1
|
Choi SM, Lee JH, Ko S, Hong SS, Jin HE. Mechanism of Action and Pharmacokinetics of Approved Bispecific Antibodies. Biomol Ther (Seoul) 2024; 32:708-722. [PMID: 39448393 PMCID: PMC11535297 DOI: 10.4062/biomolther.2024.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Bispecific antibodies represent a significant advancement in therapeutic antibody engineering, offering the ability to simultaneously target two distinct antigens. This dual-targeting capability enhances therapeutic efficacy, especially in complex diseases, such as cancer and autoimmune disorders, where drug resistance and incomplete target coverage are prevalent challenges. Bispecific antibodies facilitate immune cell engagement and disrupt multiple signaling pathways, providing a more comprehensive treatment approach than traditional monoclonal antibodies. However, the intricate structure of bispecific antibodies introduces unique pharmacokinetic challenges, including issues related to their absorption, distribution, metabolism, and excretion, which can significantly affect their efficacy and safety. This review provides an in-depth analysis of the structural design, mechanisms of action, and pharmacokinetics of the currently approved bispecific antibodies. It also highlights the engineering innovations that have been implemented to overcome these challenges, such as Fc modifications and advanced dimerization techniques, which enhance the stability and half-life of bispecific antibodies. Significant progress has been made in bispecific antibody technology; however, further research is necessary to broaden their clinical applications, enhance their safety profiles, and optimize their incorporation into combination therapies. Continuous advancements in this field are expected to enable bispecific antibodies to provide more precise and effective therapeutic strategies for a range of complex diseases, ultimately improving patient outcomes and advancing precision medicine.
Collapse
Affiliation(s)
- Seong Min Choi
- Department of Biohealth Regulatory Science, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| | - Ju-Hee Lee
- College of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea
| | - Soyeon Ko
- Department of Biomedical Sciences, College of Medicine & Program in Biomedicals Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine & Program in Biomedicals Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Hyo-Eon Jin
- Department of Biohealth Regulatory Science, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
2
|
Minguet S, Maus MV, Schamel WW. From TCR fundamental research to innovative chimeric antigen receptor design. Nat Rev Immunol 2024:10.1038/s41577-024-01093-7. [PMID: 39433885 DOI: 10.1038/s41577-024-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/23/2024]
Abstract
Engineered T cells that express chimeric antigen receptors (CARs) have transformed the treatment of haematological cancers. CARs combine the tumour-antigen-binding function of antibodies with the signalling functions of the T cell receptor (TCR) ζ chain and co-stimulatory receptors. The resulting constructs aim to mimic the TCR-based and co-receptor-based activation of T cells. Although these have been successful for some types of cancer, new CAR formats are needed, to limit side effects and broaden their use to solid cancers. Insights into the mechanisms of TCR signalling, including the identification of signalling motifs that are not present in the TCR ζ chain and mechanistic insights in TCR activation, have enabled the development of CAR formats that outcompete the current CARs in preclinical mouse models and clinical trials. In this Perspective, we explore the mechanistic rationale behind new CAR designs.
Collapse
Affiliation(s)
- Susana Minguet
- Signalling Research Centers BIOSS and CIBSS, Freiburg, Germany.
- Department of Synthetic Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Marcela V Maus
- Cellular Immunotherapy Program and Krantz Family Center for Cancer Research, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wolfgang W Schamel
- Signalling Research Centers BIOSS and CIBSS, Freiburg, Germany.
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Menon AP, Moreno B, Meraviglia-Crivelli D, Nonatelli F, Villanueva H, Barainka M, Zheleva A, van Santen HM, Pastor F. Modulating T Cell Responses by Targeting CD3. Cancers (Basel) 2023; 15:1189. [PMID: 36831533 PMCID: PMC9953819 DOI: 10.3390/cancers15041189] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Harnessing the immune system to fight cancer has become a reality with the clinical success of immune-checkpoint blockade (ICB) antibodies against PD(L)-1 and CTLA-4. However, not all cancer patients respond to ICB. Thus, there is a need to modulate the immune system through alternative strategies for improving clinical responses to ICB. The CD3-T cell receptor (TCR) is the canonical receptor complex on T cells. It provides the "first signal" that initiates T cell activation and determines the specificity of the immune response. The TCR confers the binding specificity whilst the CD3 subunits facilitate signal transduction necessary for T cell activation. While the mechanisms through which antigen sensing and signal transduction occur in the CD3-TCR complex are still under debate, recent revelations regarding the intricate 3D structure of the CD3-TCR complex might open the possibility of modulating its activity by designing targeted drugs and tools, including aptamers. In this review, we summarize the basis of CD3-TCR complex assembly and survey the clinical and preclinical therapeutic tools available to modulate CD3-TCR function for potentiating cancer immunotherapy.
Collapse
Affiliation(s)
- Ashwathi Puravankara Menon
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Beatriz Moreno
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Daniel Meraviglia-Crivelli
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Francesca Nonatelli
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Helena Villanueva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Martin Barainka
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Angelina Zheleva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Hisse M. van Santen
- Unidad Desarrollo y Función del Sistema Inmunitario, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Pastor
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
4
|
T-cell Receptor Is a Threshold Detector: Sub- and Supra-Threshold Stochastic Resonance in TCR-MHC Clusters on the Cell Surface. ENTROPY 2022; 24:e24030389. [PMID: 35327900 PMCID: PMC8946872 DOI: 10.3390/e24030389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 12/13/2022]
Abstract
Stochastic resonance in clusters of major histocompatibility molecules is extended by a more detailed description of adaptive thresholding and by applying the notion of suprathreshold stochastic resonance as a stochastically quantizing encoder of transmembrane signaling downstream of major histocompatibility molecules and T-cell receptors on the side of presenting and recognizing cells, respectively. The adaptive nature of thresholding is partly explained by a mirroring of the noncognate–cognate dichotomy shown by the T-cell receptor structure and the kinetic-segregation model of the onset of T-cell receptor triggering. Membrane clusters of major histocompatibility molecules and T-cell receptors on their host cells are envisioned as places of the temporal encoding of downstream signals via the suprathreshold stochastic resonance process. The ways of optimization of molecular prostheses, such as chimeric antigen receptors against cancer in transmembrane signaling, are suggested in the framework of suprathreshold stochastic resonance. The analogy between Förster resonance energy transfer and suprathreshold stochastic resonance for information transfer is also discussed. The overlap integral for energy transfer parallels the mutual information transferred by suprathreshold stochastic resonance.
Collapse
|
5
|
Salter AI, Rajan A, Kennedy JJ, Ivey RG, Shelby SA, Leung I, Templeton ML, Muhunthan V, Voillet V, Sommermeyer D, Whiteaker JR, Gottardo R, Veatch SL, Paulovich AG, Riddell SR. Comparative analysis of TCR and CAR signaling informs CAR designs with superior antigen sensitivity and in vivo function. Sci Signal 2021; 14:14/697/eabe2606. [PMID: 34429382 DOI: 10.1126/scisignal.abe2606] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chimeric antigen receptor (CAR)-modified T cell therapy is effective in treating lymphomas, leukemias, and multiple myeloma in which the tumor cells express high amounts of target antigen. However, achieving durable remission for these hematological malignancies and extending CAR T cell therapy to patients with solid tumors will require receptors that can recognize and eliminate tumor cells with a low density of target antigen. Although CARs were designed to mimic T cell receptor (TCR) signaling, TCRs are at least 100-fold more sensitive to antigen. To design a CAR with improved antigen sensitivity, we directly compared TCR and CAR signaling in primary human T cells. Global phosphoproteomic analysis revealed that key T cell signaling proteins-such as CD3δ, CD3ε, and CD3γ, which comprise a portion of the T cell co-receptor, as well as the TCR adaptor protein LAT-were either not phosphorylated or were only weakly phosphorylated by CAR stimulation. Modifying a commonplace 4-1BB/CD3ζ CAR sequence to better engage CD3ε and LAT using embedded CD3ε or GRB2 domains resulted in enhanced T cell activation in vitro in settings of a low density of antigen, and improved efficacy in in vivo models of lymphoma, leukemia, and breast cancer. These CARs represent examples of alterations in receptor design that were guided by in-depth interrogation of T cell signaling.
