1
|
Yazdanpanah E, Dadfar S, Shadab A, Orooji N, Nemati M, Pazoki A, Esmaeili S, Baharlou R, Haghmorad D. Berberine: A natural modulator of immune cells in multiple sclerosis. Immun Inflamm Dis 2024; 12:e1213. [PMID: 38477663 PMCID: PMC10936236 DOI: 10.1002/iid3.1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Berberine is a benzylisoquinoline alkaloid found in such plants as Berberis vulgaris, Berberis aristata, and others, revealing a variety of pharmacological properties as a result of interacting with different cellular and molecular targets. Recent studies have shown the immunomodulatory effects of Berberine which result from its impacts on immune cells and immune response mediators such as diverse T lymphocyte subsets, dendritic cells (DCs), and different inflammatory cytokines. Multiple sclerosis (MS) is a chronic disabling and neurodegenerative disease of the central nervous system (CNS) characterized by the recruitment of autoreactive T cells into the CNS causing demyelination, axonal damage, and oligodendrocyte loss. There have been considerable changes discovered in MS regards to the function and frequency of T cell subsets such as Th1 cells, Th17 cells, Th2 cells, Treg cells, and DCs. In the current research, we reviewed the outcomes of in vitro, experimental, and clinical investigations concerning the modulatory effects that Berberine provides on the function and numbers of T cell subsets and DCs, as well as important cytokines that are involved in MS.
Collapse
Affiliation(s)
| | - Sepehr Dadfar
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Alireza Shadab
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Niloufar Orooji
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - MohammadHossein Nemati
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Alireza Pazoki
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | | | - Rasoul Baharlou
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
- Cancer Research CenterSemnan University of Medical SciencesSemnanIran
| | - Dariush Haghmorad
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
- Cancer Research CenterSemnan University of Medical SciencesSemnanIran
| |
Collapse
|
2
|
Canto-Gomes J, Da Silva-Ferreira S, Silva CS, Boleixa D, Martins da Silva A, González-Suárez I, Cerqueira JJ, Correia-Neves M, Nobrega C. People with Primary Progressive Multiple Sclerosis Have a Lower Number of Central Memory T Cells and HLA-DR + Tregs. Cells 2023; 12:439. [PMID: 36766781 PMCID: PMC9913799 DOI: 10.3390/cells12030439] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The importance of circulating immune cells to primary progressive multiple sclerosis (PPMS) pathophysiology is still controversial because most immunotherapies were shown to be ineffective in treating people with PPMS (pwPPMS). Yet, although controversial, data exist describing peripheral immune system alterations in pwPPMS. This study aims to investigate which alterations might be present in pwPPMS free of disease-modifying drugs (DMD) in comparison to age- and sex-matched healthy controls. A multicentric cross-sectional study was performed using 23 pwPPMS and 23 healthy controls. The phenotype of conventional CD4+ and CD8+ T cells, regulatory T cells (Tregs), B cells, natural killer (NK) T cells and NK cells was assessed. Lower numbers of central memory CD4+ and CD8+ T cells and activated HLA-DR+ Tregs were observed in pwPPMS. Regarding NK and NKT cells, pwPPMS presented higher percentages of CD56dimCD57+ NK cells expressing NKp46 and of NKT cells expressing KIR2DL2/3 and NKp30. Higher disease severity scores and an increasing time since diagnosis was correlated with lower numbers of inhibitory NK cells subsets. Our findings contribute to reinforcing the hypotheses that alterations in peripheral immune cells are present in pwPPMS and that changes in NK cell populations are the strongest correlate of disease severity.
Collapse
Affiliation(s)
- João Canto-Gomes
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Sara Da Silva-Ferreira
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Carolina S. Silva
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Division of Infectious Diseases, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | | | - Ana Martins da Silva
- Porto University Hospital Center, 4099-001 Porto, Portugal
- Multidisciplinary Unit for Biomedical Research (UMIB)—ICBAS, University of Porto, 4050-346 Porto, Portugal
| | - Inés González-Suárez
- University Hospital Complex of Vigo, 36312 Vigo, Spain
- Álvaro Cunqueiro Hospital, 36312 Vigo, Spain
| | - João J. Cerqueira
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Hospital of Braga, 4710-243 Braga, Portugal
- Clinical Academic Centre, Hospital of Braga, 4710-243 Braga, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Division of Infectious Diseases, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Claudia Nobrega
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Cryptococcus neoformans Infection in the Central Nervous System: The Battle between Host and Pathogen. J Fungi (Basel) 2022; 8:jof8101069. [PMID: 36294634 PMCID: PMC9605252 DOI: 10.3390/jof8101069] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cryptococcus neoformans (C. neoformans) is a pathogenic fungus with a global distribution. Humans become infected by inhaling the fungus from the environment, and the fungus initially colonizes the lungs. If the immune system fails to contain C. neoformans in the lungs, the fungus can disseminate to the blood and invade the central nervous system, resulting in fatal meningoencephalitis particularly in immunocompromised individuals including HIV/AIDS patients. Following brain invasion, C. neoformans will encounter host defenses involving resident as well as recruited immune cells in the brain. To overcome host defenses, C. neoformans possesses multiple virulence factors capable of modulating immune responses. The outcome of the interactions between the host and C. neoformans will determine the disease progression. In this review, we describe the current understanding of how C. neoformans migrates to the brain across the blood–brain barrier, and how the host immune system responds to the invading organism in the brain. We will also discuss the virulence factors that C. neoformans uses to modulate host immune responses.
Collapse
|
4
|
Hamatani M, Ochi H, Kimura K, Ashida S, Hashi Y, Okada Y, Fujii C, Kawamura K, Mizuno T, Ueno H, Takahashi R, Kondo T. T cells from MS Patients with High Disease Severity Are Insensitive to an Immune-Suppressive Effect of Sulfatide. Mol Neurobiol 2022; 59:5276-5283. [PMID: 35689766 DOI: 10.1007/s12035-022-02881-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Its early phase is characterized by a relapse-remitting disease course, followed by disability progression in the later stage. While chronic inflammation accompanied with degeneration is well-established as the key pathological feature, the pathogenesis of MS, particularly progressive MS, remains elusive. Sulfatide is a major glycolipid component of myelin, and previous studies in experimental autoimmune encephalomyelitis mouse models have demonstrated it to have immune-protective functions. Notably, sulfatide concentration is increased in the serum and cerebrospinal fluid of patients with MS, particularly those in a progressive disease course. Here, we show that the myelin-glycolipid sulfatide displays an ability to suppress the proliferation of polyclonally activated human T cells. Importantly, this suppressive effect was impaired in T cells obtained from MS patients having higher disability status. Therefore, it is plausible that progression of MS is associated with an escape from the immune-regulatory effect of sulfatide. Our study suggests that, although the precise mechanisms remain unrevealed, an escape of T cells from immunosuppression by sulfatide is associated with disease progression in the advanced stage. Further studies will provide novel insights into the pathogenesis of MS, particularly regarding disease progression, and help develop novel treatment strategies for this challenging disease.
Collapse
Affiliation(s)
- Mio Hamatani
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Hirofumi Ochi
- Department of Geriatric Medicine and Neurology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Kimitoshi Kimura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinji Ashida
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuichiro Hashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Neurology, Kansai Medical University Medical Center, Moriguchi, Japan
| | - Yoichiro Okada
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Neurology, Kansai Medical University Medical Center, Moriguchi, Japan
| | - Chihiro Fujii
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuyuki Kawamura
- Department of Neurology, National Hospital Organization Minami Kyoto Hospital, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideki Ueno
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan.,Department of Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Geriatric Medicine and Neurology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Takayuki Kondo
- Department of Neurology, Kansai Medical University Medical Center, Moriguchi, Japan.
| |
Collapse
|
5
|
Álvarez-Luquín DD, Guevara-Salinas A, Arce-Sillas A, Espinosa-Cárdenas R, Leyva-Hernández J, Montes-Moratilla EU, Adalid-Peralta L. Increased Tc17 cell levels and imbalance of naïve/effector immune response in Parkinson's disease patients in a two-year follow-up: a case control study. J Transl Med 2021; 19:378. [PMID: 34488776 PMCID: PMC8422782 DOI: 10.1186/s12967-021-03055-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroinflammation has been proved to play a role in dopaminergic neuronal death in Parkinson's disease (PD). This link highlights the relevance of the immune response in the progression of the disease. However, little is known about the impact of peripheral immune response on the disease. This study is aimed to evaluate how immune cell populations change in untreated PD patients followed-up for 2 years. METHODS Thirty-two patients with no previous treatment (PD-0 yr) and twenty-two healthy subjects (controls) were included in the study. PD patients were sampled 1 and 2 years after the start of the treatment. CD4 T cells (naïve/central memory, effector, and activated), CD8 T cells (activated, central memory, effector memory, NKT, Tc1, Tc2, and Tc17), and B cells (activated, plasma, and Lip-AP) were characterized by flow cytometry. RESULTS We observed decreased levels of naïve/central memory CD4 and CD8 T cells, Tc1, Tc2, NKT, and plasma cells, and increased levels of effector T cells, activated T cells, and Tc17. CONCLUSIONS PD patients treated for 2 years showed an imbalance in the naive/effector immune response. Naïve and effector cell levels were associated with clinical deterioration. These populations are also correlated to aging. On the other hand, higher Tc17 levels suggest an increased inflammatory response, which may impact the progression of the disease. Our results highlight the relevant effect of treatment on the immune response, which could improve our management of the disease.
