1
|
Schenzel A, Geiger A, Nendel E, Yang Z, Krammer S, Leberle A, Brunst AK, Trump S, Mittler S, Rauh M, Geppert CI, Tausche P, Hohenberger K, Rieker RJ, Schieweck O, Zundler S, Finotto S. Fiber rich food suppressed airway inflammation, GATA3 + Th2 cells, and FcεRIα+ eosinophils in asthma. Front Nutr 2024; 11:1367864. [PMID: 38757128 PMCID: PMC11097976 DOI: 10.3389/fnut.2024.1367864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Background Allergic Asthma is a disease presenting various endotypes and no current therapies act curative but alleviate disease symptoms. Dietary interventions are gaining increasing importance in regulating immune responses. Furthermore, short chain fatty acids (SFCA), as the main products of dietary fiber's fermentation by the gut bacteria, ameliorate the pathogenesis and disease burden of different illnesses including asthma. Nevertheless, the connection and crosstalk between the gut and lung is poorly understood. Objective In this work, the role of high fiber diet on the development of allergic asthma at baseline and after exacerbation of disease induced by respiratory viruses was investigated. Methods Hereby, SCFA in serum of asthmatic and non-asthmatic pre-school children before and after airway disease symptoms were analyzed. Moreover, the effect of high fiber diet in vivo in a murine model of house dust mite extract (HDM) induced allergic asthma and in the end in isolated lung and spleen cells infected ex vivo with Rhinovirus was analyzed. Results In this study, a decrease of the SCFA 3-Hydroxybutyric acid in serum of asthmatic children after symptomatic episodes at convalescent visit as compared to asthmatic and control children at baseline visit was observed. In experimental asthma, in mice fed with high fiber diet, a reduced lung GATA3 + Th2 type mediated inflammation, mucus production and collagen deposition and expression of Fc epsilon receptor Ia (FcεRIa) in eosinophils was observed. By contrast, the CD8+ memory effector T cells were induced in the lungs of asthmatic mice fed with high fiber diet. Then, total lung cells from these asthmatic mice fed with either standard food or with fiber rich food were infected with RV ex vivo. Here, RV1b mRNA was found significantly reduced in the lung cells derived from fiber rich food fed mice as compared to those derived from standard food fed asthmatic mice. Looking for the mechanism, an increase in CD8+ T cells in RV infected spleen cells derived from fiber rich fed asthmatic mice, was observed. Conclusion Convalescent preschool asthmatic children after a symptomatic episode have less serum ß-Hydroxybutyric acid as compared to control and asthmatic children at baseline visit. Fiber rich diet associated with anti-inflammatory effects as well as anti-allergic effects by decreasing Type 2 and IgE mediated immune responses and inducing CD8+ memory effector T cells in a murine model of allergic asthma. Finally, ex vivo infection with Rhinovirus (RV) of total lung cells from asthmatic mice fed with fiber rich food led to a decreased RV load as compared to mice fed with standard food. Moreover, spleen cells derived from asthmatic mice fed with fiber rich food induced CD8+ T cells after ex vivo infection with RV. Clinical implications Dietary interventions with increased content in natural fibers like pectins would ameliorate asthma exacerbations. Moreover, respiratory infection in asthma downregulated SCFA in the gut contributing to asthma exacerbations.
Collapse
Affiliation(s)
- Alicia Schenzel
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Adriana Geiger
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Elvedina Nendel
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Zuqin Yang
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susanne Krammer
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anna Leberle
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ann-Kathrin Brunst
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sonja Trump
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susanne Mittler
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Manfred Rauh
- Children’s Hospital, Department of Allergy and Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Carol I. Geppert
- Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Patrick Tausche
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katja Hohenberger
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ralf J. Rieker
- Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Oliver Schieweck
- Laboratory of Clinic Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Zundler
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
- Department of Internal Medicine 1, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
2
|
Grund JC, Krammer S, Yang Z, Mitländer H, Rauh M, Zirlik S, Kiefer A, Zimmermann T, Rieker RJ, Geppert CI, Papadopoulos NG, Finotto S. Vitamin D 3 resolved human and experimental asthma via B lymphocyte-induced maturation protein 1 in T cells and innate lymphoid cells. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100099. [PMID: 37779516 PMCID: PMC10510005 DOI: 10.1016/j.jacig.2023.100099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 10/03/2023]
Abstract
Background Vitamin D3 (VitD3) is known to have immunomodulatory functions, and VitD3 deficiency is associated with more severe asthma. Objective We aimed to assess the immunoregulatory effects of VitD3 food supplementation on asthma manifestation, with particular focus on T cells and type 2 innate lymphoid cells. Methods Preschool children and adult asthmatic cohorts were analyzed in the context of VitD3 supplementation and serum levels. In a murine model of ovalbumin-induced asthma, effects of diet VitD3 sufficiency and deficiency on T cells and type 2 innate lymphoid cells immune mechanisms were investigated. Results We found less severe and better-controlled asthma phenotypes along with reduced need for steroid medication in preschool children and asthmatic adults with VitD3 supplementation. VitD3 serum levels correlated with B lymphocyte-induced maturation protein 1 (Blimp-1) expression in blood peripheral mononuclear cells. VitD3-supplement-fed mice showed decreased asthmatic traits, with a decrease in IgE serum levels, reduced airway mucus, and increased IL-10 production by lung cells. Furthermore, we discovered an upregulation of effector T cells and Blimp-1+ lung tissue-resident memory T cells as well as induction of anti-inflammatory Blimp-1+ lung innate lymphoid cells producing IL-10. Conclusion Supplementing VitD3 resulted in amelioration of clinical asthma manifestations in human studies as well as in experimental allergic asthma, indicating that VitD3 shifts proinflammatory immune responses to anti-inflammatory immune responses via upregulating Blimp-1 in lung innate lymphoid cells and tissue-resident memory cells.
Collapse
Affiliation(s)
- Janina C. Grund
- Department of Molecular Pneumology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susanne Krammer
- Department of Molecular Pneumology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Zuqin Yang
- Department of Molecular Pneumology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hannah Mitländer
- Department of Molecular Pneumology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Manfred Rauh
- Department of Clinical Laboratories, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sabine Zirlik
- I Medical Clinic, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Kiefer
- Department of Allergy and Pneumology of the Children’s Hospital, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Theodor Zimmermann
- Department of Allergy and Pneumology of the Children’s Hospital, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ralf J. Rieker
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen
| | - Carol I. Geppert
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen
| | - Nikolaos G. Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
- Centre for Respiratory Medicine & Allergy, Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Susetta Finotto
- Department of Molecular Pneumology, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen
| |
Collapse
|
3
|
Shibata K, Shimizu T, Nakahara M, Ito E, Legoux F, Fujii S, Yamada Y, Furutani-Seiki M, Lantz O, Yamasaki S, Watarai M, Shirai M. The intracellular pathogen Francisella tularensis escapes from adaptive immunity by metabolic adaptation. Life Sci Alliance 2022; 5:5/10/e202201441. [PMID: 35667686 PMCID: PMC9170078 DOI: 10.26508/lsa.202201441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022] Open
Abstract
This study shows that metabolic adaptation allows the intracellular bacterial pathogen Francisella tularensis to escape recognition by the host adaptive immunity. Intracellular pathogens lose many metabolic genes during their evolution from free-living bacteria, but the pathogenic consequences of their altered metabolic programs on host immunity are poorly understood. Here, we show that a pathogenic strain of Francisella tularensis subsp. tularensis (FT) has five amino acid substitutions in RibD, a converting enzyme of the riboflavin synthetic pathway responsible for generating metabolites recognized by mucosal-associated invariant T (MAIT) cells. Metabolites from a free-living strain, F. tularensis subsp. novicida (FN), activated MAIT cells in a T-cell receptor (TCR)–dependent manner, whereas introduction of FT-type ribD to the free-living strain was sufficient to attenuate this activation in both human and mouse MAIT cells. Intranasal infection in mice showed that the ribDFT-expressing FN strain induced impaired Th1-type MAIT cell expansion and resulted in reduced bacterial clearance and worsened survival compared with the wild-type free-living strain FN. These results demonstrate that F. tularensis can acquire immune evasion capacity by alteration of metabolic programs during evolution.