Collapse
Affiliation(s)
- Alexander I Salter
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. .,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Anusha Rajan
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jacob J Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Richard G Ivey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sarah A Shelby
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Isabel Leung
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Megan L Templeton
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Vishaka Muhunthan
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Valentin Voillet
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, NPC (HCRISA), Cape Town 8001, South Africa
| | - Daniel Sommermeyer
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sarah L Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Stanley R Riddell
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. .,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Richter K, Rufer AC, Muller M, Burger D, Casagrande F, Grossenbacher T, Huber S, Hug MN, Koldewey P, D'Osualdo A, Schlatter D, Stoll T, Rudolph MG. Small molecule AX-024 reduces T cell proliferation independently of CD3ϵ/Nck1 interaction, which is governed by a domain swap in the Nck1-SH3.1 domain. J Biol Chem 2020; 295:7849-7864. [PMID: 32317279 PMCID: PMC7278359 DOI: 10.1074/jbc.ra120.012788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Activation of the T cell receptor (TCR) results in binding of the adapter protein Nck (noncatalytic region of tyrosine kinase) to the CD3ϵ subunit of the TCR. The interaction was suggested to be important for the amplification of TCR signals and is governed by a proline-rich sequence (PRS) in CD3ϵ that binds to the first Src homology 3 (SH3) domain of Nck (Nck-SH3.1). Inhibition of this protein/protein interaction ameliorated inflammatory symptoms in mouse models of multiple sclerosis, psoriasis, and asthma. A small molecule, AX-024, was reported to inhibit the Nck/CD3ϵ interaction by physically binding to the Nck1-SH3.1 domain, suggesting a route to develop an inhibitor of the Nck1/CD3ϵ interaction for modulating TCR activity in autoimmune and inflammatory diseases. We show here that AX-024 reduces T cell proliferation upon weak TCR stimulation but does not significantly affect phosphorylation of Zap70 (ζ chain of T cell receptor–associated protein kinase 70). We also find that AX-024 is likely not involved in modulating the Nck/TCR interaction but probably has other targets in T cells. An array of biophysical techniques did not detect a direct interaction between AX-024 and Nck-SH3.1 in vitro. Crystal structures of the Nck-SH3.1 domain revealed its binding mode to the PRS in CD3ϵ. The SH3 domain tends to generate homodimers through a domain swap. Domain swaps observed previously in other SH3 domains indicate a general propensity of this protein fold to exchange structural elements. The swapped form of Nck-SH3.1 is unable to bind CD3ϵ, possibly representing an inactive form of Nck in cells.
Collapse
Affiliation(s)
- Kirsten Richter
- I2O Disease Translational Area, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Arne C Rufer
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Magali Muller
- I2O Disease Translational Area, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Dominique Burger
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Fabio Casagrande
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Tabea Grossenbacher
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sylwia Huber
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Melanie N Hug
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Philipp Koldewey
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Andrea D'Osualdo
- I2O Disease Translational Area, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Daniel Schlatter
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Theodor Stoll
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Markus G Rudolph
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
7
|
Schamel WW, Alarcon B, Minguet S. The TCR is an allosterically regulated macromolecular machinery changing its conformation while working. Immunol Rev 2020; 291:8-25. [PMID: 31402501 DOI: 10.1111/imr.12788] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022]
Abstract
The αβ T-cell receptor (TCR) is a multiprotein complex controlling the activation of T cells. Although the structure of the complete TCR is not known, cumulative evidence supports that the TCR cycles between different conformational states that are promoted either by thermal motion or by force. These structural transitions determine whether the TCR engages intracellular effectors or not, regulating TCR phosphorylation and signaling. As for other membrane receptors, ligand binding selects and stabilizes the TCR in active conformations, and/or switches the TCR to activating states that were not visited before ligand engagement. Here we review the main models of TCR allostery, that is, ligand binding at TCRαβ changes the structure at CD3 and ζ. (a) The ITAM and proline-rich sequence exposure model, in which the TCR's cytoplasmic tails shield each other and ligand binding exposes them for phosphorylation. (b) The membrane-ITAM model, in which the CD3ε and ζ tails are sequestered inside the membrane and again ligand binding exposes them. (c) The mechanosensor model in which ligand binding exerts force on the TCR, inducing structural changes that allow signaling. Since these models are complementary rather than competing, we propose a unified model that aims to incorporate all existing data.
Collapse
Affiliation(s)
- Wolfgang W Schamel
- Department of Immunology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Balbino Alarcon
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Susana Minguet
- Department of Immunology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| |
Collapse
|
8
|
Dunne PJ, Maher CO, Freeley M, Dunne K, Petrasca A, Orikiiriza J, Dunne MR, Reidy D, O'Dea S, Loy A, Woo J, Long A, Rogers TR, Mulcahy F, Doherty DG. CD3ε Expression Defines Functionally Distinct Subsets of Vδ1 T Cells in Patients With Human Immunodeficiency Virus Infection. Front Immunol 2018; 9:940. [PMID: 29770136 PMCID: PMC5940748 DOI: 10.3389/fimmu.2018.00940] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/16/2018] [Indexed: 12/28/2022] Open
Abstract
Human γδ T cells expressing the Vδ1 T cell receptor (TCR) recognize self and microbial antigens and stress-inducible molecules in a major histocompatibility complex-unrestricted manner and are an important source of innate interleukin (IL)-17. Vδ1 T cells are expanded in the circulation and intestines of patients with human immunodeficiency virus (HIV) infection. In this study, we show that patients with HIV have elevated frequencies, but not absolute numbers, of circulating Vδ1 T cells compared to control subjects. This increase was most striking in the patients with Candida albicans co-infection. Using flow cytometry and confocal microscopy, we identify two populations of Vδ1 T cells, based on low and high expression of the ε chain of the CD3 protein complex responsible for transducing TCR-mediated signals (denoted CD3εlo and CD3εhi Vδ1 T cells). Both Vδ1 T cell populations expressed the CD3 ζ-chain, also used for TCR signaling. Using lines of Vδ1 T cells generated from healthy donors, we show that CD3ε can be transiently downregulated by activation but that its expression is restored over time in culture in the presence of exogenous IL-2. Compared to CD3εhi Vδ1 T cells, CD3εlo Vδ1 T cells more frequently expressed terminally differentiated phenotypes and the negative regulator of T cell activation, programmed death-1 (PD-1), but not lymphocyte-activation gene 3, and upon stimulation in vitro, only the CD3εhi subset of Vδ1 T cells, produced IL-17. Thus, while HIV can infect and kill IL-17-producing CD4+ T cells, Vδ1 T cells are another source of IL-17, but many of them exist in a state of exhaustion, mediated either by the induction of PD-1 or by downregulation of CD3ε expression.
Collapse
Affiliation(s)
- Pádraic J Dunne
- Discipline of Immunology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Christina O Maher
- Discipline of Immunology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Michael Freeley
- Discipline of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Katie Dunne
- Discipline of Clinical Microbiology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Andreea Petrasca
- Discipline of Immunology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Judy Orikiiriza
- Discipline of Immunology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Margaret R Dunne
- Discipline of Immunology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Derval Reidy
- Genitourinary Infectious Diseases Department, St. James's Hospital, Dublin, Ireland
| | - Siobhan O'Dea
- Genitourinary Infectious Diseases Department, St. James's Hospital, Dublin, Ireland
| | - Aisling Loy
- Genitourinary Infectious Diseases Department, St. James's Hospital, Dublin, Ireland
| | - Jim Woo
- Genitourinary Infectious Diseases Department, St. James's Hospital, Dublin, Ireland
| | - Aideen Long
- Discipline of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Thomas R Rogers
- Discipline of Clinical Microbiology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Fiona Mulcahy
- Genitourinary Infectious Diseases Department, St. James's Hospital, Dublin, Ireland
| | - Derek G Doherty
- Discipline of Immunology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Ngoenkam J, Schamel WW, Pongcharoen S. Selected signalling proteins recruited to the T-cell receptor-CD3 complex. Immunology 2018; 153:42-50. [PMID: 28771705 PMCID: PMC5721247 DOI: 10.1111/imm.12809] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 12/22/2022] Open
Abstract
The T-cell receptor (TCR)-CD3 complex, expressed on T cells, determines the outcome of a T-cell response. It consists of the TCR-αβ heterodimer and the non-covalently associated signalling dimers of CD3εγ, CD3εδ and CD3ζζ. TCR-αβ binds specifically to a cognate peptide antigen bound to an MHC molecule, whereas the CD3 subunits transmit the signal into the cytosol to activate signalling events. Recruitment of proteins to specialized localizations is one mechanism to regulate activation and termination of signalling. In the last 25 years a large number of signalling molecules recruited to the TCR-CD3 complex upon antigen binding to TCR-αβ have been described. Here, we review knowledge about five of those interaction partners: Lck, ZAP-70, Nck, WASP and Numb. Some of these proteins have been targeted in the development of immunomodulatory drugs aiming to treat patients with autoimmune diseases and organ transplants.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- CD3 Complex/chemistry