Collapse
Affiliation(s)
- Diana D Álvarez-Luquín
- Unidad Periférica Para El Estudio de La Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas en El Instituto Nacional de Neurología Y Neurocirugía, Insurgentes Sur 3877, La Fama, 14269, Ciudad de México, México
| | - Adrián Guevara-Salinas
- Unidad Periférica Para El Estudio de La Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas en El Instituto Nacional de Neurología Y Neurocirugía, Insurgentes Sur 3877, La Fama, 14269, Ciudad de México, México
| | - Asiel Arce-Sillas
- Unidad Periférica Para El Estudio de La Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas en El Instituto Nacional de Neurología Y Neurocirugía, Insurgentes Sur 3877, La Fama, 14269, Ciudad de México, México
| | - Raquel Espinosa-Cárdenas
- Unidad Periférica Para El Estudio de La Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas en El Instituto Nacional de Neurología Y Neurocirugía, Insurgentes Sur 3877, La Fama, 14269, Ciudad de México, México
| | - Jaquelín Leyva-Hernández
- Unidad Periférica Para El Estudio de La Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas en El Instituto Nacional de Neurología Y Neurocirugía, Insurgentes Sur 3877, La Fama, 14269, Ciudad de México, México
| | - Esteban U Montes-Moratilla
- Unidad Periférica Para El Estudio de La Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas en El Instituto Nacional de Neurología Y Neurocirugía, Insurgentes Sur 3877, La Fama, 14269, Ciudad de México, México
| | - Laura Adalid-Peralta
- Unidad Periférica Para El Estudio de La Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas en El Instituto Nacional de Neurología Y Neurocirugía, Insurgentes Sur 3877, La Fama, 14269, Ciudad de México, México.
| |
Collapse
|
6
|
NKT and NKT-like Cells in Autoimmune Neuroinflammatory Diseases-Multiple Sclerosis, Myasthenia Gravis and Guillain-Barre Syndrome. Int J Mol Sci 2021; 22:ijms22179520. [PMID: 34502425 PMCID: PMC8431671 DOI: 10.3390/ijms22179520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
NKT cells comprise three subsets—type I (invariant, iNKT), type II, and NKT-like cells, of which iNKT cells are the most studied subset. They are capable of rapid cytokine production after the initial stimulus, thus they may be important for polarisation of Th cells. Due to this, they may be an important cell subset in autoimmune diseases. In the current review, we are summarising results of NKT-oriented studies in major neurological autoimmune diseases—multiple sclerosis, myasthenia gravis, and Guillain-Barre syndrome and their corresponding animal models.
Collapse
|
7
|
Marcella S, Afoullouss S, Thomas OP, Allcock AL, Murphy PV, Loffredo S. Immunomodulatory properties of characellide A on human peripheral blood mononuclear cells. Inflammopharmacology 2021; 29:1201-1210. [PMID: 34241784 PMCID: PMC8298336 DOI: 10.1007/s10787-021-00836-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/16/2021] [Indexed: 12/01/2022]
Abstract
Marine sponges and their associated microbiota are multicellular animals known to produce metabolites with interesting pharmacological properties playing a pivotal role against a plethora of pathologic disorders such as inflammation, cancer and infections. Characellide A and B belong to a novel class of glycolipopeptides isolated from the deep sea marine sponge Characella pachastrelloides. In this study, we have evaluated the effects of characellide A and B on cytokine and chemokine release from human peripheral blood mononuclear cells (PBMC). Characellide A induces a concentration- and time-dependent CXCL8, IL-6 and TNF-α release from PBMC. This production is mediated by the induction of gene transcription. Moreover, cytokine/chemokine release induced by characellide A from PBMC is CD1d-dependent because a CD1d antagonist, 1,2-bis(diphenylphosphino)ethane [DPPE]-polyethylene glycolmonomethylether [PEG], specifically inhibits characellide A-induced activation of PBMC. In conclusion, characellide A is a novel modulator of adaptative/innate immune responses. Further studies are needed to understand its potential pharmacological application.
Collapse
Affiliation(s)
- Simone Marcella
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), WAO Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Sam Afoullouss
- Marine Biodiscovery, School of Chemistry, Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, Galway, H91TK33, Ireland
- Zoology Department, School of Natural Sciences, Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, Galway, H91TK33, Ireland
| | - Olivier P Thomas
- Marine Biodiscovery, School of Chemistry, Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, Galway, H91TK33, Ireland
| | - A Louise Allcock
- Zoology Department, School of Natural Sciences, Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, Galway, H91TK33, Ireland
| | - Paul V Murphy
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Stefania Loffredo
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), WAO Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council, Naples, Italy.
| |
Collapse
|
8
|
Maimaitijiang G, Watanabe M, Shinoda K, Isobe N, Nakamura Y, Masaki K, Matsushita T, Yoshikai Y, Kira JI. Long-term use of interferon-β in multiple sclerosis increases Vδ1 -Vδ2 -Vγ9 - γδ T cells that are associated with a better outcome. J Neuroinflammation 2019; 16:179. [PMID: 31519178 PMCID: PMC6743159 DOI: 10.1186/s12974-019-1574-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022] Open
Abstract
Background We previously reported that Vδ2+Vγ9+ γδ T cells were significantly decreased in multiple sclerosis (MS) patients without disease-modifying therapies (untreated MS) and were negatively correlated with Expanded Disability Status Scale (EDSS) scores, suggesting protective roles of Vδ2+Vγ9+ γδ T cells. Interferon-β (IFN-β) is one of the first-line disease-modifying drugs for MS. However, no previous studies have reported changes in γδ T cell subsets under IFN-β treatment. Therefore, we aimed to clarify the effects of the long-term usage of IFN-β on γδ T cell subsets in MS patients. Methods Comprehensive flow cytometric immunophenotyping was performed in 35 untreated MS and 21 MS patients on IFN-β for more than 2 years (IFN-β-treated MS) including eight super-responders fulfilling no evidence of disease activity criteria, and 44 healthy controls (HCs). Results The percentages of Vδ2+Vγ9+ cells in γδ T cells were significantly lower in untreated and IFN-β-treated MS patients than in HCs. By contrast, the percentages of Vδ1−Vδ2−Vγ9− cells in γδ T cells were markedly higher in IFN-β-treated MS patients than in HCs and untreated MS patients (both p < 0.001). A significant negative correlation between the percentages of Vδ2+Vγ9+ cells in γδ T cells and EDSS scores was confirmed in untreated MS but not evident in IFN-β-treated MS. Moreover, class-switched memory B cells were decreased in IFN-β-treated MS compared with HCs (p < 0.001) and untreated MS patients (p = 0.006). Interestingly, the percentages of Vδ1−Vδ2−Vγ9− cells in γδ T cells were negatively correlated with class-switched memory B cell percentages in all MS patients (r = − 0.369, p = 0.005), and the percentages of Vδ1−Vδ2−Vγ9− cells in Vδ1−Vδ2− γδ T cells were negatively correlated with EDSS scores only in IFN-β super-responders (r = − 0.976, p < 0.001). Conclusions The present study suggests that long-term usage of IFN-β increases Vδ1−Vδ2−Vγ9− γδ T cells, which are associated with a better outcome, especially in IFN-β super-responders. Thus, increased Vδ1−Vδ2−Vγ9− cells together with decreased class-switched memory B cells may contribute to the suppression of disease activity in MS patients under IFN-β treatment. Electronic supplementary material The online version of this article (10.1186/s12974-019-1574-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guzailiayi Maimaitijiang
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Mitsuru Watanabe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koji Shinoda
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Noriko Isobe
- Department of Neurological Therapeutics, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuri Nakamura
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Katsuhisa Masaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takuya Matsushita
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
9
|
Heming M, Schulte-Mecklenbeck A, Brix T, Wolbert J, Ruland T, Klotz L, Meuth SG, Gross CC, Wiendl H, Meyer Zu Hörste G. Immune Cell Profiling of the Cerebrospinal Fluid Provides Pathogenetic Insights Into Inflammatory Neuropathies. Front Immunol 2019; 10:515. [PMID: 30984164 PMCID: PMC6448021 DOI: 10.3389/fimmu.2019.00515] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/26/2019] [Indexed: 01/17/2023] Open
Abstract
Objective: Utilize immune cell profiles in the cerebrospinal fluid (CSF) to advance the understanding and potentially support the diagnosis of inflammatory neuropathies. Methods: We analyzed CSF cell flow cytometry data of patients with definite Guillain-Barré syndrome (GBS, n = 26) and chronic inflammatory demyelinating polyneuropathy (CIDP, n = 32) based on established diagnostic criteria in comparison to controls with relapsing-remitting multiple sclerosis (RRMS, n = 49) and idiopathic intracranial hypertension (IIH, n = 63). Results: Flow cytometry revealed disease-specific changes of CSF cell composition with a significant increase of NKT cells and CD8+ T cells in CIDP, NK cells in GBS, and B cells and plasma cells in MS in comparison to IIH controls. Principal component analysis demonstrated distinct CSF immune cells pattern in inflammatory neuropathies vs. RRMS. Systematic receiver operator curve (ROC) analysis identified NKT cells as the best parameter to distinguish GBS from CIDP. Composite scores combing several of the CSF parameters differentiated inflammatory neuropathies from IIH and GBS from CIDP with high confidence. Applying a novel dimension reduction technique, we observed an intra-disease heterogeneity of inflammatory neuropathies. Conclusion: Inflammatory neuropathies display disease- and subtype-specific alterations of CSF cell composition. The increase of NKT cells and CD8+ T cells in CIDP and NK cells in GBS, suggests a central role of cytotoxic cell types in inflammatory neuropathies varying between acute and chronic subtypes. Composite scores constructed from multi-dimensional CSF parameters establish potential novel diagnostic tools. Intra-disease heterogeneity suggests distinct disease mechanisms in subgroups of inflammatory neuropathies.
