1
|
Zheng L, Wang H, Zhou J, Shi G, Ma J, Jiang Y, Dong Z, Li J, He YQ, Wu D, Sun J, Xu C, Li Z, Wang J. Off-the-shelf CAR-NK cells targeting immunogenic cell death marker ERp57 execute robust antitumor activity and have a synergistic effect with ICD inducer oxaliplatin. J Immunother Cancer 2024; 12:e008888. [PMID: 38964787 PMCID: PMC11227840 DOI: 10.1136/jitc-2024-008888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor natural killer (CAR-NK) therapy holds great promise for treating hematologic tumors, but its efficacy in solid tumors is limited owing to the lack of suitable targets and poor infiltration of engineered NK cells. Here, we explore whether immunogenic cell death (ICD) marker ERp57 translocated from endoplasmic reticulum to cell surface after drug treatment could be used as a target for CAR-NK therapy. METHODS To target ERp57, a VHH phage display library was used for screening ERp57-targeted nanobodies (Nbs). A candidate Nb with high binding affinity to both human and mouse ERp57 was used for constructing CAR-NK cells. Various in vitro and in vivo studies were performed to assess the antitumor efficacy of the constructed CAR-NK cells. RESULTS We demonstrate that the translocation of ERp57 can not only be induced by low-dose oxaliplatin (OXP) treatment but also is spontaneously expressed on the surface of various types of tumor cell lines. Our results show that G6-CAR-NK92 cells can effectively kill various tumor cell lines in vitro on which ERp57 is induced or intrinsically expressed, and also exhibit potent antitumor effects in cancer cell-derived xenograft and patient-derived xenograft mouse models. Additionally, the antitumor activity of G6-CAR-NK92 cells is synergistically enhanced by the low-dose ICD-inducible drug OXP. CONCLUSION Collectively, our findings suggest that ERp57 can be leveraged as a new tumor antigen for CAR-NK targeting, and the resultant CAR-NK cells have the potential to be applied as a broad-spectrum immune cell therapy for various cancers by combining with ICD inducer drugs.
Collapse
Affiliation(s)
- Liuhai Zheng
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China
| | - Huifang Wang
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China
| | - Jihao Zhou
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
- Department of Hematology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Guangwei Shi
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Guangzhou, Guangdong, China
| | - Jingbo Ma
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
| | - Yuke Jiang
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
| | - Zhiyu Dong
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
| | - Jiexuan Li
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
| | - Yuan-Qiao He
- Center of Laboratory Animal Science, Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of New Drug Evaluation and Transformation of Jiangxi Province Nanchang Royo Biotech Co,. Ltd, Nanchang, Jiangxi, China
| | - Dinglan Wu
- Shenzhen Key Laboratory of Viral Oncology, Clinical Innovation and Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Jichao Sun
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
| | - Chengchao Xu
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- College of Integrative Medicine, Laboratory of Pathophysiology, Key Laboratory of Integrative Medicine on Chronic Diseases, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Zhijie Li
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
| | - Jigang Wang
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan, China
| |
Collapse
|
2
|
Ashar H, Singh A, Kishore D, Neel T, More S, Liu C, Dugat D, Ranjan A. Enabling Chemo-Immunotherapy with HIFU in Canine Cancer Patients. Ann Biomed Eng 2024; 52:1859-1872. [PMID: 37162696 DOI: 10.1007/s10439-023-03194-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 05/11/2023]
Abstract
High intensity focused ultrasound (HIFU) is a promising non-invasive technique for treating solid tumors using thermal and histotripsy-based mechanical ablation. However, its clinical significance in different tumor types is not fully understood. To assess its therapeutic efficacy and immunomodulatory properties, we compared HIFU thermal ablation and histotripsy ablation in dogs with spontaneous tumors. We also evaluated the ability of non-ablative HIFU-based mild hyperthermia (40-45 ºC) to improve Doxorubicin delivery and immunomodulation. Our results showed that HIFU thermal ablation induced tumor remission in the majority of treated patients over 60 days, while histotripsy achieved partial response to stable disease persistence. The adverse effects of thermal ablation were minor to moderate, while histotripsy exposures were relatively well-tolerated. Furthermore, we observed a correlation between HIFU-therapeutic response and serum anti-tumor cytokine profiles and the presence of functionally active cytotoxic immune cells in patients. Similarly, Doxorubicin-treated patients showed improved drug delivery, efficacy, and anti-tumor immune responses with HIFU hyperthermia. In conclusion, our study demonstrates that depending on the tumor type and treatment parameters, HIFU treatments can enable tumor growth control, immune activation, and chemotherapy in veterinary patient. These findings have significant clinical implications and highlight the potential of HIFU as a promising cancer treatment approach.
Collapse
Affiliation(s)
- Harshini Ashar
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 169 McElroy Hall, Stillwater, OK, 74078, USA
| | - Akansha Singh
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 169 McElroy Hall, Stillwater, OK, 74078, USA
| | | | - Tina Neel
- Neel Veterinary Hospital, Oklahoma City, OK, 73127, USA
| | - Sunil More
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Chenang Liu
- The School of Industrial Engineering & Management, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Danielle Dugat
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 169 McElroy Hall, Stillwater, OK, 74078, USA
| | - Ashish Ranjan
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 169 McElroy Hall, Stillwater, OK, 74078, USA.
| |
Collapse
|
3
|
Peng J, Li S, Ti H. Sensitize Tumor Immunotherapy: Immunogenic Cell Death Inducing Nanosystems. Int J Nanomedicine 2024; 19:5895-5930. [PMID: 38895146 PMCID: PMC11184231 DOI: 10.2147/ijn.s457782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Low immunogenicity of tumors poses a challenge in the development of effective tumor immunotherapy. However, emerging evidence suggests that certain therapeutic approaches, such as chemotherapy, radiotherapy, and phototherapy, can induce varying degrees of immunogenic cell death (ICD). This ICD phenomenon leads to the release of tumor antigens and the maturation of dendritic cells (DCs), thereby enhancing tumor immunogenicity and promoting immune responses. However, the use of a single conventional ICD inducer often fails to achieve in situ tumor ablation and establish long-term anti-tumor immune responses. Furthermore, the induction of ICD induction varies among different approaches, and the distribution of the therapeutic agent within the body influences the level of ICD and the occurrence of toxic side effects. To address these challenges and further boost tumor immunity, researchers have explored nanosystems as inducers of ICD in combination with tumor immunotherapy. This review examines the mechanisms of ICD and different induction methods, with a specific focus on the relationship between ICD and tumor immunity. The aim is to explore the research advancements utilizing various nanomaterials to enhance the body's anti-tumor effects by inducing ICD. This paper aims to contribute to the development and clinical application of nanomaterial-based ICD inducers in the field of cancer immunotherapy by providing important theoretical guidance and practical references.
Collapse
Affiliation(s)
- Jianlan Peng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Shiying Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Huihui Ti
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Precise Medicine and Big Data Engineering Technology Research Center for Traditional Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
4
|
Forgham H, Zhu J, Zhang T, Huang X, Li X, Shen A, Biggs H, Talbo G, Xu C, Davis TP, Qiao R. Fluorine-modified polymers reduce the adsorption of immune-reactive proteins to PEGylated gold nanoparticles. Nanomedicine (Lond) 2024; 19:995-1012. [PMID: 38593053 PMCID: PMC11221377 DOI: 10.2217/nnm-2023-0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/23/2024] [Indexed: 04/11/2024] Open
Abstract
Aim: To investigate the influence of fluorine in reducing the adsorption of immune-reactive proteins onto PEGylated gold nanoparticles. Methods: Reversible addition fragmentation chain transfer polymerization, the Turkevich method and ligand exchange were used to prepare polymer-coated gold nanoparticles. Subsequent in vitro physicochemical and biological characterizations and proteomic analysis were performed. Results: Fluorine-modified polymers reduced the adsorption of complement and other immune-reactive proteins while potentially improving circulatory times and modulating liver toxicity by reducing apolipoprotein E adsorption. Fluorine actively discouraged phagocytosis while encouraging the adsorption of therapeutic targets, CD209 and signaling molecule calreticulin. Conclusion: This study suggests that the addition of fluorine in the surface coating of nanoparticles could lead to improved performance in nanomedicine designed for the intravenous delivery of cargos.
Collapse
Affiliation(s)
- Helen Forgham
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jiayuan Zhu
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Taoran Zhang
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xumin Huang
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xiangke Li
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ao Shen
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Heather Biggs
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Gert Talbo
- Metabolomics Australia (Queensland Node), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Chun Xu
- School of Dentistry, The University of Queensland, Herston, Queensland, 4006, Australia
| | - Thomas P Davis
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ruirui Qiao
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
5
|
De Silva M, Tse BCY, Diakos CI, Clarke S, Molloy MP. Immunogenic cell death in colorectal cancer: a review of mechanisms and clinical utility. Cancer Immunol Immunother 2024; 73:53. [PMID: 38353760 PMCID: PMC10866783 DOI: 10.1007/s00262-024-03641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related morbidity and mortality worldwide. Despite several clinical advances the survival of patients with advanced colorectal cancer remains limited, demanding newer approaches. The immune system plays a central role in cancer development, propagation, and treatment response. Within the bowel, the colorectal mucosa is a key barrier and site of immune regulation that is generally immunosuppressive. Nonetheless, within this tumour microenvironment, it is evident that anti-neoplastic treatments which cause direct cytotoxic and cytostatic effects may also induce immunogenic cell death (ICD), a form of regulated cell death that leads to an anti-tumour immune response. Therefore, novel ICD inducers and molecular biomarkers of ICD action are urgently needed to advance treatment options for advanced CRC. This article reviews our knowledge of ICD in CRC.
Collapse
Affiliation(s)
- M De Silva
- Bowel Cancer and Biomarker Research Laboratory, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - B C Y Tse
- Bowel Cancer and Biomarker Research Laboratory, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - C I Diakos
- Department of Medical Oncology, Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - S Clarke
- Department of Medical Oncology, Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - M P Molloy
- Bowel Cancer and Biomarker Research Laboratory, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia.
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Montico B, Nigro A, Lamberti MJ, Martorelli D, Mastorci K, Ravo M, Giurato G, Steffan A, Dolcetti R, Casolaro V, Dal Col J. Phospholipid scramblase 1 is involved in immunogenic cell death and contributes to dendritic cell-based vaccine efficiency to elicit antitumor immune response in vitro. Cytotherapy 2024; 26:145-156. [PMID: 38099895 DOI: 10.1016/j.jcyt.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND AIMS Whole tumor cell lysates (TCLs) obtained from cancer cells previously killed by treatments able to promote immunogenic cell death (ICD) can be efficiently used as a source of tumor-associated antigens for the development of highly efficient dendritic cell (DC)-based vaccines. Herein, the potential role of the interferon (IFN)-inducible protein phospholipid scramblase 1 (PLSCR1) in influencing immunogenic features of dying cancer cells and in enhancing DC-based vaccine efficiency was investigated. METHODS PLSCR1 expression was evaluated in different mantle-cell lymphoma (MCL) cell lines following ICD induction by 9-cis-retinoic acid (RA)/IFN-α combination, and commercial kinase inhibitor was used to identify the signaling pathway involved in its upregulation. A Mino cell line ectopically expressing PLSCR1 was generated to investigate the potential involvement of this protein in modulating ICD features. Whole TCLs obtained from Mino overexpressing PLSCR1 were used for DC loading, and loaded DCs were employed for generation of tumor antigen-specific cytotoxic T lymphocytes. RESULTS The ICD inducer RA/IFN-α combination promoted PLSCR1 expression through STAT1 activation. PLSCR1 upregulation favored pro-apoptotic effects of RA/IFN-α treatment and enhanced the exposure of calreticulin on cell surface. Moreover, DCs loaded with TCLs obtained from Mino ectopically expressing PLSCR1 elicited in vitro greater T-cell-mediated antitumor responses compared with DCs loaded with TCLs derived from Mino infected with empty vector or the parental cell line. Conversely, PLSCR1 knock-down inhibited the stimulating activity of DCs loaded with RA/IFN-α-treated TCLs to elicit cyclin D1 peptide-specific cytotoxic T lymphocytes. CONCLUSIONS Our results indicate that PLSCR1 improved ICD-associated calreticulin exposure induced by RA/IFN-α and was clearly involved in DC-based vaccine efficiency as well, suggesting a potential contribution in the control of pathways associated to DC activation, possibly including those involved in antigen uptake and concomitant antitumor immune response activation.