- CD3 Complex/genetics
- CD3 Complex/metabolism
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Humans
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Membrane Proteins/metabolism
- Mutation
- Nerve Tissue Proteins/metabolism
- Oncogene Proteins/metabolism
- Protein Binding
- Protein Interaction Domains and Motifs
- Receptor-CD3 Complex, Antigen, T-Cell/chemistry
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Wiskott-Aldrich Syndrome Protein/metabolism
- ZAP-70 Protein-Tyrosine Kinase/metabolism
Collapse
Affiliation(s)
- Jatuporn Ngoenkam
- Department of Microbiology and ParasitologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| | - Wolfgang W. Schamel
- Department of ImmunologyInstitute for Biology IIIFaculty of BiologyUniversity of FreiburgFreiburgGermany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
- Centre for Chronic Immunodeficiency (CCI)Medical Centre‐University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Sutatip Pongcharoen
- Centre of Excellence in Medical BiotechnologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
- Centre of Excellence in Petroleum, Petrochemicals and Advanced MaterialsFaculty of ScienceNaresuan UniversityPhitsanulokThailand
- Department of MedicineFaculty of MedicineNaresuan UniversityPhitsanulokThailand
| |
Collapse
|
10
|
|
11
|
Borroto A, Reyes-Garau D, Jiménez MA, Carrasco E, Moreno B, Martínez-Pasamar S, Cortés JR, Perona A, Abia D, Blanco S, Fuentes M, Arellano I, Lobo J, Heidarieh H, Rueda J, Esteve P, Cibrián D, Martinez-Riaño A, Mendoza P, Prieto C, Calleja E, Oeste CL, Orfao A, Fresno M, Sánchez-Madrid F, Alcamí A, Bovolenta P, Martín P, Villoslada P, Morreale A, Messeguer A, Alarcon B. First-in-class inhibitor of the T cell receptor for the treatment of autoimmune diseases. Sci Transl Med 2017; 8:370ra184. [PMID: 28003549 DOI: 10.1126/scitranslmed.aaf2140] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/25/2016] [Indexed: 12/14/2022]
Abstract
Modulating T cell activation is critical for treating autoimmune diseases but requires avoiding concomitant opportunistic infections. Antigen binding to the T cell receptor (TCR) triggers the recruitment of the cytosolic adaptor protein Nck to a proline-rich sequence in the cytoplasmic tail of the TCR's CD3ε subunit. Through virtual screening and using combinatorial chemistry, we have generated an orally available, low-molecular weight inhibitor of the TCR-Nck interaction that selectively inhibits TCR-triggered T cell activation with an IC50 (median inhibitory concentration) ~1 nM. By modulating TCR signaling, the inhibitor prevented the development of psoriasis and asthma and, furthermore, exerted a long-lasting therapeutic effect in a model of autoimmune encephalomyelitis. However, it did not prevent the generation of a protective memory response against a mouse pathogen, suggesting that the compound might not exert its effects through immunosuppression. These results suggest that inhibiting an immediate TCR signal has promise for treating a broad spectrum of human T cell-mediated autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Aldo Borroto
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Diana Reyes-Garau
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | | | - Esther Carrasco
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Beatriz Moreno
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain
| | - Sara Martínez-Pasamar
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain
| | - José R Cortés
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Almudena Perona
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - David Abia
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Soledad Blanco
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Manuel Fuentes
- Centro de Investigación del Cáncer, University of Salamanca-CSIC, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Irene Arellano
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Juan Lobo
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Haleh Heidarieh
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Javier Rueda
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Pilar Esteve
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Danay Cibrián
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ana Martinez-Riaño
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Pilar Mendoza
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Cristina Prieto
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Enrique Calleja
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Clara L Oeste
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Alberto Orfao
- Centro de Investigación del Cáncer, University of Salamanca-CSIC, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | | | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Pilar Martín
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Pablo Villoslada
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain
| | - Antonio Morreale
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Angel Messeguer
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Balbino Alarcon
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
12
|
Courtney AH, Lo WL, Weiss A. TCR Signaling: Mechanisms of Initiation and Propagation. Trends Biochem Sci 2017; 43:108-123. [PMID: 29269020 DOI: 10.1016/j.tibs.2017.11.008] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
Abstract
The mechanisms by which a T cell detects antigen using its T cell antigen receptor (TCR) are crucial to our understanding of immunity and the harnessing of T cells therapeutically. A hallmark of the T cell response is the ability of T cells to quantitatively respond to antigenic ligands derived from pathogens while remaining inert to similar ligands derived from host tissues. Recent studies have revealed exciting properties of the TCR and the behaviors of its signaling effectors that are used to detect and discriminate between antigens. Here we highlight these recent findings, focusing on the proximal TCR signaling molecules Zap70, Lck, and LAT, to provide mechanistic models and insights into the exquisite sensitivity and specificity of the TCR.
Collapse
Affiliation(s)
- Adam H Courtney
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute (HHMI), San Francisco, CA 94143, USA
| | - Wan-Lin Lo
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute (HHMI), San Francisco, CA 94143, USA
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute (HHMI), San Francisco, CA 94143, USA.
| |
Collapse
|
13
|
Infectious pathogens may trigger specific allo-HLA reactivity via multiple mechanisms. Immunogenetics 2017; 69:631-641. [PMID: 28718002 PMCID: PMC5537314 DOI: 10.1007/s00251-017-0989-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022]
Abstract
Transplant recipients can be sensitized against allo-HLA antigens by previous transplantation, blood transfusion, or pregnancy. While there is growing awareness that multiple components of the immune system can act as effectors of the alloresponse, the role of infectious pathogen exposure in triggering sensitization and allograft rejection has remained a matter of much debate. Here, we describe that exposure to pathogens may enhance the immune response to allogeneic HLA antigens via different pathways. The potential role of allo-HLA cross-reactivity of virus-specific memory T cells, activation of innate immunity leading to a more efficient induction of the adaptive alloimmune response by antigen-presenting cells, and bystander activation of existing memory B cell activation will be discussed in this review.
Collapse
|
14
|
Lipid-dependent conformational dynamics underlie the functional versatility of T-cell receptor. Cell Res 2017; 27:505-525. [PMID: 28337984 DOI: 10.1038/cr.2017.42] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 01/19/2017] [Accepted: 02/09/2017] [Indexed: 01/11/2023] Open
Abstract
T-cell receptor-CD3 complex (TCR) is a versatile signaling machine that can initiate antigen-specific immune responses based on various biochemical changes of CD3 cytoplasmic domains, but the underlying structural basis remains elusive. Here we developed biophysical approaches to study the conformational dynamics of CD3ε cytoplasmic domain (CD3εCD). At the single-molecule level, we found that CD3εCD could have multiple conformational states with different openness of three functional motifs, i.e., ITAM, BRS and PRS. These conformations were generated because different regions of CD3εCD had heterogeneous lipid-binding properties and therefore had heterogeneous dynamics. Live-cell imaging experiments demonstrated that different antigen stimulations could stabilize CD3εCD at different conformations. Lipid-dependent conformational dynamics thus provide structural basis for the versatile signaling property of TCR.
Collapse
|
15
|
Affiliation(s)
- Clara L Oeste
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Balbino Alarcón
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
16
|
Paensuwan P, Hartl FA, Yousefi OS, Ngoenkam J, Wipa P, Beck-Garcia E, Dopfer EP, Khamsri B, Sanguansermsri D, Minguet S, Schamel WW, Pongcharoen S. Nck Binds to the T Cell Antigen Receptor Using Its SH3.1 and SH2 Domains in a Cooperative Manner, Promoting TCR Functioning. THE JOURNAL OF IMMUNOLOGY 2015; 196:448-58. [PMID: 26590318 DOI: 10.4049/jimmunol.1500958] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/23/2015] [Indexed: 11/19/2022]
Abstract
Ligand binding to the TCR causes a conformational change at the CD3 subunits to expose the CD3ε cytoplasmic proline-rich sequence (PRS). It was suggested that the PRS is important for TCR signaling and T cell activation. It has been shown that the purified, recombinant SH3.1 domain of the adaptor molecule noncatalytic region of tyrosine kinase (Nck) can bind to the exposed PRS of CD3ε, but the molecular mechanism of how full-length Nck binds to the TCR in cells has not been investigated so far. Using the in situ proximity ligation assay and copurifications, we show that the binding of Nck to the TCR requires partial phosphorylation of CD3ε, as it is based on two cooperating interactions. First, the SH3.1(Nck) domain has to bind to the nonphosphorylated and exposed PRS, that is, the first ITAM tyrosine has to be in the unphosphorylated state. Second, the SH2(Nck) domain has to bind to the second ITAM tyrosine in the phosphorylated state. Likewise, mutations of the SH3.1 and SH2 domains in Nck1 resulted in the loss of Nck1 binding to the TCR. Furthermore, expression of an SH3.1-mutated Nck impaired TCR signaling and T cell activation. Our data suggest that the exact pattern of CD3ε phosphorylation is critical for TCR functioning.