Collapse
Affiliation(s)
- Kensuke Shibata
- Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan .,Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Department of Ophthalmology, Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Shimizu
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Mashio Nakahara
- Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Emi Ito
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | - Shotaro Fujii
- Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yuka Yamada
- Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Makoto Furutani-Seiki
- Systems Biochemistry in Pathology and Regeneration, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Olivier Lantz
- INSERM U932, PSL University, Laboratoire d'Immunologie Clinique, Centre d'Investigation Clinique en Biothérapie, Institut Curie (CIC-BT1428), Paris, France
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Division of Molecular Design, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Masahisa Watarai
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Mutsunori Shirai
- Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
4
|
Targeted deletion of Interleukin-3 results in asthma exacerbations. iScience 2022; 25:104440. [PMID: 35707726 PMCID: PMC9189047 DOI: 10.1016/j.isci.2022.104440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/28/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
|
5
|
Krammer S, Yang Z, Zimmermann T, Xepapadaki P, Geppert CI, Papadopoulos NG, Finotto S. An Immunoregulatory Role of Interleukin-3 in Allergic Asthma. Front Immunol 2022; 13:821658. [PMID: 35281014 PMCID: PMC8904351 DOI: 10.3389/fimmu.2022.821658] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/24/2022] [Indexed: 01/31/2023] Open
Abstract
Background Allergic asthma is a chronic airway inflammatory disease associated with airway mucus hyper-production. ILC2 cells, which express the Th2 transcription factor GATA3, have been associated with allergic asthma. The cytokine IL-3 is known to support eosinophil, basophil and mucosal mast cell differentiation and survival; however, its role on T regulatory cells as well as on lung ILC2 and in pediatric asthma needs further investigation. Objectives To investigate the role of IL-3 in preschool children and to explore its therapeutic role in experimental asthma. Methods In a cohort of preschool children with and without asthma, we analyzed the secretion of IL-3 in nasopharyngeal fluid (NPF) and IL-3 receptor (R) alpha chain mRNA expression in peripheral blood mononuclear cells (PBMCs). In a murine model of allergic asthma, we analyzed the phenotype of wild-type untreated and rIL-3 intranasally treated asthmatic mice. Results IL-3 was found downregulated in the nasopharyngeal fluid of children with partially controlled asthma, as compared to control children. Moreover, IL-3 was found induced in phytohemagglutinin (PHA)-stimulated PBMCs from children with asthma and treated with steroids. Finally, IL-3 in NPF directly correlated with the anti-inflammatory molecule sST2 in steroid-treated asthmatic children. Intranasal rIL-3 delivery in vivo during the challenge phase decreased airway mucus production and inflammatory eosinophils. Moreover, rIL-3 given during the challenge phase, reduced lung ST2intGATA3+ILC2, accompanied by an induction of T regulatory cells in the airways. Conclusions IL-3 was found associated with steroid-resolved asthma. Moreover, treatment with rIL-3 resulted in amelioration of airway eosinophilia and mucus production, two main pathophysiological conditions associated with asthma in a murine model of allergic asthma. Thus, rIL-3 opens new strategies for immunotherapy of this disease.
Collapse
Affiliation(s)
- Susanne Krammer
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Zuqin Yang
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Theodor Zimmermann
- Children's Hospital, Department of Allergy and Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Paraskevi Xepapadaki
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Carol I Geppert
- Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Centre for Respiratory Medicine & Allergy, Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
6
|
Li N, Mirzakhani H, Kiefer A, Koelle J, Vuorinen T, Rauh M, Yang Z, Krammer S, Xepapadaki P, Lewandowska-Polak A, Lukkarinen H, Zhang N, Stanic B, Zimmermann T, Kowalski ML, Jartti T, Bachert C, Akdis M, Papadopoulos NG, Raby BA, Weiss ST, Finotto S. Regulated on Activation, Normal T cell Expressed and Secreted (RANTES) drives the resolution of allergic asthma. iScience 2021; 24:103163. [PMID: 34693221 PMCID: PMC8511896 DOI: 10.1016/j.isci.2021.103163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/25/2021] [Accepted: 09/21/2021] [Indexed: 11/04/2022] Open
Abstract
RANTES is implicated in allergic asthma and in T cell-dependent clearance of infection. RANTES receptor family comprises CCR1, CCR3, and CCR5, which are G-protein-coupled receptors consisting of seven transmembrane helices. Infections with respiratory viruses like Rhinovirus cause induction of RANTES production by epithelial cells. Here, we studied the role of RANTES in the peripheral blood mononuclear cells in cohorts of children with and without asthma and validated and extended this study to the airways of adults with and without asthma. We further translated these studies to a murine model of asthma induced by house dust mite allergen in wild-type RANTES and CCR5-deficient mice. Here we show an unpredicted therapeutic role of RANTES in the resolution of allergen-induced asthma by orchestrating the transition of effector GATA-3+CD4+ T cells into immune-regulatory-type T cells and inflammatory eosinophils into resident eosinophils as well as increased IL-10 production in the lung.