Collapse
Affiliation(s)
- Barbara Montico
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno, Italy.
| | - Maria Julia Lamberti
- Departamento de Biología Molecular, INBIAS, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.
| | - Debora Martorelli
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| | - Katy Mastorci
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| | - Maria Ravo
- Genomix4Life Srl, Baronissi, Salerno, Italy.
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Salerno, Italy.
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| | - Riccardo Dolcetti
- Centre for Cancer Immunotherapy, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia; Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia; Faculty of Medicine, The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia.
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno, Italy.
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno, Italy.
| |
Collapse
|
7
|
Workenhe ST, Inkol JM, Westerveld MJ, Verburg SG, Worfolk SM, Walsh SR, Kallio KL. Determinants for Antitumor and Protumor Effects of Programmed Cell Death. Cancer Immunol Res 2024; 12:7-16. [PMID: 37902605 PMCID: PMC10762341 DOI: 10.1158/2326-6066.cir-23-0321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/30/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023]
Abstract
Cytotoxic anticancer therapies activate programmed cell death in the context of underlying stress and inflammatory signaling to elicit the emission of danger signals, cytokines, and chemokines. In a concerted manner, these immunomodulatory secretomes stimulate antigen presentation and T cell-mediated anticancer immune responses. In some instances, cell death-associated secretomes attract immunosuppressive cells to promote tumor progression. As it stands, cancer cell death-induced changes in the tumor microenvironment that contribute to antitumor or protumor effects remain largely unknown. This is complicated to examine because cell death is often subverted by tumors to circumvent natural, and therapy-induced, immunosurveillance. Here, we provide insights into important but understudied aspects of assessing the contribution of cell death to tumor elimination or cancer progression, including the role of tumor-associated genetics, epigenetics, and oncogenic factors in subverting immunogenic cell death. This perspective will also provide insights on how future studies may address the complex antitumor and protumor immunologic effects of cell death, while accounting for variations in tumor genetics and underlying microenvironment.
Collapse
Affiliation(s)
- Samuel T. Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jordon M. Inkol
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Michael J. Westerveld
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Shayla G. Verburg
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Sarah M. Worfolk
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Scott R. Walsh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Kaslyn L.F. Kallio
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
8
|
Sun Y, Lu Z, Taylor JA, Au JLS. Quantitative image analysis of intracellular protein translocation in 3-dimensional tissues for pharmacodynamic studies of immunogenic cell death. J Control Release 2024; 365:89-100. [PMID: 37981052 PMCID: PMC11078532 DOI: 10.1016/j.jconrel.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/05/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
A recent development in cancer chemotherapy is to use cytotoxics to induce tumor-specific immune response through immunogenic cell death (ICD). In ICD, calreticulin is translocated from endoplasmic reticulum to cell membrane (ecto-CRT) which serves as the 'eat-me-signal' to antigen-presenting cells. Ecto-CRT measurements, e.g., by ecto-CRT immunostaining plus flow cytometry, can be used to study the pharmacodynamics of ICD in single cells, whereas ICD studies in intact 3-dimensional tissues such as human tumors require different approaches. The present study described a method that used (a) immunostaining with fluorescent antibodies followed by confocal microscopy to obtain the spatial locations of two molecules-of-interest (CRT and a marker protein WGA), and (b) machine-learning (trainable WEKA segmentation) and additional image processing tools to locate the target molecules, remove the interfering signals in the nucleus, cytosol and extracellular space, enable the distinction of the inner and outer edges of the cell membrane and thereby identify the cells with ecto-CRT. This method, when applied to 3-dimensional human bladder cancer cell spheroids, yielded drug-induced ecto-CRT measurements that were qualitatively comparable to the flow cytometry results obtained with single cells disaggregated from spheroids. This new method was applied to study drug-induced ICD in short-term cultures of surgical specimens of human patient bladder tumors.
Collapse
Affiliation(s)
- Yajing Sun
- Department of Pharmaceutical Sciences, University of Oklahoma, Oklahoma City, OK 73117, United States of America
| | - Ze Lu
- Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, United States of America; Optimum Therapeutics LLC, Carlsbad, CA 92008, United States of America
| | - John A Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Jessie L S Au
- Department of Pharmaceutical Sciences, University of Oklahoma, Oklahoma City, OK 73117, United States of America; Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, United States of America; Optimum Therapeutics LLC, Carlsbad, CA 92008, United States of America; College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Huang J, Duan F, Xie C, Xu J, Zhang Y, Wang Y, Tang YP, Leung ELH. Microbes mediated immunogenic cell death in cancer immunotherapy. Immunol Rev 2024; 321:128-142. [PMID: 37553793 DOI: 10.1111/imr.13261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Abstract
Immunogenic cell death (ICD) is one of the 12 distinct cell death forms, which can trigger immune system to fight against cancer cells. During ICD, a number of cellular changes occur that can stimulate an immune response, including the release of molecules called damage-associated molecular patterns (DAMPs), signaling to immune cells to recognize and attack cancer cells. By virtue of their pivotal role in immune surveillance, ICD-based drug development has been a new approach to explore novel therapeutic combinations and personalized strategies in cancer therapy. Several small molecules and microbes can induce ICD-relevant signals and cause cancer cell death. In this review, we highlighted the role of microbe-mediate ICD in cancer immunotherapy and described the mechanisms through which microbes might serve as ICD inducers in cancer treatment. We also discussed current attempts to combine microbes with chemotherapy regimens or immune checkpoint inhibitors (ICIs) in the treatment of cancer patients. We surmise that manipulation of microbes may guide personalized therapeutic interventions to facilitate anticancer immune response.
Collapse
Affiliation(s)
- Jumin Huang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China
| | - Fugang Duan
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Chun Xie
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China
| | - Jiahui Xu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China
| | - Yizhong Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Dr. Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Yuwei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| |
Collapse
|
10
|
Ali Mohammad S, Hak A, Pogu SV, Rengan AK. Radiotherapy, photodynamic therapy, and cryoablation-induced abscopal effect: Challenges and future prospects. CANCER INNOVATION 2023; 2:323-345. [PMID: 38090387 PMCID: PMC10686191 DOI: 10.1002/cai2.53] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 10/15/2024]
Abstract
Local therapy modalities such as radiation therapy, photodynamic therapy, photothermal therapy, and cryoablation have been used to treat localized tumors for decades. The discovery of the abscopal effect causes a paradigm shift where local therapy also causes systemic effects and leads to the remission of nonirradiated tumors. The abscopal effect of radiation therapy, alone or in combination with other treatments, has been extensively studied over the last six decades. However, the results are unsatisfactory in producing robust, reproducible, and long-lasting systemic effects. Although immunotherapy and radiation therapy are promising in producing the abscopal effect, the abscopal effect's mechanism is still unclear, owing to various factors such as irradiation type and dose and cancer type. This article reviews the research progress, clinical and preclinical evidence of the abscopal effect by various local therapies alone and in combination with chemotherapy and immunotherapy, case reports, and the current challenges in producing the abscopal effect by various local therapies, focusing on radiotherapy, photodynamic therapy, cryoablation, and the prospects for obtaining a robust, reproducible, and long-lasting abscopal effect.
Collapse
Affiliation(s)
| | - Arshadul Hak
- Indian Institute of Technology HyderabadKandi, SangareddyTelanganaIndia
| | - Sunil V. Pogu
- Indian Institute of Technology HyderabadKandi, SangareddyTelanganaIndia
| | - Aravind K. Rengan
- Indian Institute of Technology HyderabadKandi, SangareddyTelanganaIndia
| |
Collapse
|
11
|
Fabian KP, Kowalczyk JT, Reynolds ST, Hodge JW. Dying of Stress: Chemotherapy, Radiotherapy, and Small-Molecule Inhibitors in Immunogenic Cell Death and Immunogenic Modulation. Cells 2022; 11:cells11233826. [PMID: 36497086 PMCID: PMC9737874 DOI: 10.3390/cells11233826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/11/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Innovative strategies to re-establish the immune-mediated destruction of malignant cells is paramount to the success of anti-cancer therapy. Accumulating evidence suggests that radiotherapy and select chemotherapeutic drugs and small molecule inhibitors induce immunogenic cell stress on tumors that results in improved immune recognition and targeting of the malignant cells. Through immunogenic cell death, which entails the release of antigens and danger signals, and immunogenic modulation, wherein the phenotype of stressed cells is altered to become more susceptible to immune attack, radiotherapies, chemotherapies, and small-molecule inhibitors exert immune-mediated anti-tumor responses. In this review, we discuss the mechanisms of immunogenic cell death and immunogenic modulation and their relevance in the anti-tumor activity of radiotherapies, chemotherapies, and small-molecule inhibitors. Our aim is to feature the immunological aspects of conventional and targeted cancer therapies and highlight how these therapies may be compatible with emerging immunotherapy approaches.
Collapse
|
12
|
Pan-Cancer Analysis of PDIA3: Identifying It as a Potential Biomarker for Tumor Prognosis and Immunotherapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9614819. [PMID: 36046686 PMCID: PMC9423987 DOI: 10.1155/2022/9614819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Protein disulfide isomerase A3 (PDIA3) is a kind of thiol oxidoreductase with a wide range of functions, and its expression is elevated in a variety of tumors, which is closely related to the invasion and metastasis of tumor cells, and has a significant impact on the immunogenicity of tumor cells. Although more and more studies have shown that PDIA3 plays an important role in the occurrence and development of many tumors, there is no systematic pan-cancer study on PDIA3. Therefore, in this study, the differential expression of PDIA3 in 33 kinds of tumors was analyzed to explore its ability to regulate tumor immunity as a biomarker and evaluate its role in different cancer onset stages or clinical prognosis. In this paper, by analyzing the multilevel data including 33 kinds of cancers in the databases of Cancer Genome Atlas (TCGA), UCSC Xena, Cancer Cell Encyclopedia (CCLE), Genotypic Tissue Expression (GTEx), Human Protein Atlas (HPA), cBioPortal, and GDC; the differential expression level of PDIA3 in different types of malignant tumors and its relationship with prognosis and the potential correlation between PDIA3 expression and microsatellite instability (MSI), tumor mutation load (TMB), mismatch repair gene (MMR), DNA methylation level, and immune infiltration level were analyzed with bioinformatics. The results showed that PDIA3 was highly expressed in 19 types of cancers, but downregulated only in THCA. Next, PDIA3 in different tumors was positively or negatively correlated with patient outcome, Kaplan-Meier survival analysis showed that PDIA3 plays an important role in the prognosis of patients with KIRP, KICH, and CESC and may be used as a prognostic biomarker, and the methylation level of PDIA3 promoter region was closely related to patient outcome in eight tumors. The expression level of PDIA3 was correlated with TMB in 13 tumors and MSI in 9 tumors. Among them, the expression level of PDIA3 in THYM has the strongest correlation with TMB, and the expression level of PDIA3 in READ has the strongest correlation with MSI. In addition, the expression of PDIA3 in eight kinds of tumors, including BRCA, HNSC, THYM, LGG, LUAD, LUSC, PRAD, and THCA, had the highest correlation with the infiltration degree of immune cells, and the expression of PDIA3 had the highest correlation with the infiltration degree of 11 kinds of immune cells, including regulatory T cell and macrophages. And LGG is the tumor most likely to be affected by the tumor microenvironment to affect its development and prognosis. To sum up, this study suggests that PDIA3 plays an important role in the occurrence and development of KIRP, KICH, and CESC and in the immunotherapeutic response of THYM, READ, and LGG and can be used as a prognostic biomarker for these tumors.