Collapse
Affiliation(s)
- Pussadee Paensuwan
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Frederike A Hartl
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany
| | - O Sascha Yousefi
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany; Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg 79104, Germany
| | - Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Piyamaporn Wipa
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Esmeralda Beck-Garcia
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany; International Max Planck Research School for Molecular and Cellular Biology, Freiburg 79108, Germany
| | - Elaine P Dopfer
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany
| | - Boonruang Khamsri
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Donruedee Sanguansermsri
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Susana Minguet
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany
| | - Wolfgang W Schamel
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany;
| | - Sutatip Pongcharoen
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Research Center for Academic Excellence in Petroleum, Petrochemical and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; and Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
17
|
Hoffmann MM, Molina-Mendiola C, Nelson AD, Parks CA, Reyes EE, Hansen MJ, Rajagopalan G, Pease LR, Schrum AG, Gil D. Co-potentiation of antigen recognition: A mechanism to boost weak T cell responses and provide immunotherapy in vivo. SCIENCE ADVANCES 2015; 1:e1500415. [PMID: 26601285 PMCID: PMC4646799 DOI: 10.1126/sciadv.1500415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/24/2015] [Indexed: 06/05/2023]
Abstract
Adaptive immunity is mediated by antigen receptors that can induce weak or strong immune responses depending on the nature of the antigen that is bound. In T lymphocytes, antigen recognition triggers signal transduction by clustering T cell receptor (TCR)/CD3 multiprotein complexes. In addition, it hypothesized that biophysical changes induced in TCR/CD3 that accompany receptor engagement may contribute to signal intensity. Nonclustering monovalent TCR/CD3 engagement is functionally inert despite the fact that it may induce changes in conformational arrangement or in the flexibility of receptor subunits. We report that the intrinsically inert monovalent engagement of TCR/CD3 can specifically enhance physiologic T cell responses to weak antigens in vitro and in vivo without stimulating antigen-unengaged T cells and without interrupting T cell responses to strong antigens, an effect that we term as "co-potentiation." We identified Mono-7D6-Fab, which biophysically altered TCR/CD3 when bound and functionally enhanced immune reactivity to several weak antigens in vitro, including a gp100-derived peptide associated with melanoma. In vivo, Mono-7D6-Fab induced T cell antigen-dependent therapeutic responses against melanoma lung metastases, an effect that synergized with other anti-melanoma immunotherapies to significantly improve outcome and survival. We conclude that Mono-7D6-Fab directly co-potentiated TCR/CD3 engagement by weak antigens and that such concept can be translated into an immunotherapeutic design. The co-potentiation principle may be applicable to other receptors that could be regulated by otherwise inert compounds whose latent potency is only invoked in concert with specific physiologic ligands.
Collapse
Affiliation(s)
- Michele M. Hoffmann
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Carlos Molina-Mendiola
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
- Department of Statistics, Polytechnic University of Catalonia, Barcelona 08034, Spain
| | - Alfreda D. Nelson
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Christopher A. Parks
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Edwin E. Reyes
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Michael J. Hansen
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Govindarajan Rajagopalan
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Larry R. Pease
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Adam G. Schrum
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Diana Gil
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
18
|
Hwang S, Palin AC, Li L, Song KD, Lee J, Herz J, Tubo N, Chu H, Pepper M, Lesourne R, Zvezdova E, Pinkhasov J, Jenkins MK, McGavern D, Love PE. TCR ITAM multiplicity is required for the generation of follicular helper T-cells. Nat Commun 2015; 6:6982. [PMID: 25959494 PMCID: PMC4428620 DOI: 10.1038/ncomms7982] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/20/2015] [Indexed: 01/12/2023] Open
Abstract
The T-cell antigen receptor (TCR) complex contains 10 copies of a di-tyrosine Immunoreceptor-Tyrosine-based-Activation-Motif (ITAM) that initiates TCR signalling by recruiting protein tyrosine kinases. ITAM multiplicity amplifies TCR signals, but the importance of this capability for T-cell responses remains undefined. Most TCR ITAMs (6 of 10) are contributed by the CD3ζ subunits. We generated 'knock-in' mice that express non-signalling CD3ζ chains in lieu of wild-type CD3ζ. Here we demonstrate that ITAM multiplicity is important for the development of innate-like T-cells and follicular helper T-cells, events that are known to require strong/sustained TCR-ligand interactions, but is not essential for 'general' T-cell responses including proliferation and cytokine production or for the generation of a diverse antigen-reactive TCR repertoire.
Collapse
MESH Headings
- Animals
- Antigens/immunology
- Cell Proliferation
- Clone Cells
- Female
- Immunologic Memory
- Immunoreceptor Tyrosine-Based Activation Motif
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Natural Killer T-Cells/cytology
- Natural Killer T-Cells/immunology
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Signal Transduction
- Structure-Activity Relationship
- T-Lymphocytes, Helper-Inducer/cytology
Collapse
Affiliation(s)
- SuJin Hwang
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 2B-210, Building 6B, Bethesda, Maryland 20892, USA
| | - Amy C. Palin
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 2B-210, Building 6B, Bethesda, Maryland 20892, USA
| | - LiQi Li
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 2B-210, Building 6B, Bethesda, Maryland 20892, USA
| | - Ki-Duk Song
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 2B-210, Building 6B, Bethesda, Maryland 20892, USA
| | - Jan Lee
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 2B-210, Building 6B, Bethesda, Maryland 20892, USA
| | - Jasmin Herz
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Noah Tubo
- Department of Microbiology, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Hamlet Chu
- Department of Microbiology, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Marion Pepper
- Department of Microbiology, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Renaud Lesourne
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 2B-210, Building 6B, Bethesda, Maryland 20892, USA
| | - Ekaterina Zvezdova
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 2B-210, Building 6B, Bethesda, Maryland 20892, USA
| | - Julia Pinkhasov
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 2B-210, Building 6B, Bethesda, Maryland 20892, USA
| | - Marc K. Jenkins
- Department of Microbiology, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Dorian McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Paul E. Love
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 2B-210, Building 6B, Bethesda, Maryland 20892, USA
| |
Collapse
|
19
|
Insights into the initiation of TCR signaling. Nat Immunol 2014; 15:798-807. [PMID: 25137454 DOI: 10.1038/ni.2940] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/10/2014] [Indexed: 12/13/2022]
Abstract
The initiation of T cell antigen receptor signaling is a key step that can result in T cell activation and the orchestration of an adaptive immune response. Early events in T cell receptor signaling can distinguish between agonist and endogenous ligands with exquisite selectivity, and show extraordinary sensitivity to minute numbers of agonists in a sea of endogenous ligands. We review our current knowledge of models and crucial molecules that aim to provide a mechanistic explanation for these observations. Building on current understanding and a discussion of unresolved issues, we propose a molecular model for initiation of T cell receptor signaling that may serve as a useful guide for future studies.
Collapse
|
20
|
Blanco R, Borroto A, Schamel W, Pereira P, Alarcon B. Conformational changes in the T cell receptor differentially determine T cell subset development in mice. Sci Signal 2014; 7:ra115. [DOI: 10.1126/scisignal.2005650] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
21
|
Chylek LA, Akimov V, Dengjel J, Rigbolt KTG, Hu B, Hlavacek WS, Blagoev B. Phosphorylation site dynamics of early T-cell receptor signaling. PLoS One 2014; 9:e104240. [PMID: 25147952 PMCID: PMC4141737 DOI: 10.1371/journal.pone.0104240] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/07/2014] [Indexed: 11/18/2022] Open
Abstract
In adaptive immune responses, T-cell receptor (TCR) signaling impacts multiple cellular processes and results in T-cell differentiation, proliferation, and cytokine production. Although individual protein-protein interactions and phosphorylation events have been studied extensively, we lack a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites with central roles in TCR signaling. The model was used to generate predictions suggesting unexpected roles for the phosphatase PTPN6 (SHP-1) and shortcut recruitment of the actin regulator WAS. Predictions were validated experimentally. This integration of proteomics and modeling illustrates a novel, generalizable framework for solidifying quantitative understanding of a signaling network and for elucidating missing links.
Collapse
Affiliation(s)
- Lily A. Chylek
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Jörn Dengjel
- Department of Dermatology, Medical Center; Freiburg Institute for Advanced Studies (FRIAS); BIOSS Centre for Biological Signalling Studies; ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Kristoffer T. G. Rigbolt
- Department of Dermatology, Medical Center; Freiburg Institute for Advanced Studies (FRIAS); BIOSS Centre for Biological Signalling Studies; ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Bin Hu
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - William S. Hlavacek
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
22
|
Bettini ML, Guy C, Dash P, Vignali KM, Hamm DE, Dobbins J, Gagnon E, Thomas PG, Wucherpfennig KW, Vignali DAA. Membrane association of the CD3ε signaling domain is required for optimal T cell development and function. THE JOURNAL OF IMMUNOLOGY 2014; 193:258-67. [PMID: 24899501 DOI: 10.4049/jimmunol.1400322] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TCR:CD3 complex transduces signals that are critical for optimal T cell development and adaptive immunity. In resting T cells, the CD3ε cytoplasmic tail associates with the plasma membrane via a proximal basic-rich stretch (BRS). In this study, we show that mice lacking a functional CD3ε-BRS exhibited substantial reductions in thymic cellularity and limited CD4- CD8- double-negative (DN) 3 to DN4 thymocyte transition, because of enhanced DN4 TCR signaling resulting in increased cell death and TCR downregulation in all subsequent populations. Furthermore, positive, but not negative, T cell selection was affected in mice lacking a functional CD3ε-BRS, which led to limited peripheral T cell function and substantially reduced responsiveness to influenza infection. Collectively, these results indicate that membrane association of the CD3ε signaling domain is required for optimal thymocyte development and peripheral T cell function.