Collapse
Affiliation(s)
- Michael Heming
- Department of Neurology, Institute of Translational Neurology, University of Münster, Münster, Germany
| | | | - Tobias Brix
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Jolien Wolbert
- Department of Neurology, Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Tillmann Ruland
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Luisa Klotz
- Department of Neurology, Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Catharina C Gross
- Department of Neurology, Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology, Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Gerd Meyer Zu Hörste
- Department of Neurology, Institute of Translational Neurology, University of Münster, Münster, Germany
| |
Collapse
|
10
|
Van Kaer L, Postoak JL, Wang C, Yang G, Wu L. Innate, innate-like and adaptive lymphocytes in the pathogenesis of MS and EAE. Cell Mol Immunol 2019; 16:531-539. [PMID: 30874627 DOI: 10.1038/s41423-019-0221-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) in which the immune system damages the protective insulation surrounding the nerve fibers that project from neurons. A hallmark of MS and its animal model, experimental autoimmune encephalomyelitis (EAE), is autoimmunity against proteins of the myelin sheath. Most studies in this field have focused on the roles of CD4+ T lymphocytes, which form part of the adaptive immune system as both mediators and regulators in disease pathogenesis. Consequently, the treatments for MS often target the inflammatory CD4+ T-cell responses. However, many other lymphocyte subsets contribute to the pathophysiology of MS and EAE, and these subsets include CD8+ T cells and B cells of the adaptive immune system, lymphocytes of the innate immune system such as natural killer cells, and subsets of innate-like T and B lymphocytes such as γδ T cells, natural killer T cells, and mucosal-associated invariant T cells. Several of these lymphocyte subsets can act as mediators of CNS inflammation, whereas others exhibit immunoregulatory functions in disease. Importantly, the efficacy of some MS treatments might be mediated in part by effects on lymphocytes other than CD4+ T cells. Here we review the contributions of distinct subsets of lymphocytes on the pathogenesis of MS and EAE, with an emphasis on lymphocytes other than CD4+ T cells. A better understanding of the distinct lymphocyte subsets that contribute to the pathophysiology of MS and its experimental models will inform the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Joshua L Postoak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Chuan Wang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Guan Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|
11
|
Cortesi F, Delfanti G, Casorati G, Dellabona P. The Pathophysiological Relevance of the iNKT Cell/Mononuclear Phagocyte Crosstalk in Tissues. Front Immunol 2018; 9:2375. [PMID: 30369933 PMCID: PMC6194905 DOI: 10.3389/fimmu.2018.02375] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
CD1d-restricted Natural Killer T (NKT) cells are regarded as sentinels of tissue integrity by sensing local cell stress and damage. This occurs via recognition of CD1d-restricted lipid antigens, generated by stress-related metabolic changes, and stimulation by inflammatory cytokines, such as IL-12 and IL-18. Increasing evidence suggest that this occurs mainly upon NKT cell interaction with CD1d-expressing cells of the Mononuclear Phagocytic System, i.e., monocytes, macrophages and DCs, which patrol parenchymatous organs and mucosae to maintain tissue homeostasis and immune surveillance. In this review, we discuss critical examples of this crosstalk, presenting the known underlying mechanisms and their effects on both cell types and the environment, and suggest that the interaction with CD1d-expressing mononuclear phagocytes in tissues is the fundamental job of NKT cells.
Collapse
Affiliation(s)
- Filippo Cortesi
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gloria Delfanti
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
12
|
Doherty DG, Melo AM, Moreno-Olivera A, Solomos AC. Activation and Regulation of B Cell Responses by Invariant Natural Killer T Cells. Front Immunol 2018; 9:1360. [PMID: 29967611 PMCID: PMC6015876 DOI: 10.3389/fimmu.2018.01360] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/31/2018] [Indexed: 12/16/2022] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells play central roles in the activation and regulation of innate and adaptive immunity. Cytokine-mediated and CD1d-dependent interactions between iNKT cells and myeloid and lymphoid cells enable iNKT cells to contribute to the activation of multiple cell types, with important impacts on host immunity to infection and tumors and on the prevention of autoimmunity. Here, we review the mechanisms by which iNKT cells contribute to B cell maturation, antibody and cytokine production, and antigen presentation. Cognate interactions with B cells contribute to the rapid production of antibodies directed against conserved non-protein antigens resulting in rapid but short-lived innate humoral immunity. iNKT cells can also provide non-cognate help for the generation of antibodies directed against protein antigens, by promoting the activation of follicular helper T cells, resulting in long-lasting adaptive humoral immunity and B cell memory. iNKT cells can also regulate humoral immunity by promoting the development of autoreactive B cells into regulatory B cells. Depletions and functional impairments of iNKT cells are found in patients with infectious, autoimmune and malignant diseases associated with altered B cell function and in murine models of these conditions. The adjuvant and regulatory activities that iNKT cells have for B cells makes them attractive therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Derek G Doherty
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Ashanty M Melo
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Ana Moreno-Olivera
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Andreas C Solomos
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Oleinika K, Rosser EC, Matei DE, Nistala K, Bosma A, Drozdov I, Mauri C. CD1d-dependent immune suppression mediated by regulatory B cells through modulations of iNKT cells. Nat Commun 2018; 9:684. [PMID: 29449556 PMCID: PMC5814456 DOI: 10.1038/s41467-018-02911-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
Regulatory B cells (Breg) express high levels of CD1d that presents lipid antigens to invariant natural killer T (iNKT) cells. The function of CD1d in Breg biology and iNKT cell activity during inflammation remains unclear. Here we show, using chimeric mice, cell depletion and adoptive cell transfer, that CD1d-lipid presentation by Bregs induces iNKT cells to secrete interferon (IFN)-γ to contribute, partially, to the downregulation of T helper (Th)1 and Th17-adaptive immune responses and ameliorate experimental arthritis. Mice lacking CD1d-expressing B cells develop exacerbated disease compared to wild-type mice, and fail to respond to treatment with the prototypical iNKT cell agonist α-galactosylceramide. The absence of lipid presentation by B cells alters iNKT cell activation with disruption of metabolism regulation and cytokine responses. Thus, we identify a mechanism by which Bregs restrain excessive inflammation via lipid presentation.
Collapse
MESH Headings
- Adoptive Transfer/methods
- Animals
- Antigens, CD1d/genetics
- Antigens, CD1d/immunology
- Antigens, CD1d/metabolism
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes, Regulatory/immunology
- Cells, Cultured
- Galactosylceramides/pharmacology
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Natural Killer T-Cells/drug effects
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th17 Cells/immunology
- Th17 Cells/metabolism
Collapse
Affiliation(s)
- K Oleinika
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
- Division of Infection and Immunity, University College London, London, WC1E 6BT UK, UK
| | - E C Rosser
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
- Infection, Inflammation and Rheumatology Section, Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - D E Matei
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
| | - K Nistala
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
| | - A Bosma
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
| | | | - C Mauri
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK.
| |
Collapse
|
14
|
Gianchecchi E, Delfino DV, Fierabracci A. NK cells in autoimmune diseases: Linking innate and adaptive immune responses. Autoimmun Rev 2018; 17:142-154. [PMID: 29180124 DOI: 10.1016/j.autrev.2017.11.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Mohammadi H, Sharafkandi N, Hemmatzadeh M, Azizi G, Karimi M, Jadidi-Niaragh F, Baradaran B, Babaloo Z. The role of innate lymphoid cells in health and disease. J Cell Physiol 2018; 233:4512-4529. [PMID: 29058773 DOI: 10.1002/jcp.26250] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/13/2017] [Indexed: 12/13/2022]
Abstract
Innate lymphoid cells (ILCs) are kind of innate immune cells which can be divided into three main subsets according to their cytokine release profile, transcription factors, and surface markers. ILCs affect the initial stages of immunity in response to microbes and participate in immunity, inflammation, and tissue repair. ILCs modulate immunity through resistance to the pathogens and regulation of autoimmune inflammation and metabolic homeostasis. Therefore dysregulation of ILCs may lead to chronic pathologies such as allergies (i.e., asthma), inflammation (i.e., inflammatory bowel disease), and autoimmunity (i.e., psoriasis, atopic dermatitis, rheumatoid arthritis, multiple sclerosis, and ankylosing spondylitis). Regarding the critical role of ILCs in the regulation of immune system, the elucidation of their function in different conditions makes an interesting target for improvement of novel therapeutic approach to modulate an immune response in different disease context.