Collapse
|
13
|
Liu YS, Chang YC, Kuo WW, Chen MC, Wang TF, Chen TS, Lin YM, Li CC, Liao PH, Huang CY. Calreticulin nuclear translocalization alleviates CaM/CaMKII/CREB signaling pathway to enhance chemosensitivity in HDAC inhibitor-resistant hepatocellular carcinoma cells. Aging (Albany NY) 2022; 14:5097-5115. [PMID: 35724265 PMCID: PMC9271289 DOI: 10.18632/aging.204131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 05/23/2022] [Indexed: 12/18/2022]
Abstract
Calreticulin (CRT) is located in the endoplasmic reticulum (ER), it helps proteins fold correctly inside the ER, and acts as a modulator of Ca2+ homeostasis. Aberrant expression of CRT is implicated in several cancer types, qualifying CRT as a potential therapeutic target. However, it remains unclear how CRT affects specific oncogenic pathways. In this study, we used histone deacetylase inhibitors (HDACis) to establish drug-resistant liver cancer cells and further analyzed the molecular mechanism of development of drug resistance in those cells. The 2D gel electrophoresis and RT-PCR data showed that CRT was downregulated in HDACis-resistant cells by comparing with HA22T parental cells. We previously elucidated the development of drug-resistance in HCC cells via activation of PP1-eIF2α pathway, but not via ER stress pathway. Here, we show that thapsigargin induced ER stress through mechanism other than ER stress downstream protein GRP78-PERK to regulate CRT expression in HDACis-R cells. Moreover, the expression level of CRT was not the main cause of apoptosis in HDACis-resistant cells. Mechanistic studies identified the apoptosis factors in the nucleus-the HDACis-mediated overexpression of CRT, CRT translocation to the cell nucleus, and reduced CaM/CaMKII/CREB pathway-that led to chemosensitivity in HDACis-R HCC cells.
Collapse
Affiliation(s)
- Yi-Sheng Liu
- Division of Hematology and Oncology, Department of Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Chun Chang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung 406, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung 406, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung 406, Taiwan
| | - Ming-Cheng Chen
- Department of Surgery, Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, School of Medicine Tzu Chi University, Hualien 97004, Taiwan
| | - Tung-Sheng Chen
- School of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Yueh-Min Lin
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chi-Cheng Li
- Center of Stem Cell and Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Po-Hsiang Liao
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
| |
Collapse
|
14
|
Kalus P, De Munck J, Vanbellingen S, Carreer L, Laeremans T, Broos K, Dufait I, Schwarze JK, Van Riet I, Neyns B, Breckpot K, Aerts JL. Oncolytic Herpes Simplex Virus Type 1 Induces Immunogenic Cell Death Resulting in Maturation of BDCA-1 + Myeloid Dendritic Cells. Int J Mol Sci 2022; 23:ijms23094865. [PMID: 35563257 PMCID: PMC9103433 DOI: 10.3390/ijms23094865] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Recently, a paradigm shift has been established for oncolytic viruses (OVs) as it was shown that the immune system plays an important role in the specific killing of tumor cells by OVs. OVs have the intrinsic capacity to provide the right signals to trigger anti-tumor immune responses, on the one hand by delivering virus-derived innate signals and on the other hand by inducing immunogenic cell death (ICD), which is accompanied by the release of various damage-associated molecules from infected tumor cells. Here, we determined the ICD-inducing capacity of Talimogene laherparepvec (T-VEC), a herpes simplex virus type 1 based OV, and benchmarked this to other previously described ICD (e.g., doxorubicin) and non-ICD inducing agents (cisplatin). Furthermore, we studied the capability of T-VEC to induce the maturation of human BDCA-1+ myeloid dendritic cells (myDCs). We found that T-VEC treatment exerts direct and indirect anti-tumor effects as it induces tumor cell death that coincides with the release of hallmark mediators of ICD, while simultaneously contributing to the maturation of BDCA-1+ myDCs. These results unequivocally cement OVs in the category of cancer immunotherapy.
Collapse
Affiliation(s)
- Philipp Kalus
- Laboratory for Neuro-Aging and Viro-Immunotherapy (NAVI), Vrije Universiteit Brussel (VUB), 1000 Brussels, Belgium; (P.K.); (J.D.M.); (S.V.); (L.C.); (T.L.)
| | - Jolien De Munck
- Laboratory for Neuro-Aging and Viro-Immunotherapy (NAVI), Vrije Universiteit Brussel (VUB), 1000 Brussels, Belgium; (P.K.); (J.D.M.); (S.V.); (L.C.); (T.L.)
| | - Sarah Vanbellingen
- Laboratory for Neuro-Aging and Viro-Immunotherapy (NAVI), Vrije Universiteit Brussel (VUB), 1000 Brussels, Belgium; (P.K.); (J.D.M.); (S.V.); (L.C.); (T.L.)
| | - Laura Carreer
- Laboratory for Neuro-Aging and Viro-Immunotherapy (NAVI), Vrije Universiteit Brussel (VUB), 1000 Brussels, Belgium; (P.K.); (J.D.M.); (S.V.); (L.C.); (T.L.)
| | - Thessa Laeremans
- Laboratory for Neuro-Aging and Viro-Immunotherapy (NAVI), Vrije Universiteit Brussel (VUB), 1000 Brussels, Belgium; (P.K.); (J.D.M.); (S.V.); (L.C.); (T.L.)
| | - Katrijn Broos
- Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel (VUB), 1000 Brussels, Belgium; (K.B.); (K.B.)
| | - Inès Dufait
- Department of Radiotherapy, Laboratory of Translational Radiation Oncology, Supportive Care and Physics, Vrije Universiteit Brussel (VUB), 1000 Brussels, Belgium;
| | - Julia K. Schwarze
- Department of Medical Oncology, Universitair Ziekenhuis Brussel (UZ Brussel), 1000 Brussels, Belgium; (J.K.S.); (B.N.)
| | - Ivan Van Riet
- Stem Cell Laboratory, Departement of Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), 1000 Brussels, Belgium;
| | - Bart Neyns
- Department of Medical Oncology, Universitair Ziekenhuis Brussel (UZ Brussel), 1000 Brussels, Belgium; (J.K.S.); (B.N.)
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel (VUB), 1000 Brussels, Belgium; (K.B.); (K.B.)
| | - Joeri L. Aerts
- Laboratory for Neuro-Aging and Viro-Immunotherapy (NAVI), Vrije Universiteit Brussel (VUB), 1000 Brussels, Belgium; (P.K.); (J.D.M.); (S.V.); (L.C.); (T.L.)
- Correspondence:
| |
Collapse
|
15
|
Kure S, Chiba T, Ebina A, Toda K, Jikuzono T, Motoda N, Mitani H, Sugitani I, Takeuchi K, Ohashi R. Correlation between low expression of protein disulfide isomerase A3 and lymph node metastasis in papillary thyroid carcinoma and poor prognosis: a clinicopathological study of 1,139 cases with long-term follow-up. Endocr J 2022; 69:273-281. [PMID: 34732604 DOI: 10.1507/endocrj.ej21-0394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The incidence of papillary thyroid carcinoma (PTC) is increasing worldwide. The biomarkers to identify aggressive types of PTC are limited, illustrating the need to establish reliable novel biomarkers. Protein disulfide isomerase A3 (PDIA3) is a chaperone protein that modulates the folding of newly synthesized glycoproteins and stress-responsive proteins in the endoplasmic reticulum. Although the role of PDIA3 in various cancers such as breast, uterine cervix, head and neck, and gastrointestinal tract has been examined, its expression in thyroid cancer has not been reported. We retrospectively reviewed accumulated data with long-term follow-up of 1,139 PTC patients, and investigated the correlation between immunohistochemical expression of PDIA3 in PTC patients and clinicopathological features and prognosis. PDIA3 expression was significantly lower in PTCs compared to normal thyroid tissues (NTT; n = 80, p = 0.002). In PTCs, correlation between low PDIA3 expression and lymph node metastasis (p = 0.018) and the number of positive nodes (p = 0.004) was observed. Patients with low PDIA3 expression exhibited worse cause-specific survival compared to those with high PDIA3 expression (p = 0.013). Our findings indicate that low PDIA3 expression is related to poor clinical outcome in PTC patients, and that PDIA3 may potentially be a novel ancillary biomarker. Further clarification of the biological role of PDIA3 in PTC is warranted for the future clinical application.
Collapse
Affiliation(s)
- Shoko Kure
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113-8602, Japan
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Tomohiro Chiba
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Aya Ebina
- Department of Endocrine Surgery, Nippon Medical School Hospital, Tokyo 113-8603, Japan
| | - Kazuhisa Toda
- Division of Head and Neck, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Tomoo Jikuzono
- Department of Endocrine Surgery, Nippon Medical School Hospital, Tokyo 113-8603, Japan
| | - Norio Motoda
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Hiroki Mitani
- Division of Head and Neck, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Iwao Sugitani
- Department of Endocrine Surgery, Nippon Medical School Hospital, Tokyo 113-8603, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Ryuji Ohashi
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
16
|
Wang JY, Chen H, Dai SZ, Huang FY, Lin YY, Wang CC, Li L, Zheng WP, Tan GH. Immunotherapy combining tumor and endothelium cell lysis with immune enforcement by recombinant MIP-3α Newcastle disease virus in a vessel-targeting liposome enhances antitumor immunity. J Immunother Cancer 2022; 10:jitc-2021-003950. [PMID: 35256516 PMCID: PMC8905871 DOI: 10.1136/jitc-2021-003950] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2022] [Indexed: 12/30/2022] Open
Abstract
Background Several agents for oncolytic immunotherapy have been approved for clinical use, but monotherapy is modest for most oncolytic agents. The combination of several therapeutic strategies through recombinant and nanotechnology to engineer multifunctional oncolytic viruses for oncolytic immunotherapy is a promising strategy. Methods An endothelium-targeting iRGD-liposome encapsulating a recombinant Newcastle disease virus (NDV), which expresses the dendritic cell (DC) chemokine MIP-3α (iNDV3α-LP), and three control liposomes were constructed. MIP-3α, HMGB1, IgG, and ATP were detected by western blotting or ELISA. The chemotaxis of DCs was examined by Transwell chambers. The phenotypes of the immune cells were analyzed by flow cytometry. The antitumor efficiency was investigated in B16 and 4T1 tumor-bearing mice. Immunofluorescence and immunohistochemistry were used to observe the localization of liposomes, molecular expression and angiogenesis. Synergistic index was calculated using the data of tumor volume, tumor angiogenesis and tumor-infiltrating lymphocytes. Results Compared with NDV-LP, treatment with iNDV3α-LP and NDV3α-LP induced stronger virus replication and cell lysis in B16 and 4T1 tumor cells and human umbilical vein endothelial cells (HUVECs) with the best response observed following iNDV3α-LP treatment. B16 and 4T1 cells treated with iNDV3α-LP produced more damage-associated molecular pattern molecules, including secreted HMGB1, ATP, and calreticulin. Moreover, iNDV3α-LP specifically bound to αvβ3-expressing 4T1 cells and HUVECs and to tumor neovasculature. Tumor growth was significantly suppressed, and survival was longer in iNDV3α-LP-treated B16-bearing and 4T1-bearing mice. A mechanism study showed that iNDV3α-LP treatment initiated the strongest tumor-specific cellular and humoral immune response. Moreover, iNDV3α-LP treatment could significantly suppress tumor angiogenesis and reverse the tumor immune suppressive microenvironment in both B16-bearing and 4T1-bearing mice. Conclusions In this study, iNDV3α-LP had several functions, such as tumor and vessel lysis, MIP-3α immunotherapy, and binding to αvβ3-expressing tumor and its neovasculature. iNDV3α-LP treatment significantly suppressed tumor angiogenesis and reversed the tumor immunosuppressive microenvironment. These findings offer a strong rationale for further clinical investigation into a combination strategy for oncolytic immunotherapy, such as the formulation iNDV3α-LP in this study.
