, Carvalho JL. Senotherapeutic Peptide 14 Suppresses Th1 and M1 Human T Cell and Monocyte Subsets In Vitro. Cells 2024; 13:813. [PMID: 38786036 PMCID: PMC11120033 DOI: 10.3390/cells13100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Inflammation contributes to the onset and exacerbation of numerous age-related diseases, often manifesting as a chronic condition during aging. Given that cellular senescence fosters local and systemic inflammation, senotherapeutic interventions could potentially aid in managing or even reducing inflammation. Here, we investigated the immunomodulatory effects of the senotherapeutic Peptide 14 (Pep 14) in human peripheral blood mononuclear cells (PBMCs), monocytes, and macrophages. We found that, despite failing to significantly influence T cell activation and proliferation, the peptide promoted a Th2/Treg gene expression and cytokine signature in PBMCs, characterized by increased expression of the transcription factors GATA3 and FOXP3, as well as the cytokines IL-4 and IL-10. These observations were partially confirmed through ELISA, in which we observed increased IL-10 release by resting and PHA-stimulated PBMCs. In monocytes from the U-937 cell line, Pep 14 induced apoptosis in lipopolysaccharide (LPS)-stimulated cells and upregulated IL-10 expression. Furthermore, Pep 14 prevented LPS-induced activation and promoted an M2-like polarization in U-937-derived macrophages, evidenced by decreased expression of M1 markers and increased expression of M2 markers. We also showed that the conditioned media from Pep 14-treated macrophages enhanced fibroblast migration, indicative of a functional M2 phenotype. Taken together, our findings suggest that Pep 14 modulates immune cell function towards an anti-inflammatory and regenerative phenotype, highlighting its potential as a therapeutic intervention to alleviate immunosenescence-associated dysregulation.
Collapse
Affiliation(s)
- Thuany Alencar-Silva
- Post-Graduation Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 71966-700, Brazil (S.M.d.B.); (M.G.d.C.S.); (T.M.B.R.); (R.P.)
| | - Stefhani Martins de Barcelos
- Post-Graduation Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 71966-700, Brazil (S.M.d.B.); (M.G.d.C.S.); (T.M.B.R.); (R.P.)
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil
| | - Amandda Silva-Carvalho
- Hematology and Stem Cell Laboratory, Faculty of Health Sciences, University of Brasília, Brasília 70910-900, Brazil; (A.S.-C.)
| | - Mauricio Gonçalves da Costa Sousa
- Post-Graduation Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 71966-700, Brazil (S.M.d.B.); (M.G.d.C.S.); (T.M.B.R.); (R.P.)
| | - Taia Maria Berto Rezende
- Post-Graduation Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 71966-700, Brazil (S.M.d.B.); (M.G.d.C.S.); (T.M.B.R.); (R.P.)
- Dentistry Department, University of Brasília, Brasília 70910-900, Brazil
- Post-Graduation Program in Health Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Robert Pogue
- Post-Graduation Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 71966-700, Brazil (S.M.d.B.); (M.G.d.C.S.); (T.M.B.R.); (R.P.)
| | - Felipe Saldanha-Araújo
- Hematology and Stem Cell Laboratory, Faculty of Health Sciences, University of Brasília, Brasília 70910-900, Brazil; (A.S.-C.)
| | - Octávio Luiz Franco
- Post-Graduation Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 71966-700, Brazil (S.M.d.B.); (M.G.d.C.S.); (T.M.B.R.); (R.P.)
- Centre of Proteomic Analyses and Biochemistry, Genomic Sciences and Biotechnology Program, Catholic University of Brasília, Brasília 71966-700, Brazil
- S-Inova Biotech, Biotechnology Program, Catholic University Dom Bosco, Campo Grande 79117-900, Brazil
- Molecular Pathology Program, University of Brasília, Brasília 70910-900, Brazil
| | - Mariana Boroni
- OneSkin, Inc., San Francisco, CA 94107, USA
- Bioinformatics and Computational Biology Lab, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20230-130, Brazil
| | - Alessandra Zonari
- Molecular Pathology Program, University of Brasília, Brasília 70910-900, Brazil
| | - Juliana Lott Carvalho
- Post-Graduation Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 71966-700, Brazil (S.M.d.B.); (M.G.d.C.S.); (T.M.B.R.); (R.P.)