Collapse
Affiliation(s)
- Hamed Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nadia Sharafkandi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hemmatzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Karimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Podbielska M, O'Keeffe J, Hogan EL. Autoimmunity in multiple sclerosis: role of sphingolipids, invariant NKT cells and other immune elements in control of inflammation and neurodegeneration. J Neurol Sci 2017; 385:198-214. [PMID: 29406905 DOI: 10.1016/j.jns.2017.12.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. It is classified as being an autoimmune response in the genetically susceptible individual to a persistent but unidentified antigen(s). Both the adaptive and the innate immune systems are likely to contribute significantly to MS pathogenesis. This review summarizes current understanding of the characteristics of MS autoimmunity in the initiation and progression of the disease. In particular we find it timely to classify the autoimmune responses by focusing on the immunogenic features of myelin-derived lipids in MS including molecular mimicry; on alterations of bioactive sphingolipids mediators in MS; and on functional roles for regulatory effector cells, including innate lymphocyte populations, like the invariant NKT (iNKT) cells which bridge adaptive and innate immune systems. Recent progress in identifying the nature of sphingolipids recognition for iNKT cells in immunity and the functional consequences of the lipid-CD1d interaction opens new avenues of access to the pathogenesis of demyelination in MS as well as design of lipid antigen-specific therapeutics.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Neurology and Neurosurgery, Medical University of South Carolina Charleston, SC, USA; Laboratory of Signal Transduction Molecules, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| | - Joan O'Keeffe
- Department of Biopharmaceutical & Medical Science, School of Science & Computing, Galway-Mayo Institute of Technology, Galway, Ireland
| | - Edward L Hogan
- Department of Neurology and Neurosurgery, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|
17
|
de Andrés C, Fernández-Paredes L, Tejera-Alhambra M, Alonso B, Ramos-Medina R, Sánchez-Ramón S. Activation of Blood CD3 +CD56 +CD8 + T Cells during Pregnancy and Multiple Sclerosis. Front Immunol 2017; 8:196. [PMID: 28280497 PMCID: PMC5322280 DOI: 10.3389/fimmu.2017.00196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/09/2017] [Indexed: 01/24/2023] Open
Abstract
A striking common feature of most autoimmune diseases is their female predominance, with at least twice as common among women than men in relapsing–remitting multiple sclerosis (MS), the prevailing MS clinical form with onset at childbearing age. This fact, together with the protective effect on disease activity during pregnancy, when there are many biological changes including high levels of estrogens and progesterone, puts sex hormones under the spotlight. The role of natural killer (NK) and NKT cells in MS disease beginning and course is still to be elucidated. The uterine NK (uNK) cells are the most predominant immune population in early pregnancy, and the number and function of uNK cells infiltrating the endometrium are sex-hormones’ dependent. However, there is controversy on the role of estrogen or progesterone on circulating NK (CD56dim and CD56bright) and NKT cells’ subsets. Here, we show a significantly increased activation of CD3+CD56+CD8+ cells in pregnant MS women (MSP) compared with non-pregnant MS women (NPMS) (p < 0.001) and even with respect to healthy pregnant women (HP, p < 0.001), remaining increased even after delivery. The dynamics of expression of early activation marker CD69 on CD3+CD56+CD8+ cells showed a progressive statistically significant increase along the gestation trimesters (T) and at postpartum (PP) with respect to NPMS (1T: p = 0.018; 2T: p = 0.004; 3T: p < 0.001; PP: p = 0.001). In addition, early activation expression of CD69 on CD3+CD56+CD8+ cells was higher in MSP than HP in the first two trimesters of gestation (p = 0.004 and p = 0.015, respectively). NPMS showed significantly increased cytotoxic/regulatory NK ratio compared with healthy controls (p < 0.001). On the other hand, gender studies showed no differences between MS women and men in NK and CD3+CD56+CD8+ cells’ subsets. Our findings may add on the understanding of the regulatory axis in MS during pregnancy. Further studies on specific CD8+ NKT cells function and their role in pregnancy beneficial effects on MS are warranted to move forward more effective MS treatments.
Collapse
Affiliation(s)
- Clara de Andrés
- Department of Neurology, Hospital General Universitario Gregorio Marañón , Madrid , Spain
| | | | - Marta Tejera-Alhambra
- Department of Immunology, Hospital General Universitario Gregorio Marañón , Madrid , Spain
| | - Bárbara Alonso
- Department of Immunology, Hospital General Universitario Gregorio Marañón , Madrid , Spain
| | - Rocío Ramos-Medina
- Department of Immunology, Hospital General Universitario Gregorio Marañón , Madrid , Spain
| | - Silvia Sánchez-Ramón
- Department of Clinical Immunology, IdISSC, Hospital Clínico San Carlos, Madrid, Spain; Department of Microbiology I, Complutense University School of Medicine, Madrid, Spain
| |
Collapse
|
18
|
Chen J, Yang J, Qiao Y, Li X. Understanding the Regulatory Roles of Natural Killer T Cells in Rheumatoid Arthritis: T Helper Cell Differentiation Dependent or Independent? Scand J Immunol 2017; 84:197-203. [PMID: 27384545 DOI: 10.1111/sji.12460] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/04/2016] [Indexed: 12/21/2022]
Abstract
Rheumatoid arthritis (RA) is the most common chronic systemic autoimmune disease. This disease is thought to be caused by pathogenic T cells. Th1, Th2, Th17 and Treg cells have been implicated in the pathogenesis of RA. These Th cells differentiate from CD4+ T cells primarily due to the effects of cytokines. Natural killer T (NKT) cells are a distinct subset of lymphocytes that can rapidly secrete massive amount of cytokines, including IL-2, IL-4, IL-12 and IFN-γ. Numerous studies showed that NKT cells can influence the differentiation of CD4+ T cells via cytokines in vitro. These findings suggest that NKT cells play an important role in RA by polarizing Th1, Th2, Th17 and Treg cells. In view of the complexity of RA, we discussed whether NKT cells really influence the development of RA through regulating the differentiation of Th cells.
Collapse
Affiliation(s)
- J Chen
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | - J Yang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Y Qiao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - X Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
19
|
Bianchini E, De Biasi S, Simone AM, Ferraro D, Sola P, Cossarizza A, Pinti M. Invariant natural killer T cells and mucosal-associated invariant T cells in multiple sclerosis. Immunol Lett 2017; 183:1-7. [PMID: 28119072 DOI: 10.1016/j.imlet.2017.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is a chronic progressive inflammatory demyelinating disorder of the central nervous system, and in several countries is a leading cause of permanent neurological disability in young adults, particularly women. MS is considered an autoimmune disease, caused by an aberrant immune response to environmental triggers in genetically susceptible subjects. However, the contribution of the innate or of the adaptive immune system to the development and progression of the disease has not yet been fully elucidated. Innate-like T lymphocytes are unconventional T cells that bridge the innate and adaptive arms of the immune system, because they use a T cell receptor to sense external ligands, but behave like innate cells when they rapidly respond to stimuli. These cells could play an important role in the pathogenesis of MS. Here, we focus on invariant natural killer T (iNKT) cells and mucosal-associated invariant T (MAIT) cells, and we review the current knowledge on their biology and possible involvement in MS. Although several studies have evaluated the frequency and functions of iNKT and MAIT cells both in MS patients and in experimental mouse models, contradictory observations have been reported, and it is not clear whether they exert a protective or a pro-inflammatory and harmful role. A better understanding of how immune cells are involved in MS, and of their interactions could be of great interest for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Elena Bianchini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Sara De Biasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Anna Maria Simone
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, Via P. Giardini 1355, 41126 Modena, Italy
| | - Diana Ferraro
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, Via P. Giardini 1355, 41126 Modena, Italy
| | - Patrizia Sola
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, Via P. Giardini 1355, 41126 Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy.
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| |
Collapse
|
20
|
Abstract
CD1- and MHC-related molecule-1 (MR1)-restricted T lymphocytes recognize nonpeptidic antigens, such as lipids and small metabolites, and account for a major fraction of circulating and tissue-resident T cells. They represent a readily activated, long-lasting population of effector cells and contribute to the early phases of immune response, orchestrating the function of other cells. This review addresses the main aspects of their immunological functions, including antigen and T cell receptor repertoires, mechanisms of nonpeptidic antigen presentation, and the current evidence for their participation in human and experimental diseases.
Collapse
Affiliation(s)
- Lucia Mori
- Department of Biomedicine, Basel University Hospital and Basel University, CH-4031 Basel, Switzerland; , , .,Singapore Immunology Network, A*STAR, 138648 Singapore
| | - Marco Lepore
- Department of Biomedicine, Basel University Hospital and Basel University, CH-4031 Basel, Switzerland; , ,
| | - Gennaro De Libero
- Department of Biomedicine, Basel University Hospital and Basel University, CH-4031 Basel, Switzerland; , , .,Singapore Immunology Network, A*STAR, 138648 Singapore
| |
Collapse
|
21
|
Male rats develop more severe experimental autoimmune encephalomyelitis than female rats: sexual dimorphism and diergism at the spinal cord level. Brain Behav Immun 2015; 49:101-18. [PMID: 25944279 DOI: 10.1016/j.bbi.2015.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/26/2015] [Accepted: 04/26/2015] [Indexed: 02/06/2023] Open
Abstract
Compared with females, male Dark Agouti (DA) rats immunized for experimental autoimmune encephalomyelitis (EAE) with rat spinal cord homogenate in complete Freund's adjuvant (CFA) exhibited lower incidence of the disease, but the maximal neurological deficit was greater in the animals that developed the disease. Consistently, at the peak of the disease greater number of reactivated CD4+CD134+CD45RC- T lymphocytes was retrieved from male rat spinal cord. Their microglia/macrophages were more activated and produced greater amount of prototypic proinflammatory cytokines in vitro. Additionally, oppositely to the expression of mRNAs for IL-12/p35, IL-10 and IL-27/p28, the expression of mRNA for IL-23/p19 was upregulated in male rat spinal cord mononuclear cells. Consequently, the IL-17+:IFN-γ+ cell ratio within T lymphocytes from their spinal cord was skewed towards IL-17+ cells. Within this subpopulation, the IL-17+IFN-γ+:IL-17+IL-10+ cell ratio was shifted towards IL-17+IFN-γ+ cells, which have prominent tissue damaging capacity. This was associated with an upregulated expression of mRNAs for IL-1β and IL-6, but downregulated TGF-β mRNA expression in male rat spinal cord mononuclear cells. The enhanced GM-CSF mRNA expression in these cells supported the greater pathogenicity of IL-17+ T lymphocytes infiltrating male spinal cord. In the inductive phase of the disease, contrary to the draining lymph node, in the spinal cord the frequency of CD134+ cells among CD4+ T lymphocytes and the frequency of IL-17+ cells among T lymphocytes were greater in male than in female rats. This most likely reflected an enhanced transmigration of mononuclear cells into the spinal cord (judging by the lesser spinal cord CXCL12 mRNA expression), the greater frequency of activated microglia/macrophages and the increased expression of mRNAs for Th17 polarizing cytokines in male rat spinal cord mononuclear cells. Collectively, the results showed cellular and molecular mechanisms underlying the target organ specific sexual dimorphism in the T lymphocyte-dependent immune/inflammatory response, and suggested a substantial role for the target organ in shaping the sexually dimorphic clinical outcome of EAE.