Collapse
Affiliation(s)
- Jin-Yan Wang
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University; Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Hengyu Chen
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University; Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China.,Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shu-Zhen Dai
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University; Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Feng-Ying Huang
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University; Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Ying-Ying Lin
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University; Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Cai-Chun Wang
- Department of Respiratory Diseases, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Lei Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wu-Ping Zheng
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University; Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Guang-Hong Tan
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University; Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
17
|
Chichiarelli S, Altieri F, Paglia G, Rubini E, Minacori M, Eufemi M. ERp57/PDIA3: new insight. Cell Mol Biol Lett 2022; 27:12. [PMID: 35109791 PMCID: PMC8809632 DOI: 10.1186/s11658-022-00315-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
The ERp57/PDIA3 protein is a pleiotropic member of the PDIs family and, although predominantly located in the endoplasmic reticulum (ER), has indeed been found in other cellular compartments, such as the nucleus or the cell membrane. ERp57/PDIA3 is an important research target considering it can be found in various subcellular locations. This protein is involved in many different physiological and pathological processes, and our review describes new data on its functions and summarizes some ligands identified as PDIA3-specific inhibitors.
Collapse
Affiliation(s)
- Silvia Chichiarelli
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy.
| | - Fabio Altieri
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| | - Giuliano Paglia
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| | - Elisabetta Rubini
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy.,Enrico Ed Enrica Sovena" Foundation, Rome, Italy
| | - Marco Minacori
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| | - Margherita Eufemi
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| |
Collapse
|
18
|
Kwon M, Nam GH, Jung H, Kim SA, Kim S, Choi Y, Lee YS, Cho HJ, Kim IS. Statin in combination with cisplatin makes favorable tumor-immune microenvironment for immunotherapy of head and neck squamous cell carcinoma. Cancer Lett 2021; 522:198-210. [PMID: 34571082 DOI: 10.1016/j.canlet.2021.09.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/29/2021] [Accepted: 09/19/2021] [Indexed: 12/23/2022]
Abstract
The purpose of this study was to determine whether statins can enhance anticancer effects in head and neck squamous cell carcinoma (HNSCC) when used with cisplatin and act as immunogenic cell death (ICD) inducers that can be used in cancer immunotherapy. Statins alone showed both in vitro and in vivo inhibitory effects against HNSCC, and synergistic antitumor effects were observed when combined with cisplatin in a syngeneic murine HNSCC model. Statins increased calreticulin exposure and endoplasmic reticulum stress-related signals in HNSCC cells. In addition, it was confirmed that statins could activate antigen-presenting cells and tumor-specific CD8+ T cells with an increase in their numbers in the tumor tissues and draining lymph nodes, with this effect showing significant improvement following the combination therapy with cisplatin. Moreover, in triple combination with both cisplatin and anti-programmed cell death 1 receptor (anti-PD-1) antibody, statins dramatically induced further tumor eradication and improved the survival of tumor-bearing mice. Taken together, these results demonstrate that statins, administered in combination with anti-PD-1 antibody, could enhance the anticancer effect of cisplatin and potentiate the efficacy of immunotherapy for HNSCC and present a rationale for repurposing statins as an adjuvant immunotherapeutic option for HNSCC.
Collapse
Affiliation(s)
- Minsu Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| | - Gi-Hoon Nam
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02456, Republic of Korea; Center for Theragnosis, Biomedical Research Institute, Korea Institute Science and Technology (KIST), Seoul, 02456, Republic of Korea
| | - Hanul Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Seong A Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02456, Republic of Korea; Center for Theragnosis, Biomedical Research Institute, Korea Institute Science and Technology (KIST), Seoul, 02456, Republic of Korea
| | - Seohyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02456, Republic of Korea; Center for Theragnosis, Biomedical Research Institute, Korea Institute Science and Technology (KIST), Seoul, 02456, Republic of Korea
| | - Yeonju Choi
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Yoon Se Lee
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hyo Jung Cho
- Department of Gastroenterology, Ajou University Hospital, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02456, Republic of Korea; Center for Theragnosis, Biomedical Research Institute, Korea Institute Science and Technology (KIST), Seoul, 02456, Republic of Korea.
| |
Collapse
|
19
|
Abdullah TM, Whatmore J, Bremer E, Slibinskas R, Michalak M, Eggleton P. Endoplasmic reticulum stress-induced release and binding of calreticulin from human ovarian cancer cells. Cancer Immunol Immunother 2021; 71:1655-1669. [PMID: 34800147 PMCID: PMC9188521 DOI: 10.1007/s00262-021-03072-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/27/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Calreticulin (CRT) is an endoplasmic reticulum (ER) chaperone, but can appear surface bound on cancers cells, including ovarian cancers (OC). We investigated at what stage of cell viability, CRT appeared associated with surface of human OC cells. CRT on pre-apoptotic tumour cells is thought to initiate their eradication via a process termed immunogenic cell death (ICD). METHODS We treated OC cells with the chemotherapeutic-doxorubicin (DX) known to induce translocation of CRT to some tumour cell surfaces, with and without the ER stressor-thapsigargin (TG)-and/or an ER stress inhibitor-TUDCA. We monitored translocation/release of CRT in pre-apoptotic cells by flow cytometry, immunoblotting and ELISA. We investigated the difference in binding of FITC-CRT to pre-apoptotic, apoptotic and necrotic cells and the ability of extracellular CRT to generate immature dendritic cells from THP-1 monocytes. RESULTS Dx-treatment increased endogenously released CRT and extracellular FITC_CRT binding to human pre-apoptotic OC cells. DX and TG also promoted cell death in OC cells which also increased CRT release. These cellular responses were significantly inhibited by TUDCA, suggesting that ER stress is partially responsible for the changes in CRT cellular distribution. Extracellular CRT induces maturation of THP-1 towards a imDC phenotype, an important component of ICD. CONCLUSION Collectively, these cellular responses suggest that ER stress is partially responsible for the changes in CRT cellular distribution. ER-stress regulates in part the release and binding of CRT to human OC cells where it may play a role in ICD.
Collapse
Affiliation(s)
- Trefa M Abdullah
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,College of Pharmacy, Department Biochemistry and Clinical Chemistry, University of Sulaimani, Iraqi Kurdistan Region, Sulaimani, Iraq
| | - Jacqueline Whatmore
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
| | - Edwin Bremer
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,Department of Experimental Hematology, Section Immunohematology, Cancer Research Center Groningen (CRCG), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rimantas Slibinskas
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, 10257, Vilnius, Lithuania
| | - Marek Michalak
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Paul Eggleton
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,Revolo Biotherapeutics, New Orleans, LA, 70130, USA
| |
Collapse
|
20
|
Pharmacological targeting of endoplasmic reticulum stress in disease. Nat Rev Drug Discov 2021; 21:115-140. [PMID: 34702991 DOI: 10.1038/s41573-021-00320-3] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
The accumulation of misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress, resulting in activation of the unfolded protein response (UPR) that aims to restore protein homeostasis. However, the UPR also plays an important pathological role in many diseases, including metabolic disorders, cancer and neurological disorders. Over the last decade, significant effort has been invested in targeting signalling proteins involved in the UPR and an array of drug-like molecules is now available. However, these molecules have limitations, the understanding of which is crucial for their development into therapies. Here, we critically review the existing ER stress and UPR-directed drug-like molecules, highlighting both their value and their limitations.
Collapse
|
21
|
Spyridopoulou K, Aindelis G, Pappa A, Chlichlia K. Anticancer Activity of Biogenic Selenium Nanoparticles: Apoptotic and Immunogenic Cell Death Markers in Colon Cancer Cells. Cancers (Basel) 2021; 13:5335. [PMID: 34771499 PMCID: PMC8582357 DOI: 10.3390/cancers13215335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer is a health problem with high mortality rates and prevalence. Thus, innovative treatment approaches need to be developed. Biogenic nanoparticles are nanomaterials that can be synthesised in biological systems and, compared to chemically synthesised nanoparticles, have better bioavailability while being more cost-effective, eco-friendlier, and less toxic. In our previous studies, the probiotic strain Lactobacillus casei ATCC 393 was used to synthesise selenium nanoparticles (SeNps), which were shown to inhibit colon cancer cell growth in vitro and in vivo. Herein, we have further investigated SeNps' pro-apoptotic activity and their ability to induce immunogenic cell death (ICD) in colon cancer cells. The SeNps' effect on Caco-2 cells growth was examined along with their potential to induce caspase activation. Moreover, the expression of typical pro-apoptotic and ICD markers were examined in SeNps-treated HT29 and CT26 cells by flow cytometry, Western blot, ELISA and fluorescence microscopy. Elevated caspase-3 activation and surface phosphatyldoserine, that subsided upon co-incubation with a pan-caspase inhibitor, were detected in SeNps-treated cells. Furthermore, nanoparticles induced modulation of the expression of various apoptosis-related proteins. We also report the detection of biomarkers involved in ICD, namely the translocation of calreticulin and ERp57, the release of HMGB1 and ATP, and the secretion of pro-inflammatory cytokines from SeNps-treated cells. Moreover, RAW246.7 macrophages exhibited a higher rate of phagocytosis against treated CT26 when compared to control cells. Taken together, our findings indicate that treatment with SeNps might be an efficient strategy to destroy tumour cells by inducing apoptotic cell death and triggering immune responses.
Collapse
Affiliation(s)
| | | | | | - Katerina Chlichlia
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus Dragana, 68100 Alexandroupolis, Greece; (K.S.); (G.A.); (A.P.)
| |
Collapse
|
22
|
Nduwumwami AJ, Hengst JA, Yun JK. Sphingosine Kinase Inhibition Enhances Dimerization of Calreticulin at the Cell Surface in Mitoxantrone-Induced Immunogenic Cell Death. J Pharmacol Exp Ther 2021; 378:300-310. [PMID: 34158403 DOI: 10.1124/jpet.121.000629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022] Open
Abstract
Agents that induce immunogenic cell death (ICD) alter the cellular localization of calreticulin (CRT), causing it to become cell surface-exposed within the plasma membrane lipid raft microdomain [cell surface-exposed CRT (ectoCRT)] where it serves as a damage associated-molecular pattern that elicits an antitumor immune response. We have identified the sphingolipid metabolic pathway as an integral component of the process of ectoCRT exposure. Inhibition of the sphingosine kinases (SphKs) enhances mitoxantrone-induced production of hallmarks of ICD, including ectoCRT production, with an absolute mean difference of 40 MFI (95% CI: 19-62; P = 0.0014) and 1.3-fold increase of ATP secretion with an absolute mean difference of 87 RLU (95% CI: 55-120; P < 0.0001). Mechanistically, sphingosine kinase inhibition increases mitoxantrone-induced accumulation of ceramide species, including C16:0 ceramide 2.8-fold with an absolute mean difference of 1.390 pmol/nmol Pi (95% CI: 0.798-1.983; P = 0.0023). We further examined the localization of ectoCRT to the lipid raft microdomain and demonstrate that ectoCRT forms disulfide-bridged dimers. Together, our findings suggest that ceramide accumulation impinges on the homeostatic function of the endoplasmic reticulum to induce ectoCRT exposure and that structural alterations of ectoCRT may underlie its immunogenicity. Our findings further suggest that inhibition of the SphKs may represent a means to enhance the therapeutic immunogenic efficacy of ICD-inducing agents while reducing overt toxicity/immunosuppressive effects by allowing for the modification of dosing regimens or directly lowering the dosages of ICD-inducing agents employed in therapeutic regimens. SIGNIFICANCE STATEMENT: This study demonstrates that inhibition of sphingosine kinase enhances the mitoxantrone-induced cell surface exposure of a dimeric form of the normally endoplasmic reticulum resident chaperone calreticulin as part of the process of a unique form of regulated cell death termed immunogenic cell death. Importantly, inhibition of sphingosine kinase may represent a means to enhance the therapeutic efficacy of immunogenic cell death-inducing agents, such as mitoxantrone, while reducing their overt toxicity and immunosuppressive effects, leading to better therapeutic outcomes for patients.