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
2
|
Shouse AN, LaPorte KM, Malek TR. Interleukin-2 signaling in the regulation of T cell biology in autoimmunity and cancer. Immunity 2024; 57:414-428. [PMID: 38479359 PMCID: PMC11126276 DOI: 10.1016/j.immuni.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 05/26/2024]
Abstract
Interleukin-2 (IL-2) is a critical cytokine for T cell peripheral tolerance and immunity. Here, we review how IL-2 interaction with the high-affinity IL-2 receptor (IL-2R) supports the development and homeostasis of regulatory T cells and contributes to the differentiation of helper, cytotoxic, and memory T cells. A critical element for each T cell population is the expression of CD25 (Il2rα), which heightens the receptor affinity for IL-2. Signaling through the high-affinity IL-2R also reinvigorates CD8+ exhausted T (Tex) cells in response to checkpoint blockade. We consider the molecular underpinnings reflecting how IL-2R signaling impacts these various T cell subsets and the implications for enhancing IL-2-dependent immunotherapy of autoimmunity, other inflammatory disorders, and cancer.
Collapse
Affiliation(s)
- Acacia N Shouse
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Kathryn M LaPorte
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
3
|
Lykhopiy V, Malviya V, Humblet-Baron S, Schlenner SM. "IL-2 immunotherapy for targeting regulatory T cells in autoimmunity". Genes Immun 2023; 24:248-262. [PMID: 37741949 PMCID: PMC10575774 DOI: 10.1038/s41435-023-00221-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
FOXP3+ regulatory T cells (Treg) are indispensable for immune homoeostasis and for the prevention of autoimmune diseases. Interleukin-2 (IL-2) signalling is critical in all aspects of Treg biology. Consequences of defective IL-2 signalling are insufficient numbers or dysfunction of Treg and hence autoimmune disorders in human and mouse. The restoration and maintenance of immune homoeostasis remain central therapeutic aims in the field of autoimmunity. Historically, broadly immunosuppressive drugs with serious side-effects have been used for the treatment of autoimmune diseases or prevention of organ-transplant rejection. More recently, ex vivo expanded or in vivo stimulated Treg have been shown to induce effective tolerance in clinical trials supporting the clinical benefit of targeting natural immunosuppressive mechanisms. Given the central role of exogenous IL-2 in Treg homoeostasis, a new and promising focus in drug development are IL-2-based approaches for in vivo targeted expansion of Treg or for enhancement of their suppressive activity. In this review, we summarise the role of IL-2 in Treg biology and consequences of dysfunctional IL-2 signalling pathways. We then examine evidence of efficacy of IL-2-based biological drugs targeting Treg with specific focus on therapeutic candidates in clinical trials and discuss their limitations.
Collapse
Affiliation(s)
- Valentina Lykhopiy
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
- argenx BV, Industriepark Zwijnaarde 7, 9052, Ghent, Belgium
| | - Vanshika Malviya
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
| | - Susan M Schlenner
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Roy S, Batra L. Protein Phosphatase 2A: Role in T Cells and Diseases. J Immunol Res 2023; 2023:4522053. [PMID: 37234102 PMCID: PMC10208765 DOI: 10.1155/2023/4522053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a serine-threonine phosphatase that plays an important role in the regulation of cell proliferation and signal transduction. The catalytic activity of PP2A is integral in the maintenance of physiological functions which gets severely impaired in its absence. PP2A plays an essential role in the activation, differentiation, and functions of T cells. PP2A suppresses Th1 cell differentiation while promoting Th2 cell differentiation. PP2A fosters Th17 cell differentiation which contributes to the pathogenesis of systemic lupus erythematosus (SLE) by enhancing the transactivation of the Il17 gene. Genetic deletion of PP2A in Tregs disrupts Foxp3 expression due to hyperactivation of mTORC1 signaling which impairs the development and immunosuppressive functions of Tregs. PP2A is important in the induction of Th9 cells and promotes their antitumor functions. PP2A activation has shown to reduce neuroinflammation in a mouse model of experimental autoimmune encephalomyelitis (EAE) and is now used to treat multiple sclerosis (MS) clinically. In this review, we will discuss the structure and functions of PP2A in T cell differentiation and diseases and therapeutic applications of PP2A-mediated immunotherapy.