Collapse
|
22
|
Doherty DG. Immunity, tolerance and autoimmunity in the liver: A comprehensive review. J Autoimmun 2015; 66:60-75. [PMID: 26358406 DOI: 10.1016/j.jaut.2015.08.020] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 12/14/2022]
Abstract
The hepatic immune system is constantly exposed to a massive load of harmless dietary and commensal antigens, to which it must remain tolerant. Immune tolerance in the liver is mediated by a number of specialized antigen-presenting cells, including dendritic cells, Kupffer cells, liver sinusoidal endothelial cells and hepatic stellate cells. These cells are capable of presenting antigens to T cells leading to T cell apoptosis, anergy, or differentiation into regulatory T cells. However, the hepatic immune system must also be able to respond to pathogens and tumours and therefore must be equipped with mechanisms to override immune tolerance. The liver is a site of accumulation of a number of innate lymphocyte populations, including natural killer cells, CD56(+) T cells, natural killer T cells, γδ T cells, and mucosal-associated invariant T cells. Innate lymphocytes recognize conserved metabolites derived from microorganisms and host cells and respond by killing target cells or promoting the differentiation and/or activation of other cells of the immune system. Innate lymphocytes can promote the maturation of antigen-presenting cells from their precursors and thereby contribute to the generation of immunogenic T cell responses. These cells may be responsible for overriding hepatic immune tolerance to autoantigens, resulting in the induction and maintenance of autoreactive T cells that mediate liver injury causing autoimmune liver disease. Some innate lymphocyte populations can also directly mediate liver injury by killing hepatocytes or bile duct cells in murine models of hepatitis, whilst other populations may protect against liver disease. It is likely that innate lymphocyte populations can promote or protect against autoimmune liver disease in humans and that these cells can be targeted therapeutically. Here I review the cellular mechanisms by which hepatic antigen-presenting cells and innate lymphocytes control the balance between immunity, tolerance and autoimmunity in the liver.
Collapse
Affiliation(s)
- Derek G Doherty
- Division of Immunology, School of Medicine, Trinity College Dublin, Ireland.
| |
Collapse
|
23
|
Group 3 innate lymphoid cells accumulate and exhibit disease-induced activation in the meninges in EAE. Cell Immunol 2015; 297:69-79. [PMID: 26163773 DOI: 10.1016/j.cellimm.2015.06.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/31/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022]
Abstract
Innate lymphoid cells are immune cells that reside in tissues that interface with the external environment and contribute to the first line defense against pathogens. However, they also have roles in promoting chronic inflammation. Here we demonstrate that group 3 ILCs, (ILC3s - CD45+Lin-IL-7Rα+RORγt+), are normal residents of the meninges and exhibit disease-induced accumulation and activation in EAE. In addition to production of the pro-inflammatory cytokines IL-17 and GM-CSF, ILC3s constitutively express CD30L and OX40L, molecules required for memory T cell survival. We show that disease-induced trafficking of transferred wild type T cells to the meninges is impaired in ILC3-deficient Rorc-/- mice. Furthermore, lymphoid tissue inducer cells, a c-kit+ ILC3 subset that promotes ectopic lymphoid follicle development, a hallmark of many autoimmune diseases, are reduced in the meninges of EAE-resistant c-kit mutant Kit(W/Wv) mice. We propose that ILC3s sustain neuroinflammation by supporting T cell survival and reactivation in the meninges.
Collapse
|
24
|
Van Kaer L, Wu L, Parekh VV. Natural killer T cells in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Immunology 2015; 146:1-10. [PMID: 26032048 DOI: 10.1111/imm.12485] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/18/2015] [Accepted: 05/27/2015] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease that causes demyelination of neurons in the central nervous system. Traditional therapies for MS have involved anti-inflammatory and immunosuppressive drugs with significant side effects that often only provide short-term relief. A more desirable outcome of immunotherapy would be to protect against disease before its clinical manifestation or to halt disease after its initiation. One attractive approach to accomplish this goal would be to restore tolerance by targeting immunoregulatory cell networks. Although much of the work in this area has focused on CD4(+) Foxp3(+) regulatory T cells, other studies have investigated natural killer T (NKT) cells, a subset of T cells that recognizes glycolipid antigens in the context of the CD1d glycoprotein. Studies with human MS patients have revealed alterations in the numbers and functions of NKT cells, which have been partially supported by studies with the experimental autoimmune encephalomyelitis model of MS. Additional studies have shown that activation of NKT cells with synthetic lipid antigens can, at least under certain experimental conditions, protect mice against the development of MS-like disease. Although mechanisms of this protection remain to be fully investigated, current evidence suggests that it involves interactions with other immunoregulatory cell types such as regulatory T cells and immunosuppressive myeloid cells. These studies have provided a strong foundation for the rational design of NKT-cell-based immunotherapies for MS that induce tolerance while sparing overall immune function. Nevertheless, additional pre-clinical and clinical studies will be required to bring this goal to fruition.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Vrajesh V Parekh
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
25
|
Dang PT, Bui Q, D'Souza CS, Orian JM. Modelling MS: Chronic-Relapsing EAE in the NOD/Lt Mouse Strain. Curr Top Behav Neurosci 2015; 26:143-177. [PMID: 26126592 DOI: 10.1007/7854_2015_378] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Modelling complex disorders presents considerable challenges, and multiple sclerosis (MS) is no exception to this rule. The aetiology of MS is unknown, and its pathophysiology is poorly understood. Moreover, the last two decades have witnessed a dramatic revision of the long-held view of MS as an inflammatory demyelinating white matter disease. Instead, it is now regarded as a global central nervous system (CNS) disorder with a neurodegenerative component. Currently, there is no animal model recapitulating MS immunopathogenesis. Available models are based on autoimmune-mediated demyelination, denoted experimental autoimmune encephalomyelitis (EAE) or virally or chemically induced demyelination. Of these, the EAE model has been the most commonly used. It has been extensively improved since its first description and now exists as a number of variants, including genetically modified and humanized versions. Nonetheless, EAE is a distinct disease, and each variant models only certain facets of MS. Whilst the search for more refined MS models must continue, it is important to further explore where mechanisms underlying EAE provide proof-of-principle for those driving MS pathogenesis. EAE variants generated with the myelin component myelin oligodendrocyte glycoprotein (MOG) have emerged as the preferred ones, because in this particular variant disease is associated with both T- and B-cell effector mechanisms, together with demyelination. MOG-induced EAE in the non-obese diabetic (NOD) mouse strain exhibits a chronic-relapsing EAE clinical profile and high disease incidence. We describe the generation of this variant, its contribution to the understanding of MS immune and pathogenetic mechanisms and potential for evaluation of candidate therapies.
Collapse
Affiliation(s)
- Phuc T Dang
- Department of Biochemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Quyen Bui
- Department of Biochemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Claretta S D'Souza
- Department of Biochemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jacqueline M Orian
- Department of Biochemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
26
|
Age-associated changes in rat immune system: Lessons learned from experimental autoimmune encephalomyelitis. Exp Gerontol 2014; 58:179-97. [DOI: 10.1016/j.exger.2014.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/24/2014] [Accepted: 08/12/2014] [Indexed: 01/15/2023]
|
27
|
Abstract
The CNS is considered an immune privileged site because its repertoire of highly immunogenic molecules remains unseen by the immune system under normal conditions. However, the mechanism underlying the inhibition of immune reactions within the CNS environment is not known, particularly in regions containing myelin, which contains several potent proteins and lipids that are invariably recognized as foreign by immune system cells. Sulfatides constitute a major component of myelin glycolipids and are known to be capable of raising an immune response. In this study, the effect of sulfatides on mouse T cell function and differentiation was analyzed in vitro and in vivo. We found profound inhibition of sulfatide-dependent T cell proliferation which was particularly pronounced in naive T helper (Th) cells. The inhibitory effect of sulfatides on T cell function was CD1d-independent and was not related to apoptosis or necrosis but did involve the induction of anergy as confirmed by the upregulation of early growth response 2 transcription factor. A glycolipid 3-sulfate group was essential for the T cell suppression, and the T cell inhibition was galectin-4-dependent. Sulfatide stimulation in vitro led to prominent suppression of Th17 differentiation, and this was related to a decrease in susceptibility to disease in a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis. Thus, we have defined a novel mechanism of negative regulation of T cell function by endogenous brain-derived glycolipids, a family of molecules traditionally deemphasized in favor of myelin proteins in studies of CNS autoimmunity.