Collapse
Affiliation(s)
- Nina Li
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hoomann Mirzakhani
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Kiefer
- Department of Allergy and Pneumology, Children’s Hospital, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Koelle
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tytti Vuorinen
- Medical Microbiology, Turku University Hospital, Institut of Biomedicine, University of Turku, Turku, Finland
| | - Manfred Rauh
- Department of Allergy and Pneumology, Children’s Hospital, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Zuqin Yang
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susanne Krammer
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Paraskevi Xepapadaki
- Department of Allergy, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Heikki Lukkarinen
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Nan Zhang
- Upper Airways Research Laboratory, Otorhinolaryngology, University of Gent, Gent, Belgium
| | - Barbara Stanic
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, Davos, Switzerland
| | - Theodor Zimmermann
- Department of Allergy and Pneumology, Children’s Hospital, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Marek L. Kowalski
- Department of Immunology and Allergy, Medical University of Lodz, Poland
| | - Tuomas Jartti
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Claus Bachert
- Upper Airways Research Laboratory, Otorhinolaryngology, University of Gent, Gent, Belgium
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, Davos, Switzerland
| | - Nikolaos G. Papadopoulos
- Department of Allergy, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
- Centre for Respiratory Medicine & Allergy, University of Manchester, Manchester, UK
| | - Benjamin A. Raby
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
7
|
Li Y, Pan L, Zeng X, Zhang R, Li X, Li J, Xing H, Bao J. Ammonia exposure causes the imbalance of the gut-brain axis by altering gene networks associated with oxidative metabolism, inflammation and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112668. [PMID: 34450428 DOI: 10.1016/j.ecoenv.2021.112668] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 08/06/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Ammonia is an acknowledged environment pollutant in atmosphere with irritating smell. Previous studies have shown that excessive ammonia has toxic effects on farm animals and humans. However, the detail toxicity mechanism of ammonia to pigs is still unknown so far. In order to clarify the mechanism of ammonia toxicity, we established a porcine exogenous ammonia poisoning model and assessed the effects of ammonia on the gut-brain axis by transcriptome sequencing, histological observation and chemical analysis. Our results showed that after 30 d of ammonia exposure, 578 differentially expressed genes (DEGs) and 407 DEGs were obtained in the hypothalamus and jejunum, respectively. These DEGs were enriched into Gene Ontology terms associated with inflammation, oxidative metabolism, apoptosis, and the highly expressed genes among these DEGs were verified by real-time quantitative PCR. The content of glutathione and the activities of glutathione peroxidase and superoxide dismutase were significantly decreased, while malondialdehyde content was increased after ammonia exposure. Corticotropin releasing factor, substance P, 5-hydroxytryptamine and ghrelin contents in serum elevated significantly. Furthermore, pathologic observation in the ammonia group revealed infiltration of lymphocytes in the hypothalamus and significant decrease of jejunal epithelial cells. Our results indicated that ammonia exposure mediated changes in transcriptional profiles, pathological damage, oxidative stress and brain-gut peptide of the pig jejunum and hypothalamus, and induced the imbalance of the brain-gut axis through the "oxidative stress-inflammation-apoptosis" interaction network. Our study not only provides a new perspective for the toxicity assessment of ammonia, but also enriches the toxicology mechanism of ammonia.
Collapse
Affiliation(s)
- Yutao Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic ofChina
| | - Lei Pan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiangyin Zeng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, People's Republic of China
| | - Xiang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, People's Republic of China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic ofChina; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, People's Republic of China
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, People's Republic of China.
| | - Jun Bao
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic ofChina; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, People's Republic of China.
| |
Collapse
|
8
|
Targeted deletion of NFAT-Interacting-Protein-(NIP) 45 resolves experimental asthma by inhibiting Innate Lymphoid Cells group 2 (ILC2). Sci Rep 2019; 9:15695. [PMID: 31666531 PMCID: PMC6821848 DOI: 10.1038/s41598-019-51690-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
Here we investigated the role of NFAT-interacting protein (NIP)-45, an Interleukin (IL)-4 inducing Transcription Factor, and its impact on the differentiation of Group 2 Innate -Lymphoid -Cells (ILC2s) in the pathogenesis of asthma. NIP45, a transcription factor regulating NFATc1 activity, mRNA was found to be induced in the Peripheral Blood mononuclear cells (PMBCs) of asthmatic pre-school children with allergies and in the peripheral blood CD4+ T cells from adult asthmatic patients. In PBMCs of asthmatic and control children, NIP45 mRNA directly correlated with NFATc1 but not with T-bet. Targeted deletion of NIP45 in mice resulted in a protective phenotype in experimental asthma with reduced airway mucus production, airway hyperresponsiveness and eosinophils. This phenotype was reversed by intranasal delivery of recombinant r-IL-33. Consistently, ILC2s and not GATA3+ CD4+ T-cells were decreased in the lungs of asthmatic NIP45−/− mice. Reduced cell number spleen ILC2s could be differentiated from NIP45−/− as compared to wild-type mice after in vivo injection of a microcircle-DNA vector expressing IL-25 and decreased cytokines and ILC2 markers in ILC2 differentiated from the bone marrow of NIP45−/− mice. NIP45 thus emerges as a new therapeutic target for the resolution of the airway pathology, down-regulation of ILC2s and mucus production in asthma.
Collapse
|
9
|
Jia Z, Zhang Z, Yang Q, Deng C, Li D, Ren L. Effect of IL2RA and IL2RB gene polymorphisms on lung cancer risk. Int Immunopharmacol 2019; 74:105716. [PMID: 31279323 DOI: 10.1016/j.intimp.2019.105716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Inflammation is crucial for lung cancer development. Variants of multiple genes in inflammation pathways may lead to susceptibility to lung cancer. In the present study, we aimed to assess the influence of polymorphisms in inflammation-related genes (IL2RA and IL2RB) on lung cancer risk. METHODS A total of 507 patients with lung cancer and 503 healthy controls were genotyped for seven polymorphisms of IL2RA and IL2RB using the Agena MassARRAY platform. We evaluated the relationship of the genotypes with lung cancer susceptibility using odds ratio (OR), 95% confidence interval (95% CI) and chi square test. RESULTS We found that IL2RA rs12722498 was significantly associated with a decreased risk of lung cancer in dominant (p = 0.040, OR = 0.71, 95% CI = 0.51-0.98), additive (p = 0.016, OR = 0.68, 95% CI = 0.50-0.93) and allele (p = 0.019, OR = 0.69, 95% CI = 0.51-0.94) models. After stratification analysis, the results showed that IL2RA rs12569923 (non-smokers), IL2RA rs791588 (≤60 years old, non-drinkers, BMI < 24 kg/m2), IL2RA rs12722498 (≤60 years old, non-drinkers, BMI < 24 kg/m2, female) and IL2RB rs2281089 (female, stage) significantly decreased the risk of lung cancer. Additionally, the haplotypes of rs12569923 and rs791588 in IL2RA had strong relationships with lung cancer in the subgroups of BMI < 24 kg/m2, age ≤ 60 years old, non-smokers and non-drinkers. CONCLUSION Our results showed that the IL2RA and IL2RB polymorphisms were associated with lung cancer risk in the Chinese Han population, which suggests roles for IL2RA and IL2RB polymorphisms in lung cancer.
Collapse
Affiliation(s)
- Zhuoqi Jia
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhe Zhang
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qi Yang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chunni Deng
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Daxu Li
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Le Ren
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
10
|
Raftis EJ, Delday MI, Cowie P, McCluskey SM, Singh MD, Ettorre A, Mulder IE. Bifidobacterium breve MRx0004 protects against airway inflammation in a severe asthma model by suppressing both neutrophil and eosinophil lung infiltration. Sci Rep 2018; 8:12024. [PMID: 30104645 PMCID: PMC6089914 DOI: 10.1038/s41598-018-30448-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
Asthma is a phenotypically heterogeneous disease. In severe asthma, airway inflammation can be predominantly eosinophilic, neutrophilic, or mixed. Only a limited number of drug candidates are in development to address this unmet clinical need. Live biotherapeutics derived from the gut microbiota are a promising new therapeutic area. MRx0004 is a commensal Bifidobacterium breve strain isolated from the microbiota of a healthy human. The strain was tested prophylactically and therapeutically by oral gavage in a house dust mite mouse model of severe asthma. A strong reduction of neutrophil and eosinophil infiltration was observed in lung bronchoalveolar lavage fluid following MRx0004 treatment. Peribronchiolar and perivascular immunopathology was also reduced. MRx0004 increased lung CD4+CD44+ cells and CD4+FoxP3+ cells and decreased activated CD11b+ dendritic cells. Cytokine analysis of lung tissue revealed reductions of pro-inflammatory cytokines and chemokines involved in neutrophil migration. In comparison, anti-IL-17 antibody treatment effectively reduced neutrophilic infiltration and increased CD4+FoxP3+ cells, but it induced lung eosinophilia and did not decrease histopathology scores. We have demonstrated that MRx0004, a microbiota-derived bacterial strain, can reduce both neutrophilic and eosinophilic infiltration in a mouse model of severe asthma. This novel therapeutic is a promising next-generation drug for management of severe asthma.