Collapse
Affiliation(s)
- Asvelt J Nduwumwami
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jeremy A Hengst
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jong K Yun
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
23
|
Fabian KP, Wolfson B, Hodge JW. From Immunogenic Cell Death to Immunogenic Modulation: Select Chemotherapy Regimens Induce a Spectrum of Immune-Enhancing Activities in the Tumor Microenvironment. Front Oncol 2021; 11:728018. [PMID: 34497771 PMCID: PMC8419351 DOI: 10.3389/fonc.2021.728018] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/29/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer treatment has rapidly entered the age of immunotherapy, and it is becoming clear that the effective therapy of established tumors necessitates rational multi-combination immunotherapy strategies. But even in the advent of immunotherapy, the clinical role of standard-of-care chemotherapy regimens still remains significant and may be complementary to emerging immunotherapeutic approaches. Depending on dose, schedule, and agent, chemotherapy can induce immunogenic cell death, resulting in the release of tumor antigens to stimulate an immune response, or immunogenic modulation, sensitizing surviving tumor cells to immune cell killing. While these have been previously defined as distinct processes, in this review we examine the published mechanisms supporting both immunogenic cell death and immunogenic modulation and propose they be reclassified as similar effects termed "immunogenic cell stress." Treatment-induced immunogenic cell stress is an important result of cytotoxic chemotherapy and future research should consider immunogenic cell stress as a whole rather than just immunogenic cell death or immunogenic modulation. Cancer treatment strategies should be designed specifically to take advantage of these effects in combination immunotherapy, and novel chemotherapy regimens should be designed and investigated to potentially induce all aspects of immunogenic cell stress.
Collapse
Affiliation(s)
| | | | - James W. Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
24
|
Differential Effect of Non-Thermal Plasma RONS on Two Human Leukemic Cell Populations. Cancers (Basel) 2021; 13:cancers13102437. [PMID: 34069922 PMCID: PMC8157554 DOI: 10.3390/cancers13102437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary As the number of investigations into the use of non-thermal plasma (NTP) for cancer treatment expands, it is becoming apparent that susceptibility of different cancer cells to NTP varies. We hypothesized that such differences could be attributed to the cell type-dependent interactions between NTP-generated reactive oxygen and nitrogen species (RONS) and the target cells. To test this hypothesis, we examined how two different human leukemic cell lines—Jurkat T lymphocytes and THP-1 monocytes—influence hydrogen peroxide and nitrite content in media after NTP exposure. We also assessed the potential of NTP to enhance immunogenicity in these cells and assayed phagocytosis of NTP-exposed leukemic cells by macrophages. Our results highlight the significance of target-mediated modulation of plasma chemical species in the development and clinical use of protocols involving plasma sources for use in cancer therapeutic application. Abstract Non-thermal plasma application to cancer cells is known to induce oxidative stress, cytotoxicity and indirect immunostimulatory effects on antigen presenting cells (APCs). The purpose of this study was to evaluate the responses of two leukemic cell lines—Jurkat T lymphocytes and THP-1 monocytes—to NTP-generated reactive oxygen and nitrogen species (RONS). Both cell types depleted hydrogen peroxide, but THP-1 cells neutralized it almost immediately. Jurkat cells transiently blunted the frequency-dependent increase in nitrite concentrations in contrast to THP-1 cells, which exhibited no immediate effect. A direct relationship between frequency-dependent cytotoxicity and mitochondrial superoxide was observed only in Jurkat cells. Jurkat cells were very responsive to NTP in their display of calreticulin and heat shock proteins 70 and 90. In contrast, THP-1 cells were minimally responsive or unresponsive. Despite no NTP-dependent decrease in cell surface display of CD47 in either cell line, both cell types induced migration of and phagocytosis by APCs. Our results demonstrate that cells modulate the RONS-mediated changes in liquid chemistry, and, importantly, the resultant immunomodulatory effects of NTP can be independent of NTP-induced cytotoxicity.
Collapse
|
25
|
Song D, Liu H, Wu J, Gao X, Hao J, Fan D. Insights into the role of ERp57 in cancer. J Cancer 2021; 12:2456-2464. [PMID: 33758622 PMCID: PMC7974888 DOI: 10.7150/jca.48707] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/04/2021] [Indexed: 12/28/2022] Open
Abstract
Endoplasmic reticulum resident protein 57 (ERp57) has a molecular weight of 57 kDa, belongs to the protein disulfide-isomerase (PDI) family, and is primarily located in the endoplasmic reticulum (ER). ERp57 functions in the quality control of nascent synthesized glycoproteins, participates in major histocompatibility complex (MHC) class I molecule assembly, regulates immune responses, maintains immunogenic cell death (ICD), regulates the unfolded protein response (UPR), functions as a 1,25-dihydroxy vitamin D3 (1,25(OH)2D3) receptor, regulates the NF-κB and STAT3 pathways, and participates in DNA repair processes and cytoskeletal remodeling. Recent studies have reported ERp57 overexpression in various human cancers, and altered expression and aberrant functionality of ERp57 are associated with cancer growth and progression and changes in the chemosensitivity of cancers. ERp57 may become a potential biomarker and therapeutic target to combat cancer development and chemoresistance. Here, we summarize the available knowledge of the role of ERp57 in cancer and the underlying mechanisms.
Collapse
Affiliation(s)
- Danyang Song
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Hao Liu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an 710032, China
| | - Jian Wu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an 710032, China
| | - Xiaoliang Gao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an 710032, China
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Daiming Fan
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an 710032, China
| |
Collapse
|
26
|
Lin RA, Lin JK, Lin S. Mechanisms of immunogenic cell death and immune checkpoint blockade therapy. Kaohsiung J Med Sci 2021; 37:448-458. [DOI: 10.1002/kjm2.12375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Richard A. Lin
- Department of Bioengineering Rice University Houston Texas USA
| | - Jessica K. Lin
- Department of Systems Biology The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Shiaw‐Yih Lin
- Department of Systems Biology The University of Texas MD Anderson Cancer Center Houston Texas USA
| |
Collapse
|
27
|
Lam STT, Lim CJ. Cancer Biology of the Endoplasmic Reticulum Lectin Chaperones Calreticulin, Calnexin and PDIA3/ERp57. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:181-196. [PMID: 34050867 DOI: 10.1007/978-3-030-67696-4_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lectin chaperones calreticulin (CALR) and calnexin (CANX), together with their co-chaperone PDIA3, are increasingly implicated in studies of human cancers in roles that extend beyond their primary function as quality control facilitators of protein folding within the endoplasmic reticulum (ER). Led by the discovery that cell surface CALR functions as an immunogen that promotes anti-tumour immunity, studies have now expanded to include their potential uses as prognostic markers for cancers, and in regulation of oncogenic signaling that regulate such diverse processes including integrin-dependent cell adhesion and migration, proliferation, cell death and chemotherapeutic resistance. The diversity stems from the increasing recognition that these proteins have an equally diverse spectrum of subcellular and extracellular localization, and which are aberrantly expressed in tumour cells. This review describes key foundational discoveries and highlight recent findings that further our understanding of the plethora of activities mediated by CALR, CANX and PDIA3.
Collapse
Affiliation(s)
- Shing Tat Theodore Lam
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Michael Cuccione Childhood Cancer Research Program, B.C. Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Chinten James Lim
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada. .,Michael Cuccione Childhood Cancer Research Program, B.C. Children's Hospital Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
28
|
Ros M, Nguyen AT, Chia J, Le Tran S, Le Guezennec X, McDowall R, Vakhrushev S, Clausen H, Humphries MJ, Saltel F, Bard FA. ER-resident oxidoreductases are glycosylated and trafficked to the cell surface to promote matrix degradation by tumour cells. Nat Cell Biol 2020; 22:1371-1381. [PMID: 33077910 DOI: 10.1038/s41556-020-00590-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022]
Abstract
Tumour growth and invasiveness require extracellular matrix (ECM) degradation and are stimulated by the GALA pathway, which induces protein O-glycosylation in the endoplasmic reticulum (ER). ECM degradation requires metalloproteases, but whether other enzymes are required is unclear. Here, we show that GALA induces the glycosylation of the ER-resident calnexin (Cnx) in breast and liver cancer. Glycosylated Cnx and its partner ERp57 are trafficked to invadosomes, which are sites of ECM degradation. We find that disulfide bridges are abundant in connective and liver ECM. Cell surface Cnx-ERp57 complexes reduce these extracellular disulfide bonds and are essential for ECM degradation. In vivo, liver cancer cells but not hepatocytes display cell surface Cnx. Liver tumour growth and lung metastasis of breast and liver cancer cells are inhibited by anti-Cnx antibodies. These findings uncover a moonlighting function of Cnx-ERp57 at the cell surface that is essential for ECM breakdown and tumour development.
Collapse
Affiliation(s)
- Manon Ros
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000 Bordeaux, France, Bordeaux, France
| | - Anh Tuan Nguyen
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
| | - Joanne Chia
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
| | - Son Le Tran
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
| | | | - Ruth McDowall
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sergey Vakhrushev
- Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin James Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Frederic Saltel
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000 Bordeaux, France, Bordeaux, France
| | - Frederic André Bard
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
29
|
Mei KC, Liao YP, Jiang J, Chiang M, Khazaieli M, Liu X, Wang X, Liu Q, Chang CH, Zhang X, Li J, Ji Y, Melano B, Telesca D, Xia T, Meng H, Nel AE. Liposomal Delivery of Mitoxantrone and a Cholesteryl Indoximod Prodrug Provides Effective Chemo-immunotherapy in Multiple Solid Tumors. ACS NANO 2020; 14:13343-13366. [PMID: 32940463 PMCID: PMC8023019 DOI: 10.1021/acsnano.0c05194] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We developed a custom-designed liposome carrier for codelivery of a potent immunogenic cell death (ICD) stimulus plus an inhibitor of the indoleamine 2,3-dioxygenase (IDO-1) pathway to establish a chemo-immunotherapy approach for solid tumors in syngeneic mice. The carrier was constructed by remote import of the anthraquinone chemotherapeutic agent, mitoxantrone (MTO), into the liposomes, which were further endowed with a cholesterol-conjugated indoximod (IND) prodrug in the lipid bilayer. For proof-of-principle testing, we used IV injection of the MTO/IND liposome in a CT26 colon cancer model to demonstrate the generation of a robust immune response, characterized by the appearance of ICD markers (CRT and HMGB-1) as well as evidence of cytotoxic cancer cell death, mediated by perforin and granzyme B. Noteworthy, the cytotoxic effects involved natural killer (NK) cell, which suggests a different type of ICD response. The immunotherapy response was significantly augmented by codelivery of the IND prodrug, which induced additional CRT expression, reduced number of Foxp3+ Treg, and increased perforin release, in addition to extending animal survival beyond the effect of an MTO-only liposome. The outcome reflects the improved pharmacokinetics of MTO delivery to the cancer site by the carrier. In light of the success in the CT26 model, we also assessed the platform efficacy in further breast cancer (EMT6 and 4T1) and renal cancer (RENCA) models, which overexpress IDO-1. Encapsulated MTO delivery was highly effective for inducing chemo-immunotherapy responses, with NK participation, in all tumor models. Moreover, the growth inhibitory effect of MTO was enhanced by IND codelivery in EMT6 and 4T1 tumors. All considered, our data support the use of encapsulated MTO delivery for chemo-immunotherapy, with the possibility to boost the immune response by codelivery of an IDO-1 pathway inhibitor.
Collapse
Affiliation(s)
- Kuo-Ching Mei
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Jinhong Jiang
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Michelle Chiang
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Mercedeh Khazaieli
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiangsheng Liu
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiang Wang
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Qi Liu
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Chong Hyun Chang
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiao Zhang
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
| | - Juan Li
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
| | - Ying Ji
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
| | - Brenda Melano
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Donatello Telesca
- Department of Biostatistics, University of California, Los Angeles, California, 90095, United States
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Huan Meng
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, 90095, United States
| | - Andre E. Nel
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, 90095, United States
| |
Collapse
|
30
|
Qin X, Denton WD, Huiting LN, Smith KS, Feng H. Unraveling the regulatory role of endoplasmic-reticulum-associated degradation in tumor immunity. Crit Rev Biochem Mol Biol 2020; 55:322-353. [PMID: 32633575 DOI: 10.1080/10409238.2020.1784085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During malignant transformation and cancer progression, tumor cells face both intrinsic and extrinsic stress, endoplasmic reticulum (ER) stress in particular. To survive and proliferate, tumor cells use multiple stress response pathways to mitigate ER stress, promoting disease aggression and treatment resistance. Among the stress response pathways is ER-associated degradation (ERAD), which consists of multiple components and steps working together to ensure protein quality and quantity. In addition to its established role in stress responses and tumor cell survival, ERAD has recently been shown to regulate tumor immunity. Here we summarize current knowledge on how ERAD promotes protein degradation, regulates immune cell development and function, participates in antigen presentation, exerts paradoxical roles on tumorigenesis and immunity, and thus impacts current cancer therapy. Collectively, ERAD is a critical protein homeostasis pathway intertwined with cancer development and tumor immunity. Of particular importance is the need to further unveil ERAD's enigmatic roles in tumor immunity to develop effective targeted and combination therapy for successful treatment of cancer.