Collapse
Affiliation(s)
- Suyasha Roy
- Immuno-Biology Laboratory, Translational Health Science and Technology Institute, Faridabad, India
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lalit Batra
- Regional Biocontainment Laboratory, Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
5
|
Targeting protein phosphatases in cancer immunotherapy and autoimmune disorders. Nat Rev Drug Discov 2023; 22:273-294. [PMID: 36693907 PMCID: PMC9872771 DOI: 10.1038/s41573-022-00618-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/25/2023]
Abstract
Protein phosphatases act as key regulators of multiple important cellular processes and are attractive therapeutic targets for various diseases. Although extensive effort has been dedicated to phosphatase-targeted drug discovery, early expeditions for competitive phosphatase inhibitors were plagued by druggability issues, leading to the stigmatization of phosphatases as difficult targets. Despite challenges, persistent efforts have led to the identification of several drug-like, non-competitive modulators of some of these enzymes - including SH2 domain-containing protein tyrosine phosphatase 2, protein tyrosine phosphatase 1B, vascular endothelial protein tyrosine phosphatase and protein phosphatase 1 - reigniting interest in therapeutic targeting of phosphatases. Here, we discuss recent progress in phosphatase drug discovery, with emphasis on the development of selective modulators that exhibit biological activity. The roles and regulation of protein phosphatases in immune cells and their potential as powerful targets for immuno-oncology and autoimmunity indications are assessed.
Collapse
|
6
|
Hernandez R, Põder J, LaPorte KM, Malek TR. Engineering IL-2 for immunotherapy of autoimmunity and cancer. Nat Rev Immunol 2022; 22:614-628. [PMID: 35217787 DOI: 10.1038/s41577-022-00680-w] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/22/2022]
Abstract
Preclinical studies of the T cell growth factor activity of IL-2 resulted in this cytokine becoming the first immunotherapy to be approved nearly 30 years ago by the US Food and Drug Administration for the treatment of cancer. Since then, we have learnt the important role of IL-2 in regulating tolerance through regulatory T cells (Treg cells) besides promoting immunity through its action on effector T cells and memory T cells. Another pivotal event in the history of IL-2 research was solving the crystal structure of IL-2 bound to its tripartite receptor, which spurred the development of cell type-selective engineered IL-2 products. These new IL-2 analogues target Treg cells to counteract the dysregulated immune system in the context of autoimmunity and inflammatory disorders or target effector T cells, memory T cells and natural killer cells to enhance their antitumour responses. IL-2 biologics have proven to be effective in preclinical studies and clinical assessment of some is now underway. These studies will soon reveal whether engineered IL-2 biologics are truly capable of harnessing the IL-2-IL-2 receptor pathway as effective monotherapies or combination therapies for autoimmunity and cancer.
Collapse
Affiliation(s)
- Rosmely Hernandez
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Janika Põder
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Kathryn M LaPorte
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
7
|
PHLPP Signaling in Immune Cells. Curr Top Microbiol Immunol 2022; 436:117-143. [DOI: 10.1007/978-3-031-06566-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Spatz JM, Fulford MH, Tsai A, Gaudilliere D, Hedou J, Ganio E, Angst M, Aghaeepour N, Gaudilliere B. Human immune system adaptations to simulated microgravity revealed by single-cell mass cytometry. Sci Rep 2021; 11:11872. [PMID: 34099760 PMCID: PMC8184772 DOI: 10.1038/s41598-021-90458-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022] Open
Abstract
Exposure to microgravity (µG) during space flights produces a state of immunosuppression, leading to increased viral shedding, which could interfere with long term missions. However, the cellular mechanisms that underlie the immunosuppressive effects of µG are ill-defined. A deep understanding of human immune adaptations to µG is a necessary first step to design data-driven interventions aimed at preserving astronauts' immune defense during short- and long-term spaceflights. We employed a high-dimensional mass cytometry approach to characterize over 250 cell-specific functional responses in 18 innate and adaptive immune cell subsets exposed to 1G or simulated (s)µG using the Rotating Wall Vessel. A statistically stringent elastic net method produced a multivariate model that accurately stratified immune responses observed in 1G and sµG (p value 2E-4, cross-validation). Aspects of our analysis resonated with prior knowledge of human immune adaptations to µG, including the dampening of Natural Killer, CD4+ and CD8+ T cell responses. Remarkably, we found that sµG enhanced STAT5 signaling responses of immunosuppressive Tregs. Our results suggest µG exerts a dual effect on the human immune system, simultaneously dampening cytotoxic responses while enhancing Treg function. Our study provides a single-cell readout of sµG-induced immune dysfunctions and an analytical framework for future studies of human immune adaptations to human long-term spaceflights.