Collapse
Affiliation(s)
- Emma J Raftis
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Margaret I Delday
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
| | - Philip Cowie
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Seánín M McCluskey
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Mark D Singh
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Anna Ettorre
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Imke E Mulder
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom.
| |
Collapse
|
11
|
Wu K, Ma J, Bai W, Cui X, Han T, Wang S, Xie Y, Xie Y. Short-term intratracheal use of PEG-modified IL-2 and glucocorticoid persistently alleviates asthma in a mouse model. Sci Rep 2016; 6:31562. [PMID: 27527926 PMCID: PMC4985708 DOI: 10.1038/srep31562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/22/2016] [Indexed: 01/12/2023] Open
Abstract
Regulatory T (Treg) cells play an important role in allergic airway diseases, and upregulation of Treg cells is a potential therapeutic strategy for asthma. In this study, we show that short-term intratracheal use of IL-2 combined with glucocorticoid alleviates antigen-induced airway inflammation and reduces airway hyperresponsiveness by expanding antigen-nonspecific Treg cells, with a decrease in T helper 2 (Th2) cells and Th2-associated cytokines. We also designed a long-acting polyethylene glycol (PEG)-modified IL-2 and demonstrated that the optimal dosage form is IL-2(PEG) plus budesonide, which can upregulate Treg cells and ameliorate asthma at a lower dose. The therapeutic effect was faster than treatment with dexamethasone and was effective at a low dose suitable for humans that could last for at least 6 weeks. This study unveils a new therapeutic regimen and suggests that such endogenous Treg therapy could be a useful tool to persistently alleviate asthma.
Collapse
Affiliation(s)
- Kefei Wu
- Department of Hematology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, People's Republic of China
| | - Jiexian Ma
- Department of Hematology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, People's Republic of China
| | - Weiya Bai
- Key laboratory of medical molecular virology, Institutes of biomedical sciences and institute of medical microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Xiaoxian Cui
- Key laboratory of medical molecular virology, Institutes of biomedical sciences and institute of medical microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Tao Han
- Department of Hematology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, People's Republic of China
| | - Shiyuan Wang
- Xiamen Amoytop Biotech Co., Ltd, Xiamen 360000, People's Republic of China
| | - Youhua Xie
- Key laboratory of medical molecular virology, Institutes of biomedical sciences and institute of medical microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Yanhui Xie
- Department of Hematology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, People's Republic of China
| |
Collapse
|
12
|
Zhang Y. Potential therapeutic targets from genetic and epigenetic approaches for asthma. World J Transl Med 2016; 5:14-25. [DOI: 10.5528/wjtm.v5.i1.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Asthma is a complex disorder characterised by inflammation of airway and symptoms of wheeze and shortness of breath. Allergic asthma, atopic dermatitis and allergic rhinitis are immunoglobulin E (IgE) related diseases. Current therapies targeting asthma rely on non-specific medication to control airway inflammation and prevent symptoms. Severe asthma remains difficult to treat. Genetic and genomic approaches of asthma and IgE identified many novel loci underling the disease pathophysiology. Recent epigenetic approaches also revealed the insights of DNA methylation and chromatin modification on histones in asthma and IgE. More than 30 microRNAs have been identified to have regulating roles in asthma. Understanding the pathways of the novel genetic loci and epigenetic elements in asthma and IgE will provide new therapeutic means for clinical management of the disease in future.
Collapse
|
13
|
Stein J, Maxeiner JH, Montermann E, Höhn Y, Raker V, Taube C, Sudowe S, Reske-Kunz AB. Non-eosinophilic airway hyper-reactivity in mice, induced by IFN-γ producing CD4(+) and CD8(+) lung T cells, is responsive to steroid treatment. Scand J Immunol 2015; 80:327-38. [PMID: 25124713 DOI: 10.1111/sji.12217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/06/2014] [Indexed: 01/22/2023]
Abstract
Non-eosinophilic asthma is characterized by infiltration of neutrophils into the lung and variable responsiveness to glucocorticoids. The pathophysiological mechanisms have not been characterized in detail. Here, we present an experimental asthma model in mice associated with non-eosinophilic airway inflammation and airway hyper-responsiveness (AHR). For this, BALB/c mice were sensitized by biolistic DNA immunization with a plasmid encoding the model antigen β-galactosidase (pFascin-βGal mice). For comparison, eosinophilic airway inflammation was induced by subcutaneous injection of βGal protein (βGal mice). Intranasal challenge of mice in both groups induced AHR to a comparable extent as well as recruitment of inflammatory cells into the airways. In contrast to βGal mice, which exhibited extensive eosinophilic infiltration in the lung, goblet cell hyperplasia and polarization of CD4(+) T cells into Th2 and Th17 cells, pFascin-βGal mice showed considerable neutrophilia, but no goblet cell hyperplasia and a predominance of Th1 and Tc1 cells in the airways. Depletion studies in pFascin-βGal mice revealed that CD4(+) and CD8(+) cells cooperated to induce maximum inflammation, but that neutrophilic infiltration was not a prerequisite for AHR induction. Treatment of pFascin-βGal mice with dexamethasone before intranasal challenge did not affect neutrophilic infiltration, but significantly reduced AHR, infiltration of monocytes and lymphocytes as well as content of IFN-γ in the bronchoalveolar fluid. Our results suggest that non-eosinophilic asthma associated predominantly with Th1/Tc1 cells is susceptible to glucocorticoid treatment. pFascin-βGal mice might represent a mouse model to study pathophysiological mechanisms proceeding in the subgroup of asthmatics with non-eosinophilic asthma that respond to inhaled steroids.