Collapse
Affiliation(s)
- Xiaodan Qin
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - William D Denton
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Leah N Huiting
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Kaylee S Smith
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Hui Feng
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
31
|
Membrane-Associated Heat Shock Proteins in Oncology: From Basic Research to New Theranostic Targets. Cells 2020; 9:cells9051263. [PMID: 32443761 PMCID: PMC7290778 DOI: 10.3390/cells9051263] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Heat shock proteins (HSPs) constitute a large family of conserved proteins acting as molecular chaperones that play a key role in intracellular protein homeostasis, regulation of apoptosis, and protection from various stress factors (including hypoxia, thermal stress, oxidative stress). Apart from their intracellular localization, members of different HSP families such as small HSPs, HSP40, HSP60, HSP70 and HSP90 have been found to be localized on the plasma membrane of malignantly transformed cells. In the current article, the role of membrane-associated molecular chaperones in normal and tumor cells is comprehensively reviewed with implications of these proteins as plausible targets for cancer therapy and diagnostics.
Collapse
|
32
|
Sequential Interferon β-Cisplatin Treatment Enhances the Surface Exposure of Calreticulin in Cancer Cells via an Interferon Regulatory Factor 1-Dependent Manner. Biomolecules 2020; 10:biom10040643. [PMID: 32326356 PMCID: PMC7226424 DOI: 10.3390/biom10040643] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022] Open
Abstract
Immunogenic cell death (ICD) refers to a unique form of cell death that activates an adaptive immune response against dead-cell-associated antigens. Accumulating evidence indicates that the efficacy of conventional anticancer agents relies on not only their direct cytostatic/cytotoxic effects but also the activation of antitumor ICD. Common anticancer ICD inducers include certain chemotherapeutic agents (such as anthracyclines, oxaliplatin, and bortezomib), radiotherapy, photodynamic therapy (PDT), and oncolytic virotherapies. However, most chemotherapeutic reagents are inefficient or fail to trigger ICD. Therefore, better understanding on the molecular determinants of chemotherapy-induced ICD will help in the development of more efficient combinational anticancer strategies through converting non- or relatively weak ICD inducers into bona fide ICD inducers. In this study, we found that sequential, but not concurrent, treatment of cancer cells with interferon β (IFNβ), a type I IFN, and cisplatin (an inefficient ICD inducer) can enhance the expression of ICD biomarkers in cancer cells, including surface translocation of an endoplasmic reticulum (ER) chaperone, calreticulin (CRT), and phosphorylation of the eukaryotic translation initiation factor alpha (eIF2α). These results suggest that exogenous IFNβ may activate molecular determinants that convert cisplatin into an ICD inducer. Further bioinformatics and in vitro experimental analyses found that interferon regulatory factor 1 (IRF1) acted as an essential mediator of surface CRT exposure by sequential IFNβ-cisplatin combination. Our findings not only help to design more effective combinational anticancer therapy using IFNβ and cisplatin, but also provide a novel insight into the role of IRF1 in connecting the type I IFN responses and ICD.
Collapse
|
33
|
The Biology of Immune-Active Cancers and Their Regulatory Mechanisms. Cancer Treat Res 2020; 180:149-172. [PMID: 32215869 DOI: 10.1007/978-3-030-38862-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The development of cancer results from the evolutionary balance between the proliferating aptitude of cancer cells and the response of the host's tissues. Some cancers are characterized by genetic instability dependent upon impaired DNA repair mechanisms that lead to the chaotic disruption of multiple cellular functions often in excess of the cancer survival needs and may exert broad effects on surrounding tissues, some beneficial and some detrimental to cancer growth. Among them, inflammatory processes that accompany wound healing may initiate a reaction of the host against the neo-formation. This is possibly triggered by the release by dying cancer cells of molecules known as Damage-Associated Molecular Patterns (DAMPs) following a process termed Immunogenic Cell Death (ICD) that initiates an immune response through innate and adaptive mechanisms. Indeed, analysis of large cancer data sets has shown that ICD is strictly associated with the activation of other immune effector or immune-regulatory pathways. Here, we will describe how immune activation and compensatory immune-regulatory mechanisms balance anti-cancer immune surveillance and the roles that innate and adaptive immunity play including the weight that neo-epitopes may exert as initiators and sculptors of high-affinity memory and effector immune responses against cancer. We will discuss the evolutionary basis for the existence of immune checkpoints and how several theories raised to explain cancer resistance to immunotherapy represent a facet of a similar evolutionary phenomenon that we described in the Theory of Everything. We will show how the biology of immunogenicity and counterbalancing immune regulation is widespread across cancers independent of their ontogenesis while subtle idiosyncratic differences are discernible among them. Finally, we will suggest that overcoming immune resistance implies distinct approaches relevant to the immune context of individual cancers.
Collapse
|
34
|
Lamberti MJ, Nigro A, Mentucci FM, Rumie Vittar NB, Casolaro V, Dal Col J. Dendritic Cells and Immunogenic Cancer Cell Death: A Combination for Improving Antitumor Immunity. Pharmaceutics 2020; 12:pharmaceutics12030256. [PMID: 32178288 PMCID: PMC7151083 DOI: 10.3390/pharmaceutics12030256] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
The safety and feasibility of dendritic cell (DC)-based immunotherapies in cancer management have been well documented after more than twenty-five years of experimentation, and, by now, undeniably accepted. On the other hand, it is equally evident that DC-based vaccination as monotherapy did not achieve the clinical benefits that were predicted in a number of promising preclinical studies. The current availability of several immune modulatory and targeting approaches opens the way to many potential therapeutic combinations. In particular, the evidence that the immune-related effects that are elicited by immunogenic cell death (ICD)-inducing therapies are strictly associated with DC engagement and activation strongly support the combination of ICD-inducing and DC-based immunotherapies. In this review, we examine the data in recent studies employing tumor cells, killed through ICD induction, in the formulation of anticancer DC-based vaccines. In addition, we discuss the opportunity to combine pharmacologic or physical therapeutic approaches that can promote ICD in vivo with in situ DC vaccination.
Collapse
Affiliation(s)
- María Julia Lamberti
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Córdoba, Argentina; (M.J.L.); (F.M.M.)
- INBIAS, CONICET-UNRC, Río Cuarto 5800, Córdoba, Argentina
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (A.N.); (V.C.)
| | - Fátima María Mentucci
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Córdoba, Argentina; (M.J.L.); (F.M.M.)
- INBIAS, CONICET-UNRC, Río Cuarto 5800, Córdoba, Argentina
| | - Natalia Belén Rumie Vittar
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Córdoba, Argentina; (M.J.L.); (F.M.M.)
- INBIAS, CONICET-UNRC, Río Cuarto 5800, Córdoba, Argentina
- Correspondence: (N.B.R.V.); (J.D.C.); Tel.: +39-089-965-210 (J.D.C.)
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (A.N.); (V.C.)
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (A.N.); (V.C.)
- Correspondence: (N.B.R.V.); (J.D.C.); Tel.: +39-089-965-210 (J.D.C.)
| |
Collapse
|
35
|
Sethuraman SN, Singh MP, Patil G, Li S, Fiering S, Hoopes PJ, Guha C, Malayer J, Ranjan A. Novel calreticulin-nanoparticle in combination with focused ultrasound induces immunogenic cell death in melanoma to enhance antitumor immunity. Theranostics 2020; 10:3397-3412. [PMID: 32206098 PMCID: PMC7069083 DOI: 10.7150/thno.42243] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/23/2020] [Indexed: 12/21/2022] Open
Abstract
Rationale: Some studies have shown that the local activation of immunogenic cell death (ICD) by upregulating calreticulin (CRT) expression in solid tumors can improve antitumor effects. Although a promising approach, a key current challenge in ICD tumor therapy is the absence of a clinically translatable method for reproducibly inducing the CRT expression. Herein, we report a novel calreticulin-nanoparticle (CRT-NP) that enhances ICD and synergizes with focused ultrasound (FUS) to achieve local and systemic antitumor effects. Methods: Full-length clone DNA of calreticulin was encapsulated in NPs made from DOTAP and cholesterol. Three CRT-NP intratumoral injections of 20 µg each were given 2 days apart, and FUS heating (42-45°C, ~15min) was applied sequentially 24h after each injection to induce ICD. To investigate ICD specific immune effect, the splenocytes of mice vaccinated with CRT-NP (± FUS) treated B16F10 cells were evaluated ex-vivo for TRP-2 antigen specific immunity. Additionally, the long-term protection was evaluated by re-challenging with the melanoma cells in the flank regions of tumor bearing mice. Results: CRT-NP plus FUS (CFUS) upregulated CRT expression, expanded the population of melanoma TRP-2 specific functional CD4+ and CD8+ T cells and tumor-suppressing M1 phenotype, and increased PD-1 and PD-L1 marker expression in the T cells. Therapeutically, CFUS suppressed B16 melanoma growth by >85% vs. that seen in untreated controls, and >~50% vs. CRT-NP or FUS alone, and prevented tumor growth in distal untreated sites. Conclusions: CRT-NP amplifies the FUS and ICD therapeutic outcomes against melanoma, suggesting that the proposed combinatorial methodology may be clinically translatable.
Collapse
Affiliation(s)
- Sri Nandhini Sethuraman
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma 74074
| | - Mohit Pratap Singh
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma 74074
| | - Girish Patil
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma 74074
| | - Shitao Li
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma 74074
| | | | | | - Chandan Guha
- Albert Einstein College of Medicine, Bronx, New York 10461
| | - Jerry Malayer
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma 74074
| | - Ashish Ranjan
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma 74074
| |
Collapse
|
36
|
Ye J, Mills BN, Zhao T, Han BJ, Murphy JD, Patel AP, Johnston CJ, Lord EM, Belt BA, Linehan DC, Gerber SA. Assessing the Magnitude of Immunogenic Cell Death Following Chemotherapy and Irradiation Reveals a New Strategy to Treat Pancreatic Cancer. Cancer Immunol Res 2020; 8:94-107. [PMID: 31719057 PMCID: PMC6946873 DOI: 10.1158/2326-6066.cir-19-0373] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/18/2019] [Accepted: 11/07/2019] [Indexed: 12/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) continues to have a dismal prognosis, in part, due to ineffective treatment strategies. The efficacy of some chemotherapies and especially radiotherapy is mediated partially by the immune system. Therefore, we hypothesized that profiling the immune response following chemotherapy and/or irradiation can be used as a readout for treatment efficacy but also to help identify optimal therapeutic schedules for PDAC. Using murine models of PDAC, we demonstrated that concurrent administration of stereotactic body radiotherapy (SBRT) and a modified dose of FOLFIRINOX (mFX) resulted in superior tumor control when compared with single or sequential treatment groups. Importantly, this combined treatment schedule enhanced the magnitude of immunogenic cell death, which in turn amplified tumor antigen presentation by dendritic cells and intratumoral CD8+ T-cell infiltration. Concurrent therapy also resulted in systemic immunity contributing to the control of established metastases. These findings provide a rationale for pursuing concurrent treatment schedules of SBRT with mFX in PDAC.
Collapse
Affiliation(s)
- Jian Ye
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Bradley N Mills
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Tony Zhao
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Booyeon J Han
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Joseph D Murphy
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Ankit P Patel
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Carl J Johnston
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Edith M Lord
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Brian A Belt
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - David C Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Scott A Gerber
- Department of Surgery, University of Rochester Medical Center, Rochester, New York.