Collapse
|
28
|
Shin S, Walz KA, Archambault AS, Sim J, Bollman BP, Koenigsknecht-Talboo J, Cross AH, Holtzman DM, Wu GF. Apolipoprotein E mediation of neuro-inflammation in a murine model of multiple sclerosis. J Neuroimmunol 2014; 271:8-17. [PMID: 24794230 DOI: 10.1016/j.jneuroim.2014.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 12/12/2022]
Abstract
Apolipoprotein E (ApoE) functions as a ligand in receptor-mediated endocytosis of lipoprotein particles and has been demonstrated to play a role in antigen presentation. To explore the contribution of ApoE during autoimmune central nervous system (CNS) demyelination, we examined the clinical, cellular immune function, and pathologic consequences of experimental autoimmune encephalomyelitis (EAE) induction in ApoE knockout (ApoE(-/-)) mice. We observed reduced clinical severity of EAE in ApoE(-/-) mice in comparison to WT mice that was concomitant with an early reduction of dendritic cells (DCs) followed by a reduction of additional innate cells in the spinal cord at the peak of disease without any differences in axonal damage. While T cell priming was enhanced in ApoE(-/-) mice, reduced severity of EAE was also observed in ApoE(-/-) recipients of encephalitogenic wild type T cells. Expression of ApoE during EAE was elevated within the CNS of wild type mice, particularly by innate cells such as DCs. Overall, ApoE promotes clinical EAE, likely by mediation of inflammation localized within the CNS.
Collapse
Affiliation(s)
- Soomin Shin
- Department of Neurology, Washington University in St. Louis School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Katharine A Walz
- Department of Neurology, Washington University in St. Louis School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Angela S Archambault
- Department of Neurology, Washington University in St. Louis School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Julia Sim
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Bryan P Bollman
- Department of Neurology, Washington University in St. Louis School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Jessica Koenigsknecht-Talboo
- Department of Neurology, Washington University in St. Louis School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Anne H Cross
- Department of Neurology, Washington University in St. Louis School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, United States; Hope Center for Neurological Disorders, Washington University in St. Louis School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - David M Holtzman
- Department of Neurology, Washington University in St. Louis School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, United States; Department of Developmental Biology, Washington University in St. Louis School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States; Hope Center for Neurological Disorders, Washington University in St. Louis School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Gregory F Wu
- Department of Neurology, Washington University in St. Louis School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, United States; Hope Center for Neurological Disorders, Washington University in St. Louis School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States; Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States.
| |
Collapse
|
29
|
Roozbeh M, Mohammadpour H, Azizi G, Ghobadzadeh S, Mirshafiey A. The potential role of iNKT cells in experimental allergic encephalitis and multiple sclerosis. Immunopharmacol Immunotoxicol 2014; 36:105-13. [DOI: 10.3109/08923973.2014.897726] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Invariant NKT cells regulate the CD8 T cell response during Theiler's virus infection. PLoS One 2014; 9:e87717. [PMID: 24498175 PMCID: PMC3907484 DOI: 10.1371/journal.pone.0087717] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/02/2014] [Indexed: 11/19/2022] Open
Abstract
Invariant NKT cells are innate lymphocytes with a broad tissue distribution. Here we demonstrate that iNKT cells reside in the central nervous system (CNS) in the absence of inflammation. Their presence in the CNS dramatically augments following inoculation of C57Bl/6 mice with the neurotropic Theiler's murine encephalomyelitis virus (TMEV). At the peak of inflammation the cellular infiltrate comprises 45 000 iNKT cells for 1 250 CD8 T cells specific for the immunodominant TMEV epitope. To study the interaction between these two T cell subsets, we infected both iNKT cell deficient Jα18-/- mice and iNKT cell enriched Vα14 transgenic mice with TMEV. The CD8 T cell response readily cleared TMEV infection in the iNKT cell deficient mice. However, in the iNKT cell enriched mice TMEV infection persisted and was associated with significant mortality. This was caused by the inhibition of the CD8 T cell response in the cervical lymph nodes and spleen after T cell priming. Taken together we demonstrate that iNKT cells reside in the CNS in the absence of inflammation and that their enrichment is associated with the inhibition of the anti-viral CD8 T cell response and an augmented mortality during acute encephalomyelitis.
Collapse
|
31
|
Shiozaki M, Tashiro T, Koshino H, Shigeura T, Watarai H, Taniguchi M, Mori K. Synthesis of RCAI-172 (C6 epimer of RCAI-147) and its biological activity. Bioorg Med Chem 2014; 22:827-33. [DOI: 10.1016/j.bmc.2013.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/14/2013] [Accepted: 12/03/2013] [Indexed: 11/28/2022]
|
32
|
McManus RM, Higgins SC, Mills KH, Lynch MA. Respiratory infection promotes T cell infiltration and amyloid-β deposition in APP/PS1 mice. Neurobiol Aging 2014; 35:109-21. [DOI: 10.1016/j.neurobiolaging.2013.07.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 12/12/2022]
|
33
|
Shiozaki M, Tashiro T, Koshino H, Shigeura T, Watarai H, Taniguchi M, Mori K. Synthesis and biological activity of hydroxylated analogs of RCAI-80. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Simoni Y, Diana J, Ghazarian L, Beaudoin L, Lehuen A. Therapeutic manipulation of natural killer (NK) T cells in autoimmunity: are we close to reality? Clin Exp Immunol 2013. [PMID: 23199318 DOI: 10.1111/j.1365-2249.2012.04625.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
T cells reactive to lipids and restricted by major histocompatibility complex (MHC) class I-like molecules represent more than 15% of all lymphocytes in human blood. This heterogeneous population of innate cells includes the invariant natural killer T cells (iNK T), type II NK T cells, CD1a,b,c-restricted T cells and mucosal-associated invariant T (MAIT) cells. These populations are implicated in cancer, infection and autoimmunity. In this review, we focus on the role of these cells in autoimmunity. We summarize data obtained in humans and preclinical models of autoimmune diseases such as primary biliary cirrhosis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, psoriasis and atherosclerosis. We also discuss the promise of NK T cell manipulations: restoration of function, specific activation, depletion and the relevance of these treatments to human autoimmune diseases.
Collapse
Affiliation(s)
- Y Simoni
- INSERM, U986, Hospital Cochin/St Vincent de Paul, Université Paris Descartes, Paris, France
| | | | | | | | | |
Collapse
|
35
|
Shiozaki M, Tashiro T, Koshino H, Shigeura T, Watarai H, Taniguchi M, Mori K. Synthesis and biological activity of hydroxylated analogues of KRN7000 (α-galactosylceramide). Carbohydr Res 2013; 370:46-66. [PMID: 23454137 DOI: 10.1016/j.carres.2013.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 11/25/2022]
Abstract
KRN7000 is one of the α-galactosylceramides, which has a 2-hexacosanoylamino-3,4-dihydroxyoctadecyl group. This compound, known as a ligand for the activation of CD1d mediated invariant natural killer T cells (iNKT cells) which release both T helper 1 (Th1) cytokines such as IFNγ and Th2 cytokines such as IL-4, has been anticipated as an antitumor drug, because of its strong secretion of IFNγ. This time, we focused on the hydroxylated analogues of KRN7000 which could be thought of as increasing hydrophilicity and showing bias to Th2 cytokine (IL-4) secretion. Therefore, they may become the drugs for autoimmune diseases for the following reasons: (i) compound OCH, one of the α-galactosylceramide analogues with a shorter sphingosine chain than KRN7000, increases hydrophilicity relative to KRN7000; and (ii) OCH is known to induce much more Th2 cytokines (IL-4) than Th1 cytokines from iNKT cells compared to KRN7000. Naturally, OCH has become one of the candidate drugs for autoimmune diseases. The more hydroxylated derivatives of KRN7000 are anticipated to induce Th2 bias. Therefore, eight analogues with 1-4 excess hydroxyl groups on the lipid chain of KRN7000 were synthesized to examine if they behave in the same way as OCH. As a result, three out of eight compounds biased largely to IL-4 secretion, and their effectiveness for experimental autoimmune encephalomyelitis (EAE) was examined. It was recognized that two compounds (†)RCAI-147/-160 showed good suppression of EAE symptoms.
Collapse
Affiliation(s)
- Masao Shiozaki
- Laboratory for Immune Regulation, Research Center for Allergy and Immunology, RIKEN, Wako-shi, Saitama, Japan.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Demyelinating diseases such as multiple sclerosis are chronic inflammatory autoimmune diseases with a heterogeneous clinical presentation and course. Both the adaptive and the innate immune systems have been suggested to contribute to their pathogenesis and recovery. In this review, we discuss the role of the innate immune system in mediating demyelinating diseases. In particular, we provide an overview of the anti-inflammatory or pro-inflammatory functions of dendritic cells, mast cells, natural killer (NK) cells, NK-T cells, γδ T cells, microglial cells, and astrocytes. We emphasize the interaction of astroctyes with the immune system and how this interaction relates to the demyelinating pathologies. Given the pivotal role of the innate immune system, it is possible that targeting these cells may provide an effective therapeutic approach for demyelinating diseases.