Collapse
Affiliation(s)
- J Stein
- Clinical Research Unit Allergology, Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Böhm L, Maxeiner J, Meyer-Martin H, Reuter S, Finotto S, Klein M, Schild H, Schmitt E, Bopp T, Taube C. IL-10 and regulatory T cells cooperate in allergen-specific immunotherapy to ameliorate allergic asthma. THE JOURNAL OF IMMUNOLOGY 2014; 194:887-97. [PMID: 25527785 DOI: 10.4049/jimmunol.1401612] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human studies demonstrated that allergen-specific immunotherapy (IT) represents an effective treatment for allergic diseases. IT involves repeated administration of the sensitizing allergen, indicating a crucial contribution of T cells to its medicinal benefit. However, the underlying mechanisms of IT, especially in a chronic disease, are far from being definitive. In the current study, we sought to elucidate the suppressive mechanisms of IT in a mouse model of chronic allergic asthma. OVA-sensitized mice were challenged with OVA or PBS for 4 wk. After development of chronic airway inflammation, mice received OVA-specific IT or placebo alternately to airway challenge for 3 wk. To analyze the T cell-mediated mechanisms underlying IT in vivo, we elaborated the role of T-bet-expressing Th1 cells, T cell-derived IL-10, and Ag-specific thymic as well as peripherally induced Foxp3(+) regulatory T (Treg) cells. IT ameliorated airway hyperresponsiveness and airway inflammation in a chronic asthma model. Of note, IT even resulted in a regression of structural changes in the airways following chronic inhaled allergen exposure. Concomitantly, IT induced Th1 cells, Foxp3(+), and IL-10-producing Treg cells. Detailed analyses revealed that thymic Treg cells crucially contribute to the effectiveness of IT by promoting IL-10 production in Foxp3-negative T cells. Together with the peripherally induced Ag-specific Foxp3(+) Treg cells, thymic Foxp3(+) Treg cells orchestrate the curative mechanisms of IT. Taken together, we demonstrate that IT is effective in a chronic allergic disease and dependent on IL-10 and thymic as well as peripherally induced Ag-specific Treg cells.
Collapse
Affiliation(s)
- Livia Böhm
- Institute for Immunology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Joachim Maxeiner
- Institute for Immunology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Helen Meyer-Martin
- Department of Pulmonary Medicine, III Medical Clinic, University Medical Center Mainz, 55131 Mainz, Germany
| | - Sebastian Reuter
- Department of Pulmonary Medicine, III Medical Clinic, University Medical Center Mainz, 55131 Mainz, Germany
| | - Susetta Finotto
- Institute of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; and
| | - Matthias Klein
- Institute for Immunology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Hansjörg Schild
- Institute for Immunology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Edgar Schmitt
- Institute for Immunology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Christian Taube
- Department of Pulmonology, University Medical Center Leiden, 2333 ZA Leiden, the Netherlands
| |
Collapse
|
15
|
Xue T, Wei N, Xin Z, Qingyu X. Angiotensin-converting enzyme-2 overexpression attenuates inflammation in rat model of chronic obstructive pulmonary disease. Inhal Toxicol 2014; 26:14-22. [PMID: 24417403 DOI: 10.3109/08958378.2013.850563] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To investigate the anti-inflammatory effects of angiotensin-converting enzyme 2 (ACE2) overexpression on rat model of chronic obstructive pulmonary disease (COPD), and explore underlying mechanism. METHODS The rat COPD model was established by cigarette smoking using a total body exposure method. A total of 64 male Wistar rats were randomly divided into four groups: normal, COPD, Ad-ACE2 and Ad-EGFP groups. The COPD model rats (including COPD, Ad-ACE2 and Ad-EGFP groups) received an intratracheal injection of normal saline, Ad-ACE2 and Ad-EGFP, respectively. The normal group underwent the same procedure but received an intratracheal injection of normal saline only. Pulmonary function tests, lung histopathology analysis, malondialdehyde (MDA) and reactive oxygen species (ROS) level, ACE2 mRNA and protein expression level, inflammatory cytokines and related signaling pathway proteins were measured. RESULTS COPD rats showed impairment of lung function as evidenced by decreased ratio of forced expiratory volume at 0.3 s and forced vital capacity (FEV0.3/FVC) and dynamic lung compliance (Cldyn), increased resistance inspiration (Ri) and resistance expiration (Re) as compared with the normal group, accompanying with reduced ACE2 mRNA expression, elevated ROS and MDA, elevated inflammatory cytokines levels (tumor necrosis factor α, TNF-α; interleukin-8, IL-8; IL-2 and IL-1β) and activation of nuclear factor-κB (NF-κB) and p38 MAPK (mitogen activated protein kinases) pathway in lung tissues. ACE2 overexpression through Ad-ACE2 infusion significantly attenuated the inflammatory response in lung tissues of COPD model rats. CONCLUSION ACE2 could attenuate COPD inflammatory process induced by cigarette smoke through reduction of oxidative stress and inhibition of NF-κB and p38 MAPK pathway activation.
Collapse
Affiliation(s)
- Tian Xue
- Department of Respiratory Medicine, Shanghai First People's Hospital, Shanghai Jiaotong University , Shanghai , China and
| | | | | | | |
Collapse
|
16
|
Role of Tyk-2 in Th9 and Th17 cells in allergic asthma. Sci Rep 2014; 4:5865. [PMID: 25109392 PMCID: PMC4127519 DOI: 10.1038/srep05865] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/01/2014] [Indexed: 12/13/2022] Open
Abstract
In a murine model of allergic asthma, we found that Tyk-2(−/−) asthmatic mice have induced peribronchial collagen deposition, mucosal type mast cells in the lung, IRF4 and hyperproliferative lung Th2 CD4+ effector T cells over-expressing IL-3, IL-4, IL-5, IL-10 and IL-13. We also observed increased Th9 cells expressing IL-9 and IL-10 as well as T helper cells expressing IL-6, IL-10 and IL-21 with a defect in IL-17A and IL-17F production. This T helper phenotype was accompanied by increased SOCS3 in the lung of Tyk-2 deficient asthmatic mice. Finally, in vivo treatment with rIL-17A inhibited local CD4+CD25+Foxp3+ T regulatory cells as well as Th2 cytokines without affecting IL-9 in the lung. These results suggest a role of Tyk-2 in different subsets of T helper cells mediated by SOCS3 regulation that is relevant for the treatment of asthma, cancer and autoimmune diseases.
Collapse
|
17
|
Duechs MJ, Tilp C, Tomsic C, Gantner F, Erb KJ. Development of a novel severe triple allergen asthma model in mice which is resistant to dexamethasone and partially resistant to TLR7 and TLR9 agonist treatment. PLoS One 2014; 9:e91223. [PMID: 24618687 PMCID: PMC3949744 DOI: 10.1371/journal.pone.0091223] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/08/2014] [Indexed: 01/28/2023] Open
Abstract
Severe asthma is characterised by persistent inflammation, hyperreactivity and remodeling of the airways. No efficient treatment is available, this is particularly the case for steroid resistant phenotypes. Our aim therefore was to develop a preclinical model showing characteristics of severe human asthma including steroid insensitivity. Mice were first sensitized with ovalbumin, extracts of cockroach or house dust mite followed by a challenge period of seven weeks. Further to this, an additional group of mice was sensitized with all three allergens and then challenged with allergen alternating weekly between allergens. All three allergens applied separately to the mice induced comparably strong Th2-type airway inflammation, airway hyperreactivity and airway remodeling, which was characterised by fibrosis and increased smooth muscle thickness. In contrast, application of all three allergens together resulted in a greater Th2 response and increased airway hyperreactivity and a stronger albeit not significant remodeling phenotype compared to using HDM or CRA. In this triple allergen model dexamethasone application, during the last 4 weeks of challenge, showed no suppressive effects on any of these parameters in this model. In contrast, both TLR7 agonist resiquimod and TLR9 agonist CpG-ODN reduced allergen-specific IgE, eosinophils, and collagen I in the lungs. The TLR9 agonist also reduced IL-4 and IL-5 whilst increasing IFN-γ and strongly IL-10 levels in the lungs, effects not seen with the TLR7 agonist. However, neither TLR agonist had any effect on airway hyperreactivity and airway smooth muscle mass. In conclusion we have developed a severe asthma model, which is steroid resistant and only partially sensitive to TLR7 and TLR9 agonist treatment. This model may be particular useful to test new potential therapeutics aiming at treating steroid resistant asthma in humans and investigating the underlying mechanisms responsible for steroid insensitivity.