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
37
|
Calreticulin is a Critical Cell Survival Factor in Malignant Neoplasms. PLoS Biol 2019; 17:e3000402. [PMID: 31568485 PMCID: PMC6768457 DOI: 10.1371/journal.pbio.3000402] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/22/2019] [Indexed: 01/05/2023] Open
Abstract
Calreticulin (CRT) is a high-capacity Ca2+ protein whose expression is up-regulated during cellular transformation and is associated with disease progression in multiple types of malignancies. At the same time, CRT has been characterized as an important stress-response protein capable of inducing immunogenic cell death (ICD) when translocated to the cell surface. It remains unclear why CRT expression is preserved by malignant cells during the course of transformation despite its immunogenic properties. In this study, we identify a novel, critical function of CRT as a cell survival factor in multiple types of human solid-tissue malignancies. CRT knockdown activates p53, which mediates cell-death response independent of executioner caspase activity and accompanied full-length poly ADP ribose polymerase (PARP) cleavage. Mechanistically, we show that down-regulation of CRT results in mitochondrial Ca2+ overload and induction of mitochondria permeability transition pore (mPTP)-dependent cell death, which can be significantly rescued by the mPTP inhibitor, Cyclosporin A (CsA). The clinical importance of CRT expression was revealed in the analysis of the large cohort of cancer patients (N = 2,058) to demonstrate that high levels of CRT inversely correlates with patient survival. Our study identifies intracellular CRT as an important therapeutic target for tumors whose survival relies on its expression. This study reveals a novel role for the calcium-binding protein calreticulin in the survival of cancer cells; downregulation of calreticulin leads to mitochondrial calcium overload and an induction of non-apoptotic cell death. Calreticulin levels inversely correlate with the survival of patients diagnosed with various types of solid cancers.
Collapse
|
38
|
Wei J, Long Y, Guo R, Liu X, Tang X, Rao J, Yin S, Zhang Z, Li M, He Q. Multifunctional polymeric micelle-based chemo-immunotherapy with immune checkpoint blockade for efficient treatment of orthotopic and metastatic breast cancer. Acta Pharm Sin B 2019; 9:819-831. [PMID: 31384541 PMCID: PMC6664045 DOI: 10.1016/j.apsb.2019.01.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/11/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Immunotherapy has become a highly promising paradigm for cancer treatment. Herein, a chemo-immunotherapy was developed by encapsulating chemotherapeutic drug doxorubicin (DOX) and Toll-like receptor 7 agonist imiquimod (IMQ) in low molecular weight heparin (LMWH)-d-α-tocopheryl succinate (TOS) micelles (LT). In this process, LMWH and TOS were conjugated by ester bond and they were not only served as the hydrophilic and hydrophobic segments of the carrier, but also exhibited strong anti-metastasis effect. The direct killing of tumor cells mediated by DOX-loaded micelles (LT-DOX) generated tumor-associated antigens, initiating tumor-specific immune responses in combination with IMQ-loaded micelles (LT-IMQ). Furthermore, the blockade of immune checkpoint with programmed cell death ligand 1 (PD-L1) antibody further elevated the immune responses by up-regulating the maturation of DCs as well as the ratios of CD8+ CTLs/Treg and CD4+ Teff/Treg. Therefore, such a multifunctional strategy exhibited great potential for inhibiting the growth of orthotopic and metastatic breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Man Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | | |
Collapse
|
39
|
Liu CC, Leclair P, Pedari F, Vieira H, Monajemi M, Sly LM, Reid GS, Lim CJ. Integrins and ERp57 Coordinate to Regulate Cell Surface Calreticulin in Immunogenic Cell Death. Front Oncol 2019; 9:411. [PMID: 31192123 PMCID: PMC6546883 DOI: 10.3389/fonc.2019.00411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/02/2019] [Indexed: 11/13/2022] Open
Abstract
Therapy-induced presentation of cell surface calreticulin (CRT) is a pro-phagocytic immunogen beneficial for invoking anti-tumor immunity. Here, we characterized the roles of ERp57 and α-integrins as CRT-interacting proteins that coordinately regulate CRT translocation from the ER to the surface during immunogenic cell death. Using T-lymphoblasts as a genetic cell model, we found that drug-induced surface CRT is dependent on ERp57, while drug-induced surface ERp57 is independent of CRT. Differential subcellular immunostaining assays revealed that ERp57-/- cells have minimal cytosolic CRT, indicating that ERp57 is indispensable for extra-ER accumulation of CRT. Stimulation of integrin activity, with either cell adhesion or molecular agonists, resulted in decreased drug-induced surface CRT and ERp57 levels. Similarly, surface CRT and ERp57 was reduced in cells expressing GFFKR, a conserved α-integrin cytosolic motif that binds CRT. Drug-induced surface ERp57 levels were consistently higher in CRT-/- cells, suggesting integrin inhibition of surface ERp57 is an indirect consequence of α-integrin binding to CRT within the CRT-ERp57 complex. Furthermore, β1-/- cells with reduced expression of multiple α-integrins, exhibit enhanced levels of drug-induced surface CRT and ERp57. Our findings highlight the coordinate involvement of plasma membrane integrins as inhibitors, and ERp57 originating from the ER as promoters, of CRT translocation from the ER to the cell surface.
Collapse
Affiliation(s)
- Chi-Chao Liu
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Pascal Leclair
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Foujan Pedari
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Heidi Vieira
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Mahdis Monajemi
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Laura M Sly
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Gregor S Reid
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Chinten James Lim
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
40
|
Qin J, Kunda NM, Qiao G, Tulla K, Prabhakar BS, Maker AV. Vaccination With Mitoxantrone-Treated Primary Colon Cancer Cells Enhances Tumor-Infiltrating Lymphocytes and Clinical Responses in Colorectal Liver Metastases. J Surg Res 2019; 233:57-64. [DOI: 10.1016/j.jss.2018.07.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/13/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022]
|
41
|
Wang Q, Ju X, Wang J, Fan Y, Ren M, Zhang H. Immunogenic cell death in anticancer chemotherapy and its impact on clinical studies. Cancer Lett 2018; 438:17-23. [PMID: 30217563 DOI: 10.1016/j.canlet.2018.08.028] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/15/2018] [Accepted: 08/30/2018] [Indexed: 01/10/2023]
Abstract
The traditional view holds that apoptosis is non-immunogenic and does not induce an inflammatory response. However, recent studies have suggested that certain chemotherapeutic drugs that induce tumor cell apoptosis can induce immunogenic cell death (ICD) in cancer cells. This process is characterized by not only up-regulation of a series of signaling molecules in cancer cells, including expose of calreticulin (CRT), secretion of adenosine triphosphate (ATP) and release of high mobility group box 1 (HMGB1). In this review, we summarize recent progress in identifying and classifying ICD inducers; concepts and molecular mechanisms of ICD; and the impact and potential applications of ICD in clinical studies. We also discuss the contributions of ICD inducers in combination with other anticancer drugs in clinical applications.
Collapse
Affiliation(s)
- Qiang Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiayou Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Yu Fan
- Department of Molecular Biology and Translational Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Meijia Ren
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China.
| |
Collapse
|
42
|
Huang FY, Lei J, Sun Y, Yan F, Chen B, Zhang L, Lu Z, Cao R, Lin YY, Wang CC, Tan GH. Induction of enhanced immunogenic cell death through ultrasound-controlled release of doxorubicin by liposome-microbubble complexes. Oncoimmunology 2018; 7:e1446720. [PMID: 29900064 DOI: 10.1080/2162402x.2018.1446720] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 02/07/2023] Open
Abstract
Immunogenic cell death (ICD) is a specific kind of cell death that stimulates the immune system to combat cancer cells. Ultrasound (US)-controlled targeted release of drugs by liposome-microbubble complexes is a promising approach due to its non-invasive nature and visibility through ultrasound imaging. However, it is not known whether this approach can enhance ICD induced by drugs, such as doxorubicin. Herein, we prepared a doxorubicin-liposome-microbubble complex (MbDox), and the resultant MbDox was then characterized and tested for US-controlled release of Dox (MbDox+US treatment) to enhance the induction of ICD in LL/2 and CT26 cancer cells and in syngeneic murine models. We found that MbDox+US treatment caused more cellular uptake and nuclear accumulation of Dox in tumor cells, and more accumulation of Dox in tumor tissues. Enhanced induction of ICD occurred both in vitro and in vivo. MbDox+US treatment induced more apoptosis, stronger membrane exposure and the release of ER stress proteins and DAMPs in tumor cells, and increased DC maturation in vitro. In addition, MbDox+US treatment also resulted in stronger therapeutic effects in immunocompetent mice than in immunodeficient mice. Moreover, MbDox+US enhancement of ICD was also evidenced by a higher proportion of activated CD8+ T-lymphocytes but lower Treg in tumor tissues. Taken together, our results demonstrate that US-controlled release of ICD inducers into nuclei using liposome-microbubble complexes may be an effective approach to enhance the induction of ICD for tumor treatment.
Collapse
Affiliation(s)
- Feng-Ying Huang
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou , China
| | - Jing Lei
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou , China.,Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical College, Haikou , China
| | - Yan Sun
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou , China
| | - Fei Yan
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou , China
| | - Bin Chen
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou , China
| | - Liming Zhang
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou , China
| | - Zhuoxuan Lu
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou , China
| | - Rong Cao
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou , China
| | - Ying-Ying Lin
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou , China
| | - Cai-Chun Wang
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou , China.,Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical College, Haikou , China
| | - Guang-Hong Tan
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou , China
| |
Collapse
|
43
|
Montico B, Nigro A, Casolaro V, Dal Col J. Immunogenic Apoptosis as a Novel Tool for Anticancer Vaccine Development. Int J Mol Sci 2018; 19:ijms19020594. [PMID: 29462947 PMCID: PMC5855816 DOI: 10.3390/ijms19020594] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 12/22/2022] Open
Abstract
Immunogenic apoptosis, or more appropriately called immunogenic cell death (ICD), is a recently described form of apoptosis induced by a specific set of chemotherapeutic drugs or by physical therapeutic modalities, such as ionizing irradiation and photodynamic therapy. The peculiar characteristic of ICD is the ability to favor recognition and elimination of dying tumor cells by phagocytes in association with the release of pro-inflammatory molecules (such as cytokines and high-mobility group box-1). While in vitro and animal models pointed to ICD as one of the molecular mechanisms mediating the clinical efficacy of some anticancer agents, it is hard to clearly demonstrate its contribution in cancer patients. Clinical evidence suggests that the induction of ICD alone is possibly not sufficient to fully subvert the immunosuppressive tumor microenvironment. However, interesting results from recent studies contemplate the exploitation of ICD for improving the immunogenicity of cancer cells to use them as an antigen cargo in the development of dendritic cell (DC) vaccines. Herein, we discuss the effects of danger signals expressed or released by cancer cells undergoing ICD on the maturation and activation of immature and mature DC, highlighting the potential added value of ICD in adoptive immunotherapy protocols.
Collapse
Affiliation(s)
- Barbara Montico
- Centro di Riferimento Oncologico, Department of Translational Research, Immunopathology and Cancer Biomarkers, 33081 Aviano (PN), Italy.
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi (SA), Italy.
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi (SA), Italy.