Collapse
Affiliation(s)
- Lior Mayo
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
37
|
Subleski JJ, Jiang Q, Weiss JM, Wiltrout RH. The split personality of NKT cells in malignancy, autoimmune and allergic disorders. Immunotherapy 2011; 3:1167-84. [PMID: 21995570 PMCID: PMC3230042 DOI: 10.2217/imt.11.117] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
NKT cells are a heterogeneous subset of specialized, self-reactive T cells, with innate and adaptive immune properties, which allow them to bridge innate and adaptive immunity and profoundly influence autoimmune and malignant disease outcomes. NKT cells mediate these activities through their ability to rapidly express pro- and anti-inflammatory cytokines that influence the type and magnitude of the immune response. Not only do NKT cells regulate the functions of other cell types, but experimental evidence has found NKT cell subsets can modulate the functions of other NKT subsets. Depending on underlying mechanisms, NKT cells can inhibit or exacerbate autoimmunity and malignancy, making them potential targets for disease intervention. NKT cells can respond to foreign and endogenous antigenic glycolipid signals that are expressed during pathogenic invasion or ongoing inflammation, respectively, allowing them to rapidly react to and influence a broad array of diseases. In this article we review the unique development and activation pathways of NKT cells and focus on how these attributes augment or exacerbate autoimmune disorders and malignancy. We also examine the growing evidence that NKT cells are involved in liver inflammatory conditions that can contribute to the development of malignancy.
Collapse
Affiliation(s)
- Jeff J Subleski
- Laboratory of Experimental, Immunology, Cancer & Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, USA
| | - Qun Jiang
- Laboratory of Experimental, Immunology, Cancer & Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, USA
| | - Jonathan M Weiss
- Laboratory of Experimental, Immunology, Cancer & Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, USA
| | - Robert H Wiltrout
- Laboratory of Experimental, Immunology, Cancer & Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, USA
| |
Collapse
|
38
|
Finkelstein A, Kunis G, Seksenyan A, Ronen A, Berkutzki T, Azoulay D, Koronyo-Hamaoui M, Schwartz M. Abnormal changes in NKT cells, the IGF-1 axis, and liver pathology in an animal model of ALS. PLoS One 2011; 6:e22374. [PMID: 21829620 PMCID: PMC3149057 DOI: 10.1371/journal.pone.0022374] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 06/24/2011] [Indexed: 11/27/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressing fatal neurodegenerative disorder characterized by the selective death of motor neurons (MN) in the spinal cord, and is associated with local neuroinflammation. Circulating CD4+ T cells are required for controlling the local detrimental inflammation in neurodegenerative diseases, and for supporting neuronal survival, including that of MN. T-cell deficiency increases neuronal loss, while boosting T cell levels reduces it. Here, we show that in the mutant superoxide dismutase 1 G93A (mSOD1) mouse model of ALS, the levels of natural killer T (NKT) cells increased dramatically, and T-cell distribution was altered both in lymphoid organs and in the spinal cord relative to wild-type mice. The most significant elevation of NKT cells was observed in the liver, concomitant with organ atrophy. Hepatic expression levels of insulin-like growth factor (IGF)-1 decreased, while the expression of IGF binding protein (IGFBP)-1 was augmented by more than 20-fold in mSOD1 mice relative to wild-type animals. Moreover, hepatic lymphocytes of pre-symptomatic mSOD1 mice were found to secrete significantly higher levels of cytokines when stimulated with an NKT ligand, ex-vivo. Immunomodulation of NKT cells using an analogue of α-galactosyl ceramide (α-GalCer), in a specific regimen, diminished the number of these cells in the periphery, and induced recruitment of T cells into the affected spinal cord, leading to a modest but significant prolongation of life span of mSOD1 mice. These results identify NKT cells as potential players in ALS, and the liver as an additional site of major pathology in this disease, thereby emphasizing that ALS is not only a non-cell autonomous, but a non-tissue autonomous disease, as well. Moreover, the results suggest potential new therapeutic targets such as the liver for immunomodulatory intervention for modifying the disease, in addition to MN-based neuroprotection and systemic treatments aimed at reducing oxidative stress.
Collapse
Affiliation(s)
- Arseny Finkelstein
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | - Gilad Kunis
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | - Akop Seksenyan
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Ayal Ronen
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | - Tamara Berkutzki
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, Israel
| | - David Azoulay
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Michal Schwartz
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
39
|
Oh SJ, Chung DH. Invariant NKT cells producing IL-4 or IL-10, but not IFN-gamma, inhibit the Th1 response in experimental autoimmune encephalomyelitis, whereas none of these cells inhibits the Th17 response. THE JOURNAL OF IMMUNOLOGY 2011; 186:6815-21. [PMID: 21572032 DOI: 10.4049/jimmunol.1003916] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is mediated by Th1 and Th17 cells. Invariant NKT (iNKT) cells prevent EAE in an IL-4-, IL-10-, and IFN-γ-dependent manner. However, which of the iNKT cell-produced cytokines regulates the Th1 or Th17 response in EAE remains unclear. Wild-type B6 and Jα18(-/-) mice were immunized with MOG(35-55) peptide to address this issue. Clinical scores for EAE, IL-17, and IFN-γ transcript levels, and IL-17- or IFN-γ-expressing CD4(+) T cell percentages in the CNS and draining lymph nodes were higher in Jα18(-/-) than in B6 mice, but all of these parameters in the CNS were reduced by the adoptive transfer of wild-type or IFN-γ-deficient iNKT cells into the Jα18(-/-) mice before immunization. In contrast, adoptive transfer of IL-4- or IL-10-deficient iNKT cells into Jα18(-/-) mice decreased IL-17 transcript levels and the percentage of IL-17-expressing CD4(+) T cells in the CNS but did not affect clinical scores, IFN-γ transcript levels, or the percentage of IFN-γ-expressing CD4(+) T cells in the CNS. Taken together, IL-4- and IL-10-producing iNKT cells inhibit the Th1 cell response, but not the Th17 cell response, although wild-type iNKT cells suppress both the Th1 and Th17 responses in the CNS during EAE. Moreover, IFN-γ-producing iNKT cells have a minimal role in the regulation of the Th1 and Th17 responses in EAE.
Collapse
Affiliation(s)
- Sae Jin Oh
- Department of Pathology, Seoul National University College of Medicine, Seoul 110-799, Korea
| | | |
Collapse
|
40
|
Petermann F, Korn T. Cytokines and effector T cell subsets causing autoimmune CNS disease. FEBS Lett 2011; 585:3747-57. [PMID: 21477588 DOI: 10.1016/j.febslet.2011.03.064] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 03/28/2011] [Accepted: 03/29/2011] [Indexed: 12/21/2022]
Abstract
Although experimental autoimmune encephalomyelitis (EAE) is limited in its potency to reproduce the entirety of clinical and histopathologic features of multiple sclerosis (MS), this model has been successfully used to prove that MS like autoimmunity in the CNS is orchestrated by autoantigen specific T cells. EAE was also very useful to refute the idea that IFN-γ producing T helper type 1 (Th1) cells were the sole players within the pathogenic T cell response. Rather, "new" T cell lineages such as IL-17 producing Th17 cells or IL-9 producing Th9 cells have been first discovered in the context of EAE. Here, we will summarize new concepts of early and late T cell plasticity and the cytokine network that shapes T helper cell responses and lesion development in CNS specific autoimmunity.
Collapse
Affiliation(s)
- Franziska Petermann
- Klinikum Rechts der Isar, Department of Neurology, Technical University Munich, Munich, Germany
| | | |
Collapse
|
41
|
Podbielska M, Levery SB, Hogan EL. The structural and functional role of myelin fast-migrating cerebrosides: pathological importance in multiple sclerosis. ACTA ACUST UNITED AC 2011; 6:159-179. [PMID: 22701512 DOI: 10.2217/clp.11.8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A family of neutral glycosphingolipids containing a 3-O-acetyl-sphingosine galactosylceramide (3-SAG) has been characterized. Seven new derivatives of galactosylceramide (GalCer), designated as fast-migrating cerebrosides (FMCs) by TLC retention factor, have been identified. The simplest compounds - FMC-1 and FMC-2 - of this series have been characterized as the 3-SAG containing nonhydroxy and hydroxy fatty acyl, respectively. The next two - FMC-3 and FMC-4 - add 6-O-acetyl-galactose and the most complex glycosphingolipids, FMC-5, -6 and -7, are 2,3,4,6-tetra-O-acetyl-3-SAG. These hydrophobic myelin lipid biomarkers coappear with GalCer during myelinogenesis and disappear along with GalCer in de- or dys-myelinating disorders. Myelin lipid antigens, including FMCs, are keys to myelin biology, opening the possibility of new and novel immune modulatory tools for treatment of autoimmune diseases including multiple sclerosis.
Collapse
Affiliation(s)
- Maria Podbielska
- Institute of Molecular Medicine & Genetics, Department of Neurology, Georgia Health Sciences University, 1120 15th Street, Building CB2803, Augusta, GA 30912-2620, USA
| | | | | |
Collapse
|
42
|
Jadidi-Niaragh F, Mirshafiey A. Regulatory T-cell as orchestra leader in immunosuppression process of multiple sclerosis. Immunopharmacol Immunotoxicol 2011; 33:545-67. [DOI: 10.3109/08923973.2010.513391] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
43
|
Abstract
NKT cells are innate-like αβ T cells that are conserved between humans and mice. They are distinct from conventional T cells as they recognize lipid antigens presented by the CD1d molecule. Most NKT cells expressed a highly restricted TCR repertoire and can be activated by α-galactosylceramide (α-GalCer) and detected by α-GalCer-loaded-CD1d tetramers. Upon activation, NKT cells respond in few hours by producing cytokines and stimulating many other cells of the innate and adaptive immune system. Over the last decade, many studies have analyzed the regulatory role of NKT cells that can either suppress or exacerbate immune functions. This chapter describes the tools and techniques required to study in vivo and in vitro the regulatory role of NKT cells in mouse as well as from human blood.