Collapse
Affiliation(s)
- Matthias J. Duechs
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Germany
| | - Cornelia Tilp
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Germany
| | - Christopher Tomsic
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Germany
| | - Florian Gantner
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Germany
| | - Klaus J. Erb
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Germany
- * E-mail:
| |
Collapse
|
18
|
Koch S, Mousset S, Graser A, Reppert S, Übel C, Reinhardt C, Zimmermann T, Rieker R, Lehr HA, Finotto S. IL-6 activated integrated BATF/IRF4 functions in lymphocytes are T-bet-independent and reversed by subcutaneous immunotherapy. Sci Rep 2014; 3:1754. [PMID: 23628948 PMCID: PMC3639449 DOI: 10.1038/srep01754] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/15/2013] [Indexed: 12/31/2022] Open
Abstract
IL-6 plays a central role in supporting pathological TH2 and TH17 cell development and inhibiting the protective T regulatory cells in allergic asthma. TH17 cells have been demonstrated to regulate allergic asthma in general and T-bet-deficiency-induced asthma in particular. Here we found an inverse correlation between T-bet and Il-6 mRNA expression in asthmatic children. Moreover, experimental subcutaneous immunotherapy (SIT) in T-bet(−/−) mice inhibited IL-6, IL-21R and lung TH17 cells in a setting of asthma. Finally, local delivery of an anti-IL-6R antibody in T-bet(−/−) mice resulted in the resolution of this allergic trait. Noteworthy, BATF, crucial for the immunoglobulin-class-switch and TH2,TH17 development, was found down-regulated in the lungs of T-bet(−/−) mice after SIT and after treatment with anti-IL-6R antibody, indicating a critical role of IL-6 in controlling BATF/IRF4 integrated functions in TH2, TH17 cells and B cells also in a T-bet independent fashion in allergic asthma.
Collapse
Affiliation(s)
- Sonja Koch
- Laboratory of Cellular and Molecular Lung Immunology, Institute of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Duan QL, Lasky-Su J, Himes BE, Qiu W, Litonjua AA, Damask A, Lazarus R, Klanderman B, Irvin CG, Peters SP, Hanrahan JP, Lima JJ, Martinez FD, Mauger D, Chinchilli VM, Soto-Quiros M, Avila L, Celedón JC, Lange C, Weiss ST, Tantisira KG. A genome-wide association study of bronchodilator response in asthmatics. THE PHARMACOGENOMICS JOURNAL 2014; 14:41-7. [PMID: 23508266 PMCID: PMC3706515 DOI: 10.1038/tpj.2013.5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 12/21/2012] [Accepted: 02/04/2013] [Indexed: 01/24/2023]
Abstract
Reversibility of airway obstruction in response to β2-agonists is highly variable among asthmatics, which is partially attributed to genetic factors. In a genome-wide association study of acute bronchodilator response (BDR) to inhaled albuterol, 534 290 single-nucleotide polymorphisms (SNPs) were tested in 403 white trios from the Childhood Asthma Management Program using five statistical models to determine the most robust genetic associations. The primary replication phase included 1397 polymorphisms in three asthma trials (pooled n=764). The second replication phase tested 13 SNPs in three additional asthma populations (n=241, n=215 and n=592). An intergenic SNP on chromosome 10, rs11252394, proximal to several excellent biological candidates, significantly replicated (P=1.98 × 10(-7)) in the primary replication trials. An intronic SNP (rs6988229) in the collagen (COL22A1) locus also provided strong replication signals (P=8.51 × 10(-6)). This study applied a robust approach for testing the genetic basis of BDR and identified novel loci associated with this drug response in asthmatics.
Collapse
Affiliation(s)
- Qing Ling Duan
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Blanca E. Himes
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Center for Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Augusto A. Litonjua
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Pulmonary Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | | | - Ross Lazarus
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Barbara Klanderman
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Charles G. Irvin
- Vermont Lung Center, Department of Medicine and Physiology, University of Vermont, Burlington, Vermont
| | - Stephen P. Peters
- Center for Genomics and Personalized Medicine Research, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | - John J. Lima
- Nemours Children’s Clinic, Centers for Clinical Pediatric Pharmacology & Pharmacogenetics, Jacksonville, FL
| | - Fernando D. Martinez
- Arizona Respiratory Center and BIO5 Institute, University of Arizona, Tucson, Ariz
| | - David Mauger
- Department of Public Health Sciences, Pennsylvania State University, Hershey, PA
| | - Vernon M. Chinchilli
- Department of Public Health Sciences, Pennsylvania State University, Hershey, PA
| | | | | | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, Allergy and Immunology, Department of Pediatrics, Children’s Hospital University of Pittsburgh of UPMC, Pittsburgh, PA
| | | | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Center for Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
- Pulmonary Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Harvard School of Public Health, Boston, MA
| | - Kelan G. Tantisira
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Pulmonary Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
20
|
Übel C, Sopel N, Graser A, Hildner K, Reinhardt C, Zimmermann T, Rieker RJ, Maier A, Neurath MF, Murphy KM, Finotto S. The activating protein 1 transcription factor basic leucine zipper transcription factor, ATF-like (BATF), regulates lymphocyte- and mast cell-driven immune responses in the setting of allergic asthma. J Allergy Clin Immunol 2013; 133:198-206.e1-9. [PMID: 24290279 DOI: 10.1016/j.jaci.2013.09.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND Mice without the basic leucine zipper transcription factor, ATF-like (BATF) gene (Batf(-/-)) lack TH17 and follicular helper T cells, which demonstrates that Batf is a transcription factor important for T- and B-cell differentiation. OBJECTIVE In this study we examined whether BATF expression would influence allergic asthma. METHODS In a cohort of preschool control children and children with asthma, we analyzed BATF mRNA expression using real-time PCR in PBMCs. In a murine model of allergic asthma, we analyzed differences in this allergic disease between wild-type, Batf transgenic, and Batf(-/-) mice. RESULTS In the absence of corticosteroid treatment, children with recurrent asthma have a significant increase in BATF mRNA expression in their PBMCs. Batf(-/-) mice display a significant reduction in the pathophysiologic responses seen in asthmatic wild-type littermates. Moreover, we discovered a decrease in IL-3 production and IL-3-dependent mast cell development in Batf(-/-) mice. By contrast, IFN-γ was induced in lung CD4(+) and CD8(+) T cells. Intranasal delivery of anti-IFN-γ antibodies induced airway hyperresponsiveness and inflammation in wild-type but not in Batf(-/-) mice. Transgenic overexpression of Batf under the control of the CD2 promoter/enhancer augmented lung inflammation and IgE levels in the setting of experimental asthma. CONCLUSION BATF is increased in non-steroid-treated asthmatic children. Targeting BATF expression resulted in amelioration of the pathophysiologic responses seen in children with allergic asthma, and BATF has emerged as a novel target for antiasthma interventions.