Collapse
Affiliation(s)
- J M Spatz
- Department of Medicine, Metabolism Division, San Francisco Department of Veterans Affairs Medical Center, San Francisco, CA, USA
- Department of Medicine and Department of Surgery, University of California, San Francisco, CA, USA
| | - M Hughes Fulford
- Department of Medicine, Metabolism Division, San Francisco Department of Veterans Affairs Medical Center, San Francisco, CA, USA
- Department of Medicine and Department of Surgery, University of California, San Francisco, CA, USA
| | - A Tsai
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Dr. Rm S238, Grant Bldg, Stanford, CA, 94305, USA
| | - D Gaudilliere
- Department of Surgery, Plastic Surgery Division, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - J Hedou
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Dr. Rm S238, Grant Bldg, Stanford, CA, 94305, USA
| | - E Ganio
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Dr. Rm S238, Grant Bldg, Stanford, CA, 94305, USA
| | - M Angst
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Dr. Rm S238, Grant Bldg, Stanford, CA, 94305, USA
| | - N Aghaeepour
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Dr. Rm S238, Grant Bldg, Stanford, CA, 94305, USA
- Department of Biomedical Data Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Dr. Rm S238, Grant Bldg, Stanford, CA, 94305, USA.
| |
Collapse
|
9
|
Hayes ET, Hagan CE, Khoryati L, Gavin MA, Campbell DJ. Regulatory T Cells Maintain Selective Access to IL-2 and Immune Homeostasis despite Substantially Reduced CD25 Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2667-2678. [PMID: 33055282 PMCID: PMC7657993 DOI: 10.4049/jimmunol.1901520] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 09/12/2020] [Indexed: 11/19/2022]
Abstract
IL-2 is a critical regulator of immune homeostasis through its impact on both regulatory T (Treg) and effector T cells. However, the precise role of IL-2 in the maintenance and function of Treg cells in the adult peripheral immune system remains unclear. In this study, we report that neutralization of IL-2 in mice abrogated all IL-2R signaling in Treg cells, but was well tolerated and only gradually impacted Treg cell function and immune homeostasis. By contrast, despite substantially reduced IL-2 sensitivity, Treg cells maintained selective IL-2 signaling and prevented immune dysregulation following treatment with the inhibitory anti-CD25 Ab PC61. Reduction of Treg cells with a depleting version of the same CD25 Ab permitted CD8+ effector T cell proliferation before progressing to more widespread immune dysregulation. Thus, despite severely curtailed CD25 expression and function, Treg cells retain selective access to IL-2 that supports their anti-inflammatory functions in vivo. Ab-mediated targeting of CD25 is being actively pursued for treatment of autoimmune disease and prevention of allograft rejection, and our findings help inform therapeutic manipulation and design for optimal patient outcomes.