Collapse
Affiliation(s)
- Julien Diana
- INSERM U986, Hôpital Cochin/St Vincent de Paul, Paris, France
| | | | | | | |
Collapse
|
44
|
Oh K, Byoun OJ, Ham DI, Kim YS, Lee DS. Invariant NKT cells regulate experimental autoimmune uveitis through inhibition of Th17 differentiation. Eur J Immunol 2010; 41:392-402. [PMID: 21268009 DOI: 10.1002/eji.201040569] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 10/29/2010] [Accepted: 11/16/2010] [Indexed: 12/21/2022]
Abstract
Although NKT cells have been implicated in diverse immunomodulatory responses, the effector mechanisms underlying the NKT cell-mediated regulation of pathogenic T helper cells are not well understood. Here, we show that invariant NKT cells inhibited the differentiation of CD4(+) T cells into Th17 cells both in vitro and in vivo. The number of IL-17-producing CD4(+) T cells was reduced following co-culture with purified NK1.1(+) TCR(+) cells from WT, but not from CD1d(-/-) or Jα18(-/-) , mice. Co-cultured NKT cells from either cytokine-deficient (IL-4(-/-) , IL-10(-/-) , or IFN-γ(-/-) ) or WT mice efficiently inhibited Th17 differentiation. The contact-dependent mechanisms of NKT cell-mediated regulation of Th17 differentiation were confirmed using transwell co-culture experiments. On the contrary, the suppression of Th1 differentiation was dependent on IL-4 derived from the NKT cells. The in vivo regulatory capacity of NKT cells on Th17 cells was confirmed using an experimental autoimmune uveitis model induced with human IRBP(1-20) (IRBP, interphotoreceptor retinoid-binding protein) peptide. NKT cell-deficient mice (CD1d(-/-) or Jα18(-/-) ) demonstrated an increased disease severity, which was reversed by the transfer of WT or cytokine-deficient (IL-4(-/-) , IL-10(-/-) , or IFN-γ(-/-) ) NKT cells. Our results indicate that invariant NKT cells inhibited autoimmune uveitis predominantly through the cytokine-independent inhibition of Th17 differentiation.
Collapse
Affiliation(s)
- Keunhee Oh
- Laboratory of Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea.
| | | | | | | | | |
Collapse
|
45
|
Novak J, Lehuen A. Mechanism of regulation of autoimmunity by iNKT cells. Cytokine 2010; 53:263-70. [PMID: 21185200 DOI: 10.1016/j.cyto.2010.11.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 10/06/2010] [Accepted: 11/04/2010] [Indexed: 02/07/2023]
Abstract
iNKT cells, CD1d dependent natural killer T cells are a unique population of T cells. The capacity of iNKT cells to produce regulatory cytokines first provided an indication of their regulatory potential. Later on, in experimental models as well as in patients afflicted with an auto-immune disease, such as Type 1 diabetes mellitus, multiple sclerosis, and systemic lupus erythematosus along with others, a deficit in iNKT cell number was observed, suggesting the role these cells may possibly have in the prevention of auto-immune diseases. More importantly, experimental strategies which focused on increasing the volume or stimulation of iNKT cells in laboratory animals, demonstrated an improved level of protection against the development of auto-immune diseases. This article reviews the mechanism of protection against autoimmunity by iNKT cells, discusses the obstacles against and indications for the potential use of iNKT cell manipulation in the treatment of human auto-immune diseases.
Collapse
Affiliation(s)
- Jan Novak
- 3rd Faculty of Medicine, Charles University in Prague, Centre of Research for Diabetes, Endocrinological Diseases and Clinical Nutrition, Czech Republic.
| | | |
Collapse
|
46
|
Wang A, Batteux F, Wakeland EK. The role of SLAM/CD2 polymorphisms in systemic autoimmunity. Curr Opin Immunol 2010; 22:706-14. [PMID: 21094032 DOI: 10.1016/j.coi.2010.10.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 12/21/2022]
Abstract
The SLAM/CD2 gene family encodes receptors that play important roles in regulating multiple cellular interactions in the adaptive and innate immune systems. Three members of this gene family, Ly108, Ly9, and CD84, exhibit polymorphisms that strongly influence susceptibility to systemic autoimmunity, notably in mice, but also in some human populations. Polymorphisms of Ly108 in mice strongly impact central tolerance in both B and T cell development, predominantly by modulating apoptosis, anergy, and cell-cycle progression. In addition, Ly108 and CD84, together with their downstream signaling adaptor SLAM-associated protein (SAP), have emerged as key players in B-T interactions during the formation of germinal centers. Interestingly, several independent lines of research have now associated variations in B-T interactions during germinal center formation with systemic autoimmunity, suggesting that susceptibility to systemic lupus erythematosus (SLE) may involve in part the impairment of this peripheral tolerance checkpoint. These new insights into the multiplicity of roles played by the SLAM/CD2 family and its potential importance in human autoimmunity positions the SLAM/CD2 family as an excellent target for immunotherapy.
Collapse
Affiliation(s)
- Andrew Wang
- Department of Immunology and the Walter M. and Helen D. Bader Center for Research on Arthritis and Autoimmune Disease, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | |
Collapse
|
47
|
Caielli S, Sorini C, Falcone M. The dangerous liaison between iNKT cells and dendritic cells: does it prevent or promote autoimmune diseases? Autoimmunity 2010; 44:11-22. [PMID: 20672910 DOI: 10.3109/08916931003782130] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Invariant natural killer T (iNKT) cells represent an important regulatory T-cell subset that perceives signals of danger and/or cellular distress and modulate the adaptive immune response accordingly. In the presence of pathogens, iNKT cells acquire an adjuvant function that is fundamental to boost anti-microbial and anti-tumor immunity. At the same time, iNKT cells can play a negative regulatory function to maintain peripheral T-cell tolerance toward self-antigens and to prevent autoimmune disease. Both these effects of iNKT cells involve the modulation of the activity of dendritic cells (DCs) through cell-cell interaction. Indeed, iNKT cells can either boost Th1 immunity by enhancing maturation of pro-inflammatory DCs or promote immune tolerance through the maturation of tolerogenic DCs. This dual action of iNKT cells opens questions on the modalities by which a single-cell subset can exert opposite effects on DCs and may even put in question the overall immunosuppressive properties of iNKT cells. This review presents the large body of evidence that shows the ability of iNKT cells to negatively regulate autoimmunity and to prevent autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, and systemic lupus erythematosus. In addition, an update is provided on the mechanisms of iNKT-DCs interactions and how this can result in inflammatory or tolerogenic responses.
Collapse
Affiliation(s)
- Simone Caielli
- Experimental Diabetes Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
48
|
Wei B, Wingender G, Fujiwara D, Chen DY, McPherson M, Brewer S, Borneman J, Kronenberg M, Braun J. Commensal microbiota and CD8+ T cells shape the formation of invariant NKT cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:1218-26. [PMID: 20048124 DOI: 10.4049/jimmunol.0902620] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Commensal bacteria play an important role in formation of the immune system, but the mechanisms involved are incompletely understood. In this study, we analyze CD1d-restricted invariant NKT (iNKT) cells in germfree mice and in two colonies of C57BL/6 mice termed conventional flora and restricted flora (RF), stably bearing commensal microbial communities of diverse but distinct composition. In germfree mice, iNKT cells were moderately reduced, suggesting that commensal microbiota were partially required for the antigenic drive in maintaining systemic iNKT cells. Surprisingly, even greater depletion of iNKT cell population occurred in RF mice. This was in part attributable to reduced RF levels of intestinal microbial taxa (Sphingomonas spp.) known to express antigenic glycosphingolipid products. However, memory and activated CD8(+) T cells were also expanded in RF mice, prompting us to test whether CD8(+) T cell activity might be further depleting iNKT cells. Indeed, iNKT cell numbers were restored in RF mice bearing the CD8alpha(-/-) genotype or in adult wild-type RF mice acutely depleted with anti-CD8 Ab. Moreover, iNKT cells were restored in RF mice bearing the Prf1(-/-) phenotype, a key component of cytolytic function. These findings indicate that commensal microbiota, through positive (antigenic drive) and negative (cytolytic depletion by CD8(+) T cells) mechanisms, profoundly shape the iNKT cell compartment. Because individuals greatly vary in the composition of their microbial communities, enteric microbiota may play an important epigenetic role in the striking differences in iNKT cell abundance in humans and therefore in their potential contribution to host immune status.
Collapse
Affiliation(s)
- Bo Wei
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Podbielska M, Hogan EL. Molecular and immunogenic features of myelin lipids: incitants or modulators of multiple sclerosis? Mult Scler 2009; 15:1011-29. [PMID: 19692432 DOI: 10.1177/1352458509106708] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Myelin lipids have long been thought to play intriguing roles in the pathogenesis of multiple sclerosis (MS). This review summarizes current understanding of the molecular basis of MS with emphasis on the: (i.) physico-chemical properties, organization and accessibility of the lipids and their distribution within the myelin multilayer; (ii.) characterization of myelin lipid structures, and structure-function relationships relevant to MS mechanisms, and; (iii.) immunogenic and other features of lipids in MS including molecular mimicry, lipid enzyme genetic knockouts, glycolipid-reactive NKT cells, and monoclonal antibody-induced remyelination. New findings associate anti-lipid antibodies with pathophysiological biomarkers and suggest clinical utility. The structure of CD1d-lipid complexed with the lipophilic invariant T cell receptor (iTCR) may be crucial to understanding MS pathogenesis, and design of lipid antigen-specific therapeutics. Novel immuno-modulatory tools for treatment of autoimmune diseases including MS in which there is both constraint of inflammation and stimulation of remyelination are now emerging.
Collapse
Affiliation(s)
- M Podbielska
- Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia, USA
| | | |
Collapse
|