Collapse
Affiliation(s)
- Caroline Übel
- Department of Molecular Pneumology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Nina Sopel
- Department of Molecular Pneumology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Graser
- Department of Molecular Pneumology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Kai Hildner
- Department of Medicine I, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Cornelia Reinhardt
- Department of Allergy and Pneumology, Children's Hospital, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Theodor Zimmermann
- Department of Allergy and Pneumology, Children's Hospital, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Anja Maier
- Department of Molecular Pneumology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine I, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Susetta Finotto
- Department of Molecular Pneumology, University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
21
|
Walker JKL, Kraft M, Fisher JT. Assessment of murine lung mechanics outcome measures: alignment with those made in asthmatics. Front Physiol 2013; 3:491. [PMID: 23408785 PMCID: PMC3569663 DOI: 10.3389/fphys.2012.00491] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/17/2012] [Indexed: 01/13/2023] Open
Abstract
Although asthma is characterized as an inflammatory disease, recent reports highlight the importance of pulmonary physiology outcome measures to the clinical assessment of asthma control and risk of asthma exacerbation. Murine models of allergic inflammatory airway disease have been widely used to gain mechanistic insight into the pathogenesis of asthma; however, several aspects of murine models could benefit from improvement. This review focuses on aligning lung mechanics measures made in mice with those made in humans, with an eye toward improving the translational utility of these measures. A brief description of techniques available to measure murine lung mechanics is provided along with a methodological consideration of their utilization. How murine lung mechanics outcome measures relate to pulmonary physiology measures conducted in humans is discussed and we recommend that, like human studies, outcome measures be standardized for murine models of asthma.
Collapse
Affiliation(s)
- Julia K L Walker
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center Durham, NC, USA
| | | | | |
Collapse
|
22
|
Spitz MR, Gorlov IP, Dong Q, Wu X, Chen W, Chang DW, Etzel CJ, Caporaso NE, Zhao Y, Christiani DC, Brennan P, Albanes D, Shi J, Thun M, Landi MT, Amos CI. Multistage analysis of variants in the inflammation pathway and lung cancer risk in smokers. Cancer Epidemiol Biomarkers Prev 2012; 21:1213-21. [PMID: 22573796 DOI: 10.1158/1055-9965.epi-12-0352-t] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Tobacco-induced lung cancer is characterized by a deregulated inflammatory microenvironment. Variants in multiple genes in inflammation pathways may contribute to risk of lung cancer. METHODS We therefore conducted a three-stage comprehensive pathway analysis (discovery, replication, and meta-analysis) of inflammation gene variants in ever-smoking lung cancer cases and controls. A discovery set (1,096 cases and 727 controls) and an independent and nonoverlapping internal replication set (1,154 cases and 1,137 controls) were derived from an ongoing case-control study. For discovery, we used an iSelect BeadChip to interrogate a comprehensive panel of 11,737 inflammation pathway single-nucleotide polymorphisms (SNP) and selected nominally significant (P < 0.05) SNPs for internal replication. RESULTS There were six SNPs that achieved statistical significance (P < 0.05) in the internal replication data set with concordant risk estimates for former smokers and five concordant and replicated SNPs in current smokers. Replicated hits were further tested in a subsequent meta-analysis using external data derived from two published genome-wide association studies (GWAS) and a case-control study. Two of these variants (a BCL2L14 SNP in former smokers and an SNP in IL2RB in current smokers) were further validated. In risk score analyses, there was a 26% increase in risk with each additional adverse allele when we combined the genotyped SNP and the most significant imputed SNP in IL2RB in current smokers and a 36% similar increase in risk for former smokers associated with genotyped and imputed BCL2L14 SNPs. CONCLUSIONS/IMPACT: Before they can be applied for risk prediction efforts, these SNPs should be subject to further external replication and more extensive fine mapping studies.
Collapse
Affiliation(s)
- Margaret R Spitz
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The aim is to update current understanding of the genes identified by the recent genome-wide association studies (GWASs) of asthma and its associated traits. The review also discusses how to dissect the functional roles of novel genes in future research. RECENT FINDINGS More than 10 GWAS aimed at identifying the genes underlying asthma and relevant traits have been published in the past 3 years. The largest of these was from the GABRIEL consortium, which discovered that the IL18R1, IL33, SMAD3, ORMDL3, HLA-DQ and IL2RB loci were all significantly associated with asthma. Many novel asthma genes, including those previously identified by positional cloning, are expressed within the respiratory epithelium, emphasizing the importance of epithelial barriers in causing asthma . The genes controlling IgE levels have surprisingly little overlap with the genes mediating asthma susceptibility, suggesting that atopy is secondary to asthma rather than a primary driver of the disease. The next challenge will be the systematic analysis of the precise functions of these genes in the pathogenesis of asthma. SUMMARY GWAS have uncovered many novel genes underlying asthma and detailed functional dissection of their roles in asthma will point the way to new therapies for the disease.
Collapse
|
24
|
Karwot R, Übel C, Bopp T, Schmitt E, Finotto S. Increased immunosuppressive function of CD4(+)CD25(+)Foxp3(+)GITR+ T regulatory cells from NFATc2((-/-)) mice controls allergen-induced experimental asthma. Immunobiology 2012; 217:905-11. [PMID: 22317750 DOI: 10.1016/j.imbio.2012.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 12/21/2011] [Accepted: 01/01/2012] [Indexed: 01/08/2023]
Abstract
The expansion of effector T cells is tightly controlled by transcription factors like nuclear factor of activated T cells (NFAT) family members that mediate early intracellular responses to T cell receptor-mediated signals. In this study we show that, after allergen challenge, NFATc2((-/-)) mice had augmented number of functionally intact CD4(+)CD25(++)GITR(++) T regulatory (T regs) cells in the lung. Anti-GITR antibody treatment inhibited T regulatory cell function and enhanced the number of activated lung CD4(+) T cells associated with increased IL-2 and pSTAT-5 in the airways of NFATc2((-/-)) mice in experimental allergic asthma. This agonistic treatment led to increased inflammation in the lung of NFATc2((-/-)) treated mice. These data indicate that NFATc2((-/-)) mice have increased number of CD4(+)CD25(+)Foxp3(+) T regulatory cells with induced immunosuppressive function that control allergen-induced experimental asthma.