Collapse
Affiliation(s)
- Matthew L Bettini
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Clifford Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Pradyot Dash
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Kate M Vignali
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - David E Hamm
- Adaptive Biotechnologies, Seattle, WA 98102; and
| | - Jessica Dobbins
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Etienne Gagnon
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Dario A A Vignali
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105;
| |
Collapse
|
23
|
Borroto A, Abia D, Alarcón B. Crammed signaling motifs in the T-cell receptor. Immunol Lett 2014; 161:113-7. [PMID: 24877875 DOI: 10.1016/j.imlet.2014.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/07/2014] [Accepted: 05/15/2014] [Indexed: 11/30/2022]
Abstract
Although the T cell antigen receptor (TCR) is long known to contain multiple signaling subunits (CD3γ, CD3δ, CD3ɛ and CD3ζ), their role in signal transduction is still not well understood. The presence of at least one immunoreceptor tyrosine-based activation motif (ITAM) in each CD3 subunit has led to the idea that the multiplication of such elements essentially serves to amplify signals. However, the evolutionary conservation of non-ITAM sequences suggests that each CD3 subunit is likely to have specific non-redundant roles at some stage of development or in mature T cell function. The CD3ɛ subunit is paradigmatic because in a relatively short cytoplasmic sequence (∼55 amino acids) it contains several docking sites for proteins involved in intracellular trafficking and signaling, proteins whose relevance in T cell activation is slowly starting to be revealed. In this review we will summarize our current knowledge on the signaling effectors that bind directly to the TCR and we will propose a hierarchy in their response to TCR triggering.
Collapse
Affiliation(s)
- Aldo Borroto
- TCR Signal Transduction Laboratory, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - David Abia
- Bioinformatics Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Balbino Alarcón
- TCR Signal Transduction Laboratory, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| |
Collapse
|
24
|
Borroto A, Arellano I, Blanco R, Fuentes M, Orfao A, Dopfer EP, Prouza M, Suchànek M, Schamel WW, Alarcón B. Relevance of Nck-CD3 epsilon interaction for T cell activation in vivo. THE JOURNAL OF IMMUNOLOGY 2014; 192:2042-53. [PMID: 24470497 DOI: 10.4049/jimmunol.1203414] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
On TCR ligation, the adaptor Nck is recruited through its src homology 3.1 domain to a proline-rich sequence (PRS) in CD3ε. We have studied the relevance of this interaction for T cell activation in vitro and in vivo by targeting the interaction sites in both partners. The first approach consisted of studying a knockin (KI) mouse line (KI-PRS) bearing a conservative mutation in the PRS that makes the TCR incompetent to recruit Nck. This deficiency prevents T cell activation by Ag in vitro and inhibited very early TCR signaling events including the tyrosine phosphorylation of CD3ζ. Most important, KI-PRS mice are partly protected against the development of neurological symptoms in an experimental autoimmune encephalitis model, and show a deficient antitumoral response after vaccination. The second approach consisted of using a high-affinity peptide that specifically binds the src homology 3.1 domain and prevents the interaction of Nck with CD3ε. This peptide inhibits T cell proliferation in vitro and in vivo. These data suggest that Nck recruitment to the TCR is fundamental to mount an efficient T cell response in vivo, and that the Nck-CD3ε interaction may represent a target for pharmacological modulation of the immune response.
Collapse
Affiliation(s)
- Aldo Borroto
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
SLAP deficiency increases TCR avidity leading to altered repertoire and negative selection of cognate antigen-specific CD8+ T cells. Immunol Res 2013; 55:116-24. [PMID: 22956467 DOI: 10.1007/s12026-012-8354-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
How T cell receptor (TCR) avidity influences CD8(+) T cell development and repertoire selection is not yet fully understood. To fill this gap, we utilized Src-like adaptor protein (SLAP)-deficient mice as a tool to increase TCR avidity on double positive (DP) thymocytes. We generated SLAP(-/-) mice with the transgenic MHC class I-restricted TCR (OT-1) and SLAP(-/-) Vβ5 mice, expressing only the β-chain of the TCR OT-1 transgene, to examine the effects of increased TCR surface levels on CD8(+) T cell development and repertoire selection. In comparing SLAP(-/-) OT-1 and Vβ5 mice with wild-type controls, we performed compositional analysis and assessed thymocyte signaling by measuring CD5 levels. In addition, we performed tetramer and compositional staining to measure affinity for the cognate antigen, ovalbumin (OVA) peptide, presented by MHC. Furthermore, we quantified differences in α-chain repertoire in SLAP(-/-) Vβ5 mice. We have found that SLAP(-/-) OT-1 mice have fewer CD8(+) thymocytes but have increased CD5 expression. SLAP(-/-) OT-1 mice have fewer DP thymocytes expressing Vα2, signifying increased endogenous α-chain rearrangement, and more non-OVA-specific CD8(+) splenocytes upon tetramer staining. Our data demonstrate that SLAP(-/-) Vβ5 mice also have fewer OVA-specific cells and increased Vα2 usage in the peripheral Vβ5 CD8(+) T cells that were non-OVA-specific, demonstrating differences in α-chain repertoire. These studies provide direct evidence that increased TCR avidity in DP thymocytes enhances CD8(+) T cell negative selection deleting thymocytes with specificity for cognate antigen, an antigen the mature T cells may never encounter. Collectively, these studies provide new insights into how TCR avidity during CD8(+) T cell development influences repertoire selection.
Collapse
|
26
|
Alkemade GM, Clemente-Casares X, Yu Z, Xu BY, Wang J, Tsai S, Wright JR, Roep BO, Santamaria P. Local autoantigen expression as essential gatekeeper of memory T-cell recruitment to islet grafts in diabetic hosts. Diabetes 2013; 62:905-11. [PMID: 23160528 PMCID: PMC3581210 DOI: 10.2337/db12-0600] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It is generally believed that inflammatory cues can attract noncognate, "bystander" T-cell specificities to sites of inflammation. We have shown that recruitment of naive and in vitro activated autoreactive CD8⁺ T cells into endogenous islets requires local autoantigen expression. Here, we demonstrate that absence of an autoantigen in syngeneic extrapancreatic islet grafts in diabetic hosts renders the grafts "invisible" to cognate memory (and naive) T cells. We monitored the recruitment of islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)₂₀₆₋₂₁₄-reactive CD8⁺ T cells into IGRP₂₀₆₋₂₁₄-competent and IGRP₂₀₆₋₂₁₄-deficient islet grafts in diabetic wild-type or IGRP₂₀₆₋₂₁₄(-/-) nonobese diabetic hosts (harboring either naive and memory T cells or only naive IGRP₂₀₆₋₂₁₄-specific T-cells, respectively). All four host-donor combinations had development of recurrent diabetes within 2 weeks. Wild-type hosts recruited IGRP₂₀₆₋₂₁₄-specific T cells into IGRP₂₀₆₋₂₁₄(+/+) but not IGRP₂₀₆₋₂₁₄(-/-) grafts. In IGRP₂₀₆₋₂₁₄(-/-) hosts, there was no recruitment of IGRP₂₀₆₋₂₁₄-specific T cells, regardless of donor type. Graft-derived IGRP₂₀₆₋₂₁₄ activated naive IGRP₂₀₆₋₂₁₄-specific T cells, but graft destruction invariably predated their recruitment. These results indicate that recurrent diabetes is exclusively driven by autoreactive T cells primed during the primary autoimmune response, and demonstrate that local antigen expression is a sine qua non requirement for accumulation of memory T cells into islet grafts. These findings underscore the importance of tackling autoreactive T-cell memory after β-cell replacement therapy.
Collapse
MESH Headings
- Animals
- Autoantigens/analysis
- Autoantigens/genetics
- Autoantigens/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Cells, Cultured
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/therapy
- Epitopes
- Glucose-6-Phosphatase/analysis
- Glucose-6-Phosphatase/genetics
- Glucose-6-Phosphatase/metabolism
- Graft Survival
- Immunologic Memory
- Islets of Langerhans Transplantation/adverse effects
- Islets of Langerhans Transplantation/immunology
- Islets of Langerhans Transplantation/pathology
- Kidney
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Lymph Nodes/pathology
- Mice
- Mice, Inbred NOD
- Mice, Transgenic
- Pancreas/immunology
- Pancreas/metabolism
- Pancreas/pathology
- Peptide Fragments/analysis
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Proteins/analysis
- Proteins/genetics
- Proteins/metabolism
- Spleen/immunology
- Spleen/metabolism
- Spleen/pathology
- Transplantation, Heterotopic/adverse effects
- Transplantation, Heterotopic/immunology
- Transplantation, Isogeneic/adverse effects
- Transplantation, Isogeneic/immunology
Collapse
Affiliation(s)
- Gonnie M. Alkemade
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Xavier Clemente-Casares
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Zhenguo Yu
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bao-You Xu
- Department of Pathology, University of Calgary, Calgary, Alberta, Canada
| | - Jinguo Wang
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sue Tsai
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - James R. Wright
- Department of Pathology, University of Calgary, Calgary, Alberta, Canada
| | - Bart O. Roep
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Corresponding author: Pere Santamaria,
| |
Collapse
|
27
|
Borroto A, Arellano I, Dopfer EP, Prouza M, Suchànek M, Fuentes M, Orfao A, Schamel WW, Alarcón B. Nck recruitment to the TCR required for ZAP70 activation during thymic development. THE JOURNAL OF IMMUNOLOGY 2012; 190:1103-12. [PMID: 23267019 DOI: 10.4049/jimmunol.1202055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adaptor protein Nck is inducibly recruited through its SH3.1 domain to a proline-rich sequence (PRS) in CD3ε after TCR engagement. However, experiments with a knockin mutant bearing an 8-aa replacement of the PRS have indicated that Nck binding to the TCR is constitutive, and that it promotes the degradation of the TCR in preselection double-positive (DP) CD4(+)CD8(+) thymocytes. To clarify these discrepancies, we have generated a new knockin mouse line (KI-PRS) bearing a conservative mutation in the PRS resulting from the replacement of the two central prolines. Thymocytes of KI-PRS mice are partly arrested at each step at which pre-TCR or TCR signaling is required. The mutation prevents the trigger-dependent inducible recruitment of endogenous Nck to the TCR but does not impair TCR degradation. However, KI-PRS preselection DP thymocytes show impaired tyrosine phosphorylation of CD3ζ, as well as impaired recruitment of ZAP70 to the TCR and impaired ZAP70 activation. Our results indicate that Nck is recruited to the TCR in an inducible manner in DP thymocytes, and that this recruitment is required for the activation of early TCR-dependent events. Differences in the extent of PRS mutation could explain the phenotypic differences in both knockin mice.