Collapse
Affiliation(s)
- Erika T Hayes
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; and
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195
| | - Cassidy E Hagan
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; and
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195
| | - Liliane Khoryati
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; and
| | - Marc A Gavin
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; and
| | - Daniel J Campbell
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; and
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195
| |
Collapse
|
10
|
Ward NC, Lui JB, Hernandez R, Yu L, Struthers M, Xie J, Santos Savio A, Dwyer CJ, Hsiung S, Yu A, Malek TR. Persistent IL-2 Receptor Signaling by IL-2/CD25 Fusion Protein Controls Diabetes in NOD Mice by Multiple Mechanisms. Diabetes 2020; 69:2400-2413. [PMID: 32843568 PMCID: PMC7576568 DOI: 10.2337/db20-0186] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
Low-dose interleukin-2 (IL-2) represents a new therapeutic approach to regulate immune homeostasis to promote immune tolerance in patients with autoimmune diseases, including type 1 diabetes. We have developed a new IL-2-based biologic, an IL-2/CD25 fusion protein, with greatly improved pharmacokinetics and pharmacodynamics when compared with recombinant IL-2 to enhance this type of immunotherapy. In this study, we show that low-dose mouse IL-2/CD25 (mIL-2/CD25), but not an equivalent amount of IL-2, prevents the onset of diabetes in NOD mice and controls diabetes in hyperglycemic mice. mIL-2/CD25 acts not only to expand regulatory T cells (Tregs) but also to increase their activation and migration into lymphoid tissues and the pancreas. Lower incidence of diabetes is associated with increased serum levels of IL-10, a cytokine readily produced by activated Tregs. These effects likely act in concert to lower islet inflammation while increasing Tregs in the remaining inflamed islets. mIL-2/CD25 treatment is also associated with lower anti-insulin autoantibody levels in part by inhibition of T follicular helper cells. Thus, long-acting mIL-2/CD25 represents an improved IL-2 analog that persistently elevates Tregs to maintain a favorable Treg/effector T cell ratio that limits diabetes by expansion of activated Tregs that readily migrate into lymphoid tissues and the pancreas while inhibiting autoantibodies.
Collapse
Affiliation(s)
- Natasha C Ward
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Jen Bon Lui
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Rosmely Hernandez
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Mary Struthers
- Immunology Discovery, Bristol-Myers Squibb, Princeton, NJ
| | - Jenny Xie
- Immunology Discovery, Bristol-Myers Squibb, Princeton, NJ
| | - Alicia Santos Savio
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Connor J Dwyer
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Sunnie Hsiung
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Aixin Yu
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
11
|
Roy S, Goel R, Aggarwal S, Asthana S, Yadav AK, Awasthi A. Proteome analysis revealed the essential functions of protein phosphatase PP2A in the induction of Th9 cells. Sci Rep 2020; 10:10992. [PMID: 32620893 PMCID: PMC7335106 DOI: 10.1038/s41598-020-67845-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/11/2020] [Indexed: 12/25/2022] Open
Abstract
Proteomic analysis identifies post-translational functions of proteins, which remains obscure in transcriptomics. Given the important functions of Th9 cells in anti-tumor immunity, we performed proteome analysis of Th9 cells to understand the involvement of proteins that might be crucial for the anti-tumor functions of Th9 cells. Here we performed a comprehensive proteomic analysis of murine Th0 and Th9 cells, and identified proteins that are enriched in Th9 cells. Pathway analysis identified an abundance of phosphoproteins in the proteome of Th9 cells as compared to Th0 cells. Among upregulated phosphoproteins, Ppp2ca (catalytic subunit of protein phosphatase, PP2A) was found to be highly enriched in Th9 cells. Although the role of PP2A has been shown to regulate the differentiation and functions of Th1, Th2, Th17 and Tregs, its role in the differentiation and functions of Th9 cells is not identified yet. Here we found that PP2A is required for the induction of Th9 cells, as PP2A inhibition leads to the suppression of IL-9 and expression of key transcription factors of Th9 cells. PP2A inhibition abrogates Th9 cell-mediated anti-tumor immune response in B16-OVA melanoma tumor model. Thus, we report that PP2A is essential for the differentiation and anti-tumor functions of Th9 cells.
Collapse
Affiliation(s)
- Suyasha Roy
- Immuno-Biology Laboratory, Translational Health Science and Technology Institute (THSTI), 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, Haryana, 121 001, India
| | - Renu Goel
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Suruchi Aggarwal
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Shailendra Asthana
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Kumar Yadav
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Awasthi
- Immuno-Biology Laboratory, Translational Health Science and Technology Institute (THSTI), 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, Haryana, 121 001, India.
| |
Collapse
|