Collapse
Affiliation(s)
- Roman Karwot
- Laboratory of Cellular and Molecular Immunology of the Lung, Institute of Molecular Medicine, University of Mainz, 55131 Mainz, Germany
| | | | | | | | | |
Collapse
|
25
|
Mullane K. Asthma translational medicine: report card. Biochem Pharmacol 2011; 82:567-85. [PMID: 21741955 DOI: 10.1016/j.bcp.2011.06.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 01/21/2023]
Abstract
Over the last 30 years, scientific research into asthma has focused almost exclusively on one component of the disorder - airway inflammation - as being the key underlying feature. These studies have provided a remarkably detailed and comprehensive picture of the events following antigen challenge that lead to an influx of T cells and eosinophils in the airways. Indeed, in basic research, even the term "asthma" has become synonymous with a T helper 2 cell-mediated disorder. From this cascade of cellular activation processes and mediators that have been identified it has been possible to pinpoint critical junctures for therapeutic intervention, leading experimentalists to produce therapies that are very effective in decreasing airway inflammation in animal models. Many of these compounds have now completed early Phase 2 "proof-of-concept" clinical trials so the translational success of the basic research model can be evaluated. This commentary discusses clinical results from 39 compounds and biologics acting at 23 different targets, and while 6 of these drugs can be regarded as a qualified success, none benefit the bulk of asthma sufferers. Despite this disappointing rate of success, the same immune paradigm and basic research models, with a few embellishments to incorporate newly identified cells and mediators, continue to drive target identification and drug discovery efforts. It is time to re-evaluate the focus of these efforts.
Collapse
Affiliation(s)
- Kevin Mullane
- Profectus Pharma Consulting, Inc, San Jose, CA 95125, United States.
| |
Collapse
|
26
|
Hausding M, Tepe M, Ubel C, Lehr HA, Röhrig B, Höhn Y, Pautz A, Eigenbrod T, Anke T, Kleinert H, Erkel G, Finotto S. Induction of tolerogenic lung CD4+ T cells by local treatment with a pSTAT-3 and pSTAT-5 inhibitor ameliorated experimental allergic asthma. Int Immunol 2010; 23:1-15. [PMID: 21135031 DOI: 10.1093/intimm/dxq451] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Signal transducer and activator of transcription (STAT)-3 inhibitors play an important role in regulating immune responses. Galiellalactone (GL) is a fungal secondary metabolite known to interfere with the binding of phosphorylated signal transducer and activator of transcription (pSTAT)-3 as well of pSTAT-6 dimers to their target DNA in vitro. Intra nasal delivery of 50 μg GL into the lung of naive Balb/c mice induced FoxP3 expression locally and IL-10 production and IL-12p40 in RNA expression in the airways in vivo. In a murine model of allergic asthma, GL significantly suppressed the cardinal features of asthma, such as airway hyperresponsiveness, eosinophilia and mucus production, after sensitization and subsequent challenge with ovalbumin (OVA). These changes resulted in induction of IL-12p70 and IL-10 production by lung CD11c(+) dendritic cells (DCs) accompanied by an increase of IL-3 receptor α chain and indoleamine-2,3-dioxygenase expression in these cells. Furthermore, GL inhibited IL-4 production in T-bet-deficient CD4(+) T cells and down-regulated the suppressor of cytokine signaling-3 (SOCS-3), also in the absence of STAT-3 in T cells, in the lung in a murine model of asthma. In addition, we found reduced amounts of pSTAT-5 in the lung of GL-treated mice that correlated with decreased release of IL-2 by lung OVA-specific CD4(+) T cells after treatment with GL in vitro also in the absence of T-bet. Thus, GL treatment in vivo and in vitro emerges as a novel therapeutic approach for allergic asthma by modulating lung DC phenotype and function resulting in a protective response via CD4(+)FoxP3(+) regulatory T cells locally.
Collapse
Affiliation(s)
- Michael Hausding
- Laboratory of Cellular and Molecular Immunology of Lung, Institute of Molecular Medicine, Universitätsmedizin Mainz, 55131 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Låg M, Rodionov D, Øvrevik J, Bakke O, Schwarze PE, Refsnes M. Cadmium-induced inflammatory responses in cells relevant for lung toxicity: Expression and release of cytokines in fibroblasts, epithelial cells and macrophages. Toxicol Lett 2010; 193:252-60. [DOI: 10.1016/j.toxlet.2010.01.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 01/01/2023]
|
28
|
Khatami M. Inflammation, aging, and cancer: tumoricidal versus tumorigenesis of immunity: a common denominator mapping chronic diseases. Cell Biochem Biophys 2009; 55:55-79. [PMID: 19672563 DOI: 10.1007/s12013-009-9059-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 06/30/2009] [Indexed: 12/18/2022]
Abstract
Acute inflammation is a highly regulated defense mechanism of immune system possessing two well-balanced and biologically opposing arms termed apoptosis ('Yin') and wound healing ('Yang') processes. Unresolved or chronic inflammation (oxidative stress) is perhaps the loss of balance between 'Yin' and 'Yang' that would induce co-expression of exaggerated or 'mismatched' apoptotic and wound healing factors in the microenvironment of tissues ('immune meltdown'). Unresolved inflammation could initiate the genesis of many age-associated chronic illnesses such as autoimmune and neurodegenerative diseases or tumors/cancers. In this perspective 'birds' eye' view of major interrelated co-morbidity risk factors that participate in biological shifts of growth-arresting ('tumoricidal') or growth-promoting ('tumorigenic') properties of immune cells and the genesis of chronic inflammatory diseases and cancer will be discussed. Persistent inflammation is perhaps a common denominator in the genesis of nearly all age-associated health problems or cancer. Future challenging opportunities for diagnosis, prevention, and/or therapy of chronic illnesses will require an integrated understanding and identification of developmental phases of inflammation-induced immune dysfunction and age-associated hormonal and physiological readjustments of organ systems. Designing suitable cohort studies to establish the oxido-redox status of adults may prove to be an effective strategy in assessing individual's health toward developing personal medicine for healthy aging.
Collapse
Affiliation(s)
- Mahin Khatami
- The National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
29
|
Abstract
Airway inflammation in asthma is characterized by activation of T helper type-2 (Th2) T cells, IgE production and eosinophilia. In many cases, this process is related to an inappropriate T cell response to environmental allergens, and other T cell-dependent pathways may also be involved (such as Th17). Regulatory T cells (Tregs) are T cells that suppress potentially harmful immune responses. Two major subsets of Treg are CD25(hi), Foxp3(+)Tregs and IL-10-producing Tregs. There is evidence that the numbers or function of both subsets may be deficient in patients with atopic allergic disease. Recent work has extended these findings into the airway in asthma where Foxp3 expression was reduced and CD25(hi) Treg-suppressive function was deficient. In animal models of allergic airways disease, Tregs can suppress established airway inflammation and airway hyperresponsiveness, and protocols to enhance the development, recruitment and function of Tregs have been described. Together with studies of patients and in vitro studies of human T cells, these investigations are defining potential interventions to enhance Treg function in the airway in asthma. Existing therapies including corticosteroids and allergen immunotherapy act on Tregs, in part to increase IL-10 production, while vitamin D3 and long-acting beta-agonists enhance IL-10 Treg function. Other possibilities may be enhancement of Treg function via histamine or prostanoid receptors, or by blocking pro-inflammatory pathways that prevent suppression by Tregs (activation of Toll-like receptors, or production of cytokines such as IL-6 and TNF-alpha). As Tregs can also suppress the potentially beneficial immune response important for controlling infections and cancer, a therapeutic intervention should target allergen- or site-specific regulation.
Collapse
|