Collapse
Affiliation(s)
- Aldo Borroto
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang J, Tsai S, Han B, Tailor P, Santamaria P. Autoantigen recognition is required for recruitment of IGRP(206-214)-autoreactive CD8+ T cells but is dispensable for tolerance. THE JOURNAL OF IMMUNOLOGY 2012; 189:2975-84. [PMID: 22908330 DOI: 10.4049/jimmunol.1201787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The progression of autoimmune responses is associated with an avidity maturation process driven by preferential expansion of high avidity clonotypes at the expense of their low avidity counterparts. Central and peripheral tolerance hinder the contribution of high-avidity clonotypes targeting residues 206-214 of islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP(206-214)) during the earliest stages of autoimmune diabetes. In this study, we probe the molecular determinants and biochemical consequences of IGRP(206-214)/K(d) recognition by high-, intermediate-, and low-avidity autoreactive CD8+ T cells, and we investigate the effects of genetic IGRP(206-214) silencing on their developmental biology. We find that differences in avidity for IGRP(206-214)/K(d) map to CDR1α and are associated with quantitative differences in CD3ε proline-rich sequence exposure and Nck recruitment. Unexpectedly, we find that tolerance of high-avidity CD8+ T cells, unlike their activation and recruitment into the pancreas, is dissociated from recognition of IGRP(206-214), particularly in adult mice. This finding challenges the view that tolerance of pathogenic autoreactive T cells is invariably triggered by recognition of the peptide-MHC complex that drives their activation in the periphery, indicating the existence of mechanisms of tolerance that are capable of sensing the avidity, hence pathogenicity of autoreactive T cells without the need to rely on local autoantigen availability.
Collapse
Affiliation(s)
- Jinguo Wang
- Julia McFarlane Diabetes Research Centre, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
29
|
Fernandes RA, Shore DA, Vuong MT, Yu C, Zhu X, Pereira-Lopes S, Brouwer H, Fennelly JA, Jessup CM, Evans EJ, Wilson IA, Davis SJ. T cell receptors are structures capable of initiating signaling in the absence of large conformational rearrangements. J Biol Chem 2012; 287:13324-35. [PMID: 22262845 PMCID: PMC3339974 DOI: 10.1074/jbc.m111.332783] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/10/2012] [Indexed: 12/18/2022] Open
Abstract
Native and non-native ligands of the T cell receptor (TCR), including antibodies, have been proposed to induce signaling in T cells via intra- or intersubunit conformational rearrangements within the extracellular regions of TCR complexes. We have investigated whether any signatures can be found for such postulated structural changes during TCR triggering induced by antibodies, using crystallographic and mutagenesis-based approaches. The crystal structure of murine CD3ε complexed with the mitogenic anti-CD3ε antibody 2C11 enabled the first direct structural comparisons of antibody-liganded and unliganded forms of CD3ε from a single species, which revealed that antibody binding does not induce any substantial rearrangements within CD3ε. Saturation mutagenesis of surface-exposed CD3ε residues, coupled with assays of antibody-induced signaling by the mutated complexes, suggests a new configuration for the complex within which CD3ε is highly exposed and reveals that no large new CD3ε interfaces are required to form during antibody-induced signaling. The TCR complex therefore appears to be a structure that is capable of initiating intracellular signaling in T cells without substantial structural rearrangements within or between the component subunits. Our findings raise the possibility that signaling by native ligands might also be initiated in the absence of large structural rearrangements in the receptor.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- CD3 Complex/chemistry
- CD3 Complex/genetics
- CD3 Complex/immunology
- Crystallography, X-Ray
- Dimerization
- Epitopes, T-Lymphocyte/immunology
- Humans
- Immunoglobulin Fab Fragments/immunology
- Jurkat Cells
- Mice
- Mutagenesis, Site-Directed
- Protein Conformation
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction/immunology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Ricardo A. Fernandes
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - David A. Shore
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - Mai T. Vuong
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - Chao Yu
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - Xueyong Zhu
- the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Selma Pereira-Lopes
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - Heather Brouwer
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - Janet A. Fennelly
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - Claire M. Jessup
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - Edward J. Evans
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - Ian A. Wilson
- the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Simon J. Davis
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| |
Collapse
|
30
|
Yiemwattana I, Ngoenkam J, Paensuwan P, Kriangkrai R, Chuenjitkuntaworn B, Pongcharoen S. Essential role of the adaptor protein Nck1 in Jurkat T cell activation and function. Clin Exp Immunol 2012; 167:99-107. [PMID: 22132889 PMCID: PMC3248091 DOI: 10.1111/j.1365-2249.2011.04494.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2011] [Indexed: 11/29/2022] Open
Abstract
The non-catalytic region of tyrosine kinase (Nck) is proposed to play an essential role in T cell activation. However, evidence based on functional and biochemical studies has brought into question the critical function of Nck. Therefore, the aim of the present work was to investigate the role of Nck in T cell activation. To study this, the human Jurkat T cell line was used as a model for human T lymphocytes. The short interfering (si) RNA targeting Nck1 gene was used with electroporation to knock-down Nck1 protein expression in Jurkat T cells. Primary human CD4 T cells were also transfected with the siRNA of Nck1. The results showed that decreased Nck1 protein expression did not affect the apoptosis of the transfected Jurkat T cells compared with control siRNA-transfected cells and non-transfected cells. Upon CD3ε/CD28 stimulation, knock-down of Nck1 in Jurkat T cells caused a decrease in CD69 expression and in interleukin (IL)-2 secretion. Similarly, knock-down of Nck1 in primary CD4 T cells also caused decreased CD69 expression. However, no significant alterations of CD69 and IL-2 expression were found upon phytohaemagglutinin (PHA)/phorbol myristate acetate (PMA) stimulation. Knock-down of Nck1 had no effect on the proliferation of Jurkat T cells stimulated with either PHA or anti-T cell receptor (TCR) monoclonal antibody (C305). The reduced Nck1 expression in Jurkat cells was also associated with a reduced phosphorylation of extracellular regulated kinase (Erk)1 and Erk2 proteins upon CD3ε/CD28 stimulation. In conclusion, the decreased Nck1 protein in Jurkat T cells resulted in an impairment of TCR-CD3-mediated activation involving a defective Erk phosphorylation pathway.
Collapse
MESH Headings
- Adaptive Immunity/immunology
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/genetics
- Apoptosis/drug effects
- Apoptosis/immunology
- CD28 Antigens/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Electroporation
- Humans
- Interleukin-1/biosynthesis
- Interleukin-1/genetics
- Jurkat Cells/drug effects
- Jurkat Cells/immunology
- Jurkat Cells/metabolism
- Lectins, C-Type/biosynthesis
- Lectins, C-Type/genetics
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Oncogene Proteins/antagonists & inhibitors
- Oncogene Proteins/genetics
- Oncogene Proteins/physiology
- Phosphorylation
- Phytohemagglutinins/pharmacology
- Protein Processing, Post-Translational
- RNA Interference
- RNA, Small Interfering/pharmacology
- Receptor-CD3 Complex, Antigen, T-Cell/immunology
- Tetradecanoylphorbol Acetate/pharmacology
Collapse
Affiliation(s)
- I Yiemwattana
- Department of Preventive Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
| | | | | | | | | | | |
Collapse
|
31
|
Corse E, Gottschalk RA, Allison JP. Strength of TCR-peptide/MHC interactions and in vivo T cell responses. THE JOURNAL OF IMMUNOLOGY 2011; 186:5039-45. [PMID: 21505216 DOI: 10.4049/jimmunol.1003650] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TCR can detect subtle differences in the strength of interaction with peptide/MHC ligand and transmit this information to influence downstream events in T cell responses. Manipulation of the factor commonly referred to as TCR signal strength can be achieved by changing the amount or quality of peptide/MHC ligand. Recent work has enhanced our understanding of the many variables that contribute to the apparent cumulative strength of TCR stimulation during immunogenic and tolerogenic T cell responses. In this review, we consider data from in vitro studies in the context of in vivo immune responses and discuss in vivo consequences of manipulation of strength of TCR stimulation, including influences on T cell-APC interactions, the magnitude and quality of the T cell response, and the types of fate decisions made by peripheral T cells.
Collapse
Affiliation(s)
- Emily Corse
- Department of Immunology, Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | | |
Collapse
|
32
|
Ramanathan S, Dubois S, Chen XL, Leblanc C, Ohashi PS, Ilangumaran S. Exposure to IL-15 and IL-21 enables autoreactive CD8 T cells to respond to weak antigens and cause disease in a mouse model of autoimmune diabetes. THE JOURNAL OF IMMUNOLOGY 2011; 186:5131-41. [PMID: 21430227 DOI: 10.4049/jimmunol.1001221] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autoreactive CD8(+) T lymphocytes play a key role in the pathogenesis of several autoimmune diseases. It is not yet well understood how autoreactive CD8(+) T cells, which express TCRs with low reactivity toward self-Ags, gain the ability to respond to autoantigens to cause disease. Previously, we have shown that prior stimulation of CD8(+) T cells with synergistic combinations of cytokines produced by the innate immune response, such as IL-21 and IL-15, induces Ag-independent proliferation. Such "cytokine-primed" CD8 T cells displayed increased responsiveness to limiting quantities of the cognate Ag. In this paper, we report that prior stimulation with IL-15 and IL-21 also enables CD8(+) T cells to respond to weakly agonistic TCR ligands, resulting in proliferation, cytokine secretion, and cytolytic activity. Using a transgenic mouse model of autoimmune diabetes, we show that cytokine-primed autoreactive CD8(+) T cells induce disease following stimulation by weak TCR ligands, but their diabetogenic potential is dependent on continuous availability of IL-15 in vivo. These findings suggest that inflammatory cytokines could facilitate the triggering of autoreactive CD8(+) T cells by weak autoantigens, and this mechanism may have important implications for autoimmune diseases associated with microbial infections and chronic inflammation.
Collapse
Affiliation(s)
- Sheela Ramanathan
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada.
| | | | | | | | | | | |
Collapse
|
33
|
de la Cruz J, Kruger T, Parks CA, Silge RL, van Oers NSC, Luescher IF, Schrum AG, Gil D. Basal and antigen-induced exposure of the proline-rich sequence in CD3ε. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:2282-90. [PMID: 21228347 PMCID: PMC3810001 DOI: 10.4049/jimmunol.1003225] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The CD3ε cytoplasmic tail contains a conserved proline-rich sequence (PRS) that influences TCR-CD3 expression and signaling. Although the PRS can bind the SH3.1 domain of the cytosolic adapter Nck, whether the PRS is constitutively available for Nck binding or instead represents a cryptic motif that is exposed via conformational change upon TCR-CD3 engagement (CD3Δc) is currently unresolved. Furthermore, the extent to which a cis-acting CD3ε basic amino acid-rich stretch (BRS), with its unique phosphoinositide-binding capability, might impact PRS accessibility is not clear. In this study, we found that freshly harvested primary thymocytes expressed low to moderate basal levels of Nck-accessible PRS ("open-CD3"), although most TCR-CD3 complexes were inaccessible to Nck ("closed-CD3"). Ag presentation in vivo induced open-CD3, accounting for half of the basal level found in thymocytes from MHC(+) mice. Additional stimulation with either anti-CD3 Abs or peptide-MHC ligands further elevated open-CD3 above basal levels, consistent with a model wherein antigenic engagement induces maximum PRS exposure. We also found that the open-CD3 conformation induced by APCs outlasted the time of ligand occupancy, marking receptors that had been engaged. Finally, CD3ε BRS-phosphoinositide interactions played no role in either adoption of the initial closed-CD3 conformation or induction of open-CD3 by Ab stimulation. Thus, a basal level of open-CD3 is succeeded by a higher, induced level upon TCR-CD3 engagement, involving CD3Δc and prolonged accessibility of the CD3ε PRS to Nck.
Collapse
MESH Headings
- Amino Acid Motifs/immunology
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- CD3 Complex/genetics
- CD3 Complex/immunology
- CD3 Complex/metabolism
- Cell Line, Tumor
- Epitopes, T-Lymphocyte/physiology
- Hybridomas
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Proline/immunology
- Proline/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/genetics
- Receptor-CD3 Complex, Antigen, T-Cell/immunology
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Javier de la Cruz
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905
- Initiative to Maximize Student Diversity and Post Baccalaureate Research Education Program, College of Medicine, Mayo Clinic, Rochester, MN 55905
| | - Travis Kruger
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905
- Summer Undergraduate Research Fellowship Program, College of Medicine, Mayo Clinic, Rochester, MN 55905
| | - Christopher A. Parks
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905
- Summer Undergraduate Research Fellowship Program, College of Medicine, Mayo Clinic, Rochester, MN 55905
| | - Robert L. Silge
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Nicolai S. C. van Oers
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Immanuel F. Luescher
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| | - Adam G. Schrum
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905
| | - Diana Gil
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
34
|
Roy E, Togbe D, Holdorf A, Trubetskoy D, Nabti S, Küblbeck G, Schmitt S, Kopp-Schneider A, Leithäuser F, Möller P, Bladt F, Hämmerling GJ, Arnold B, Pawson T, Tafuri A. Fine Tuning of the Threshold of T Cell Selection by the Nck Adapters. THE JOURNAL OF IMMUNOLOGY 2010; 185:7518-26. [DOI: 10.4049/jimmunol.1000008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Nck adaptors are positive regulators of the size and sensitivity of the T-cell repertoire. Proc Natl Acad Sci U S A 2010; 107:15529-34. [PMID: 20709959 DOI: 10.1073/pnas.1009743107] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The size and sensitivity of the T-cell repertoire governs the effectiveness of immune responses against invading pathogens. Both are modulated by T-cell receptor (TCR) activity through molecular mechanisms, which remain unclear. Here, we provide genetic evidence that the SH2/SH3 domain containing proteins Nck lower the threshold of T-cell responsiveness. The hallmarks of Nck deletion were T-cell lymphopenia and hyporeactivity to TCR-mediated stimulation. In the absence of the Nck adaptors, peripheral T cells expressing a TCR with low avidity for self-antigens were strongly reduced, whereas an overall impairment of T-cell activation by weak antigenic stimulation was observed. Mechanistically, Nck deletion resulted in a significant decrease in calcium mobilization and ERK phosphorylation upon TCR engagement. Taken together, our findings unveil a crucial role for the Nck adaptors in shaping the T-cell repertoire to ensure maximal antigenic coverage and optimal T cell excitability.
Collapse
|
36
|
Tonic ubiquitylation controls T-cell receptor:CD3 complex expression during T-cell development. EMBO J 2010; 29:1285-98. [PMID: 20150895 DOI: 10.1038/emboj.2010.10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 01/15/2010] [Indexed: 01/06/2023] Open
Abstract
Expression of the T-cell receptor (TCR):CD3 complex is tightly regulated during T-cell development. The mechanism and physiological role of this regulation are unclear. Here, we show that the TCR:CD3 complex is constitutively ubiquitylated in immature double positive (DP) thymocytes, but not mature single positive (SP) thymocytes or splenic T cells. This steady state, tonic CD3 monoubiquitylation is mediated by the CD3varepsilon proline-rich sequence, Lck, c-Cbl, and SLAP, which collectively trigger the dynamin-dependent downmodulation, lysosomal sequestration and degradation of surface TCR:CD3 complexes. Blocking this tonic ubiquitylation by mutating all the lysines in the CD3 cytoplasmic tails significantly upregulates TCR levels on DP thymocytes. Mimicking monoubiquitylation by expression of a CD3zeta-monoubiquitin (monoUb) fusion molecule significantly reduces TCR levels on immature thymocytes. Moreover, modulating CD3 ubiquitylation alters immunological synapse (IS) formation and Erk phosphorylation, thereby shifting the signalling threshold for positive and negative selection, and regulatory T-cell development. Thus, tonic TCR:CD3 ubiquitylation results in precise regulation of TCR expression on immature T cells, which is required to maintain the fidelity of T-cell development.
Collapse
|
37
|
T cell receptor gene therapy: strategies for optimizing transgenic TCR pairing. Trends Mol Med 2010; 16:77-87. [DOI: 10.1016/j.molmed.2009.12.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/21/2009] [Accepted: 12/21/2009] [Indexed: 11/19/2022]
|
38
|
|
39
|
Abstract
The series of events leading to T-cell activation following antigen recognition has been extensively investigated. Although the exact mechanisms of ligand binding and transmission of this extracellular interaction into a productive intracellular signaling sequence remains incomplete, it has been known for many years that the immunoreceptor tyrosine activation motifs (ITAMs) of the T-cell receptor (TCR):CD3 complex are required for initiation of this signaling cascade because of the recruitment and activation of multiple protein tyrosine kinases, signaling intermediates, and adapter molecules. It however remains unclear why the TCR:CD3 complex requires 10 ITAMs, while many other ITAM-containing immune receptors, such as Fc receptors (FcRs) and the B cell receptor (BCR), contain far fewer ITAMs. We have recently demonstrated that various parameters of T cell development and activation are influenced by the number, as well as location and type, of ITAMs within the TCR:CD3 complex and hence propose that the TCR is capable of 'scalable signaling' that facilitates the initiation and orchestration of diverse T-cell functions. While many of the underlying mechanisms remain hypothetical, this review intends to amalgamate what we have learned from conventional biochemical analyses regarding initiation and diversification of T-cell signaling, with more recent evidence from molecular and fluorescent microscopic analyses, to propose a broader purpose for the TCR:CD3 ITAMs. Rather than simply signal initiation, individual ITAMs may also be responsible for the differential recruitment of signaling and regulatory molecules which ultimately affects T-cell development, activation and differentiation.
Collapse
Affiliation(s)
- Clifford S Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
40
|
Brodeur JF, Li S, Damlaj O, Dave VP. Expression of fully assembled TCR-CD3 complex on double positive thymocytes: synergistic role for the PRS and ER retention motifs in the intra-cytoplasmic tail of CD3epsilon. Int Immunol 2009; 21:1317-27. [PMID: 19819936 DOI: 10.1093/intimm/dxp098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
TCR expression on double-positive (DP) thymocytes is a prerequisite for thymic selection that results in the generation of mature CD4(+) and CD8(+) single-positive T cells. TCR is expressed at very low level on preselection DP thymocytes and is dramatically up-regulated on positively selected thymocytes. However, mechanism governing TCR expression on developing thymocytes is not understood. In the present report, we demonstrate that the intra-cytoplasmic (IC) domain of CD3epsilon plays a critical role in regulating TCR expression on DP thymocytes. We provide genetic and biochemical evidence to show that the CD3epsilon IC domain mutations result in elevated expression of fully assembled TCR on DP thymocytes. We also demonstrate that TCR up-regulation on DP thymocytes in these transgenic mice occurs in a ligand-independent manner. Further, we show that the proline-rich sequence and endoplasmic reticulum (ER) retention motifs in the IC domain of CD3epsilon play synergistic role in regulating TCR surface expression on DP thymocytes.
Collapse
Affiliation(s)
- Jean-Francois Brodeur
- Lymphocyte Development Laboratory, Institut de Recherches Cliniques de Montreal, Montreal, Quebec, Canada H2W 1R7
| | | | | | | |
Collapse
|
41
|
Martínez-Martín N, Risueño RM, Morreale A, Zaldívar I, Fernández-Arenas E, Herranz F, Ortiz AR, Alarcón B. Cooperativity between T cell receptor complexes revealed by conformational mutants of CD3epsilon. Sci Signal 2009; 2:ra43. [PMID: 19671929 DOI: 10.1126/scisignal.2000402] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The CD3epsilon subunit of the T cell receptor (TCR) complex undergoes a conformational change upon ligand binding that is thought to be important for the activation of T cells. To study this process, we built a molecular dynamics model of the transmission of the conformational change within the ectodomains of CD3. The model showed that the CD3 dimers underwent a stiffening effect that was funneled to the base of the CD3epsilon subunit. Mutation of two relevant amino acid residues blocked transmission of the conformational change and the differentiation and activation of T cells. Furthermore, this inhibition occurred even in the presence of excess endogenous CD3epsilon subunits. These results emphasize the importance of the conformational change in CD3epsilon for the activation of T cells and suggest the existence of unforeseen cooperativity between TCR complexes.
Collapse
Affiliation(s)
- Nuria Martínez-Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
This year marks the 25th anniversary of the first Annual Review of Immunology article to describe features of the T cell antigen receptor (TCR). In celebration of this anniversary, we begin with a brief introduction outlining the chronology of the earliest studies that established the basic paradigm for how the engaged TCR transduces its signals. This review continues with a description of the current state of our understanding of TCR signaling, as well as a summary of recent findings examining other key aspects of T cell activation, including cross talk between the TCR and integrins, the role of costimulatory molecules, and how signals may negatively regulate T cell function.Acronyms and DefinitionsAdapter protein: cellular protein that functions to bridge molecular interactions via characteristic domains able to mediate protein/protein or protein/lipid interactions Costimulation: signals delivered to T cells by cell surface receptors other than the TCR itself that potentiate T cell activation cSMAC: central supramolecular activation cluster Immunoreceptor tyrosine-based activation motif (ITAM): a short peptide sequence in the cytoplasmic tails of key surface receptors on hematopoietic cells that is characterized by tyrosine residues that are phosphorylated by Src family PTKs, enabling the ITAM to recruit activated Syk family kinases Inside-out signaling: signals initiated by engagement of immunoreceptors that lead to conformational changes and clustering of integrins, thereby increasing the affinity and avidity of the integrins for their ligands NFAT: nuclear factor of activated T cells PI3K: phosphoinositide 3-kinase PKC: protein kinase C PLC: phospholipase C pMHC: peptide major histocompatibility complex (MHC) complex pSMAC: peripheral supramolecular activation cluster PTK: protein tyrosine kinase Signal transduction: biochemical events linking surface receptor engagement to cellular responses TCR: T cell antigen receptor
Collapse
Affiliation(s)
- Jennifer E Smith-Garvin
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
43
|
Abstract
The immune system defends the host against pathogenic attacks by micro-organisms and their products. It does not react against self-components due to the relatively efficient negative selection of developing T lymphocytes in the thymus. This process does permit T cells with low avidity against self to be present in the T cell repertoire. Such cells play an important physiological role as the host needs so-called autoimmune reactions in order to eliminate dying cells or transformed tumour cells. One of the mysteries in immunology is how the host maintains beneficial autoimmune reactions and avoids pathogenic autoimmune reactions. Activation of the adaptive T lymphocytes is mediated by the low avidity interaction between T-cell antigen receptors and antigenic peptides associated with major histocompatibility complex class I or class II molecules. This interaction is strengthened by T-cell co-receptors such as CD2, CD4, CD8, CD28 and CD154, which react with ligands expressed by cells of the innate immune system. In recent years, the importance of pre-activation of the innate immune system for initiation of adaptive T-cell immune responses has been appreciated. In the present review, I will summarize our work on how natural immunity plays an important role in determining the level of beneficial autoimmune reactions against cancer.
Collapse
Affiliation(s)
- B Rubin
- Institut de Science et Technologies du Médicament de Toulouse, UMR 2587 CNRS-Pierre Fabre, Rue des Satellites, Toulouse, France.
| |
Collapse
|
44
|
Brodeur JF, Li S, Martins MDS, Larose L, Dave VP. Critical and Multiple Roles for the CD3ε Intracytoplasmic Tail in Double Negative to Double Positive Thymocyte Differentiation. THE JOURNAL OF IMMUNOLOGY 2009; 182:4844-53. [DOI: 10.4049/jimmunol.0803679] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Lettau M, Pieper J, Janssen O. Nck adapter proteins: functional versatility in T cells. Cell Commun Signal 2009; 7:1. [PMID: 19187548 PMCID: PMC2661883 DOI: 10.1186/1478-811x-7-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 02/02/2009] [Indexed: 01/16/2023] Open
Abstract
Nck is a ubiquitously expressed adapter protein that is almost exclusively built of one SH2 domain and three SH3 domains. The two isoproteins of Nck are functionally redundant in many aspects and differ in only few amino acids that are mostly located in the linker regions between the interaction modules. Nck proteins connect receptor and non-receptor tyrosine kinases to the machinery of actin reorganisation. Thereby, Nck regulates activation-dependent processes during cell polarisation and migration and plays a crucial role in the signal transduction of a variety of receptors including for instance PDGF-, HGF-, VEGF- and Ephrin receptors. In most cases, the SH2 domain mediates binding to the phosphorylated receptor or associated phosphoproteins, while SH3 domain interactions lead to the formation of larger protein complexes. In T lymphocytes, Nck plays a pivotal role in the T cell receptor (TCR)-induced reorganisation of the actin cytoskeleton and the formation of the immunological synapse. However, in this context, two different mechanisms and adapter complexes are discussed. In the first scenario, dependent on an activation-induced conformational change in the CD3epsilon subunits, a direct binding of Nck to components of the TCR/CD3 complex was shown. In the second scenario, Nck is recruited to the TCR complex via phosphorylated Slp76, another central constituent of the membrane proximal activation complex. Over the past years, a large number of putative Nck interactors have been identified in different cellular systems that point to diverse additional functions of the adapter protein, e.g. in the control of gene expression and proliferation.
Collapse
Affiliation(s)
- Marcus Lettau
- University Hospital Schleswig-Holstein Campus Kiel, Institute of Immunology, Molecular Immunology, Arnold-Heller-Str 3, Bldg 17, D-24105 Kiel, Germany.
| | | | | |
Collapse
|