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi (SA), Italy.
| |
Collapse
|
44
|
Wong CW, Lam KKW, Lee CL, Yeung WSB, Zhao WE, Ho PC, Ou JP, Chiu PCN. The roles of protein disulphide isomerase family A, member 3 (ERp57) and surface thiol/disulphide exchange in human spermatozoa-zona pellucida binding. Hum Reprod 2017; 32:733-742. [PMID: 28175305 DOI: 10.1093/humrep/dex007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 01/16/2017] [Indexed: 12/28/2022] Open
Abstract
Study question Are multimeric sperm plasma membrane protein complexes, ERp57 and sperm surface thiol content involved in human spermatozoa-zona pellucida (ZP) interaction? Summary answer ERp57 is a component of a multimeric spermatozoa-ZP receptor complex involved in regulation of human spermatozoa-ZP binding via up-regulation of sperm surface thiol content. What is known already A spermatozoon acquires its fertilization capacity within the female reproductive tract by capacitation. Spermatozoa-ZP receptor is suggested to be a composite structure that is assembled into a functional complex during capacitation. Sperm surface thiol content is elevated during capacitation. ERp57 is a protein disulphide isomerase that modulates the thiol-disulphide status of proteins. Study design, size, duration The binding ability and components of protein complexes in extracted membrane protein fractions of spermatozoa were studied. The roles of capacitation, thiol-disulphide reagent treatments and ERp57 on sperm functions and sperm surface thiol content were assessed. Participants/materials, setting, methods Spermatozoa were obtained from semen samples from normozoospermic men. Human oocytes were obtained from an assisted reproduction programme. Blue native polyacrylamide gel electrophoresis, western ligand blotting and mass spectrometry were used to identify the components of solubilized ZP/ZP3-binding complexes. The localization and expression of sperm surface thiol and ERp57 were studied by immunostaining and sperm surface protein biotinylation followed by western blotting. Sperm functions were assessed by standard assays. Main results and the role of chance Several ZP-binding complexes were isolated from the cell membrane of capacitated spermatozoa. ERp57 was a component of one of these complexes. Capacitation significantly increased the sperm surface thiol content, acrosomal thiol distribution and ERp57 expression on sperm surface. Sperm surface thiol and ERp57 immunoreactivity were localized to the acrosomal region of spermatozoa, a region responsible for ZP-binding. Up-regulation of the surface thiol content or ERp57 surface expression in vitro stimulated ZP-binding capacity of human spermatozoa. Blocking of ERp57 function by specific antibody or inhibitors against ERp57 reduced the surface thiol content and ZP-binding capacity of human spermatozoa. Large scale data N/A. Limitations, reasons for caution The mechanisms by which up-regulation of surface thiol content stimulates spermatozoa-ZP binding have not been depicted. Wider implications of the findings Thiol-disulphide exchange is a crucial event in capacitation. ERp57 modulates the event and the subsequent fertilization process. Modulation of the surface thiol content of the spermatozoa of subfertile men may help to increase fertilization rate in assisted reproduction. Study funding/competing interest(s) This work was supported by The Hong Kong Research Grant Council Grant HKU764611 and HKU764512M to P.C.N.C. The authors have no competing interests.
Collapse
Affiliation(s)
- Chi-Wai Wong
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong SAR, China
| | - Kevin K W Lam
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong SAR, China.,Centre of Reproduction, Development and Growth, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong SAR, China.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Hong Kong SAR, P.R. China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong SAR, China.,Centre of Reproduction, Development and Growth, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong SAR, China.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Hong Kong SAR, P.R. China
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong SAR, China.,Centre of Reproduction, Development and Growth, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong SAR, China.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Hong Kong SAR, P.R. China
| | - Wei E Zhao
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Pak-Chung Ho
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong SAR, China.,Centre of Reproduction, Development and Growth, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong SAR, China.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Hong Kong SAR, P.R. China
| | - Jian-Ping Ou
- Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong SAR, China.,Centre of Reproduction, Development and Growth, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong SAR, China.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Hong Kong SAR, P.R. China
| |
Collapse
|
45
|
Abstract
The protein disulfide isomerase (PDI) gene family is a protein family classically characterized by endoplasmic reticulum (ER) localization and isomerase and redox activity. ERp57, a prominent multifunctional member of the PDI family, is detected at various levels in multiple cellular localizations outside of the ER. ERp57 has been functionally linked to a host of physiological processes and numerous studies have demonstrated altered expression and aberrant functionality of ERp57 in association with diverse pathological states. Here, we summarize available knowledge of ERp57's functions in subcellular compartments and the roles of dysregulated ERp57 in various diseases toward an emphasis on the potential utility of therapeutic development of ERp57.
Collapse
Affiliation(s)
- Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Ronghan Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
46
|
Deplanque G, Shabafrouz K, Obeid M. Can local radiotherapy and IL-12 synergise to overcome the immunosuppressive tumor microenvironment and allow "in situ tumor vaccination"? Cancer Immunol Immunother 2017; 66:833-840. [PMID: 28409192 PMCID: PMC11029752 DOI: 10.1007/s00262-017-2000-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/08/2017] [Indexed: 01/05/2023]
Abstract
The abscopal effect, which is the spontaneous regression of tumors or metastases outside the radiation field, occurs rarely in cancer patients. Interestingly, radiotherapy (RT) triggers an immunogenic cell death (ICD) that is able to generate tumor-specific cytotoxic CD8+ T cells that are efficient in killing cancer cells. The key question is: why is this "abscopal effect" so uncommon in cancer patients treated with RT? Most probably, the main reason may be related to the highly immunosuppressive tumor microenvironment of well-established tumors that constantly antagonizes the anti-tumor immune responses triggered by RT. In this case, additional or combinatorial immunotherapy is needed to attenuate these immunosuppressive networks and, therefore, substantially increases the efficacy of RT. Here, we describe a potentially promising synergistic radio-immunotherapy "in situ tumor vaccination" protocol by antagonizing the tumor-immunosuppressive microenvironment with a combinatorial approach using local RT and IL-12-based TH1 response augmentation.
Collapse
Affiliation(s)
- Gaël Deplanque
- Département d'Oncologie, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Keyvan Shabafrouz
- Département d'Oncologie, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Michel Obeid
- Département d'Oncologie, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, 1011, Lausanne, Switzerland.
- Faculté de Médecine Pitié-Salpêtrière, Centre Hospitalo-Universitaire Pitié-Salpêtrière, Université Pierre et Marie Curie, 91 Boulevard de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
47
|
Wang K, Li H, Chen R, Zhang Y, Sun XX, Huang W, Bian H, Chen ZN. Combination of CALR and PDIA3 is a potential prognostic biomarker for non-small cell lung cancer. Oncotarget 2017; 8:96945-96957. [PMID: 29228584 PMCID: PMC5722536 DOI: 10.18632/oncotarget.18547] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/04/2017] [Indexed: 11/25/2022] Open
Abstract
Proteomic-based approaches for biomarker discovery are promising strategies used in cancer research. In this study, we performed quantitative proteomic analysis on 16 paired samples of non-small cell lung cancer (NSCLC) and adjacent non-tumor lung tissues using label-free quantitative proteomics and liquid chromatography-tandem mass spectrometry/mass spectrometry (LC-MS/MS) to identify differentially expressed proteins. A total of 91 proteins were differentially expressed in NSCLC compared with adjacent non-tumor lung tissues among 4047 identified proteins (fold change > 1.5 or < 0.67, P < 0.05). Gene ontology (GO) analysis, Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis and ingenuity pathway analysis (IPA) of 91 dysregulated proteins showed that they were related to the cancer-associated biological processes. We confirmed that the candidate proteins, calreticulin (CALR) and protein disulfide isomerase family A member 3 (PDIA3) were overexpressed in NSCLC by real-time PCR using 20 paired samples and western blot using 5 paired samples. PDIA3 expression was highly associated with CALR expression (Spearman r = 0.345, P = 0.001) and they were co-localized and interacted with each other in A549 and H460 cells. Moreover, survival analysis performed in tissue microarray with 88 samples indicated that low expression of both CALR and PDIA3 in NSCLC was positively associated with poor overall survival. Combination of CALR and PDIA3 might serve as an efficient biomarker and improved the prediction of NSCLC prognosis significantly (P = 0.023). Our results collectively provide a potential biomarker dataset for NSCLC prognosis, especially the prognostic value of combined expression of CALR and PDIA3.
Collapse
Affiliation(s)
- Ke Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, P.R. China
| | - Hao Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, P.R. China
| | - Ruo Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, P.R. China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, P.R. China
| | - Yang Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, P.R. China
| | - Xiu-Xuan Sun
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, P.R. China
| | - Wan Huang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, P.R. China
| | - Huijie Bian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, P.R. China
| | - Zhi-Nan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, P.R. China
| |
Collapse
|
48
|
Liu CC, Leclair P, Monajemi M, Sly LM, Reid GS, Lim CJ. α-Integrin expression and function modulates presentation of cell surface calreticulin. Cell Death Dis 2016; 7:e2268. [PMID: 27310876 PMCID: PMC5143402 DOI: 10.1038/cddis.2016.176] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/10/2016] [Accepted: 05/26/2016] [Indexed: 12/22/2022]
Abstract
Calreticulin presentation on the cell surface is an important hallmark of immunogenic cell death (ICD), serving as the prophagocytic signal for macrophages. Cell adhesion is a physiologically relevant stimulus previously shown to increase calreticulin interaction with α-integrins via the juxtamembrane, cytosolic GFFKR motif. This study assessed whether integrin function can regulate surface calreticulin levels in ICD. We generated calreticulin-null T-lymphoblasts and confirmed the loss of surface calreticulin expression on cells treated with doxorubicin, an ICD inducer. Reconstituted expression with full-length calreticulin targeted to the endoplasmic reticulum (ER) successfully rescued doxorubicin-induced surface calreticulin. Reconstitution with a truncation mutant calreticulin targeted to the cytosol led to constitutively high surface calreticulin that was not further elevated by doxorubicin, suggesting calreticulin released from the stressed ER transits the cytosol before its translocation to the cell surface. When stimulated to engage integrin substrates, doxorubicin-treated wild-type T-lymphoblasts exhibited decreased surface calreticulin compared with cells under non-adherent conditions. The inhibitory effect on surface calreticulin was recapitulated for cells in suspension treated with a β1-integrin-activating antibody, 9EG7. Similarly, cells expressing a truncated α-integrin cytosolic tail, bearing only the juxtamembrane GFFKR calreticulin-binding motif, exhibited low surface calreticulin with doxorubicin treatment under non-adherent conditions. Using partial permeabilization techniques to distinguish between cytosolic and ER staining, we found that ICD inducers promoted the accumulation of cytosolic calreticulin with negligible change in total calreticulin, suggesting that integrin-mediated inhibition of surface calreticulin was due to reduced cytosolic to surface translocation. T-lymphoblasts co-treated with an ICD inducer and 9EG7 exhibited reduced phagocytosis by macrophages when compared with treatment with only ICD inducer. This study reveals a previously uncharacterized function of integrins as negative regulators of ICD by suppressing presentation of cell surface calreticulin.
Collapse
Affiliation(s)
- C-C Liu
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada V5Z 4H4.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - P Leclair
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - M Monajemi
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - L M Sly
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - G S Reid
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada V5Z 4H4.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, BC, Canada V5Z 4H4
| | - C J Lim
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada V5Z 4H4.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, BC, Canada V5Z 4H4
| |
Collapse
|
49
|
The EGFR-specific antibody cetuximab combined with chemotherapy triggers immunogenic cell death. Nat Med 2016; 22:624-31. [PMID: 27135741 DOI: 10.1038/nm.4078] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/07/2016] [Indexed: 12/13/2022]
Abstract
Cetuximab is a monoclonal antibody that is effective in the treatment of metastatic colorectal cancer (mCRC). Cetuximab blocks epidermal growth factor receptor (EGFR)-ligand interaction and inhibits downstream RAS-ERK activation. However, only some activating mutations in RAS affect cetuximab efficacy, and it is not clear what else mediates treatment success. Here we hypothesized that cetuximab induces immunogenic cell death (ICD) that activates a potent antitumor response. We found that cetuximab, in combination with chemotherapy, fostered ICD in CRC cells, which we measured via the endoplasmic reticulum (ER) stress response and an increase in phagocytosis by dendritic cells. ICD induction depended on the mutational status of the EGFR signaling pathway and on the inhibition of the splicing of X-box binding protein 1 (XBP1), an unfolded protein response (UPR) mediator. We confirmed the enhanced immunogenicity elicited by cetuximab in a mouse model of human EGFR-expressing CRC. Overall, we demonstrate a new, immune-related mechanism of action of cetuximab that may help to tailor personalized medicine.
Collapse
|
50
|
Abstract
Radiation therapy (RT) is a cornerstone in oncologic management and is employed in various curative and palliative scenarios for local-regional control. RT is thought to locally control tumor cells by direct physical DNA damage or indirect insults from reactive oxygen species. Therapeutic effects apart from those observed at the treatment target, that is, abscopal effect, have been observed for several decades, though the underlying mechanisms regulating this phenomenon have been unclear. Accumulating evidence now suggests that the immune system is a major determinant in regulating the abscopal effect. It is now evident that RT may also enhance immunologic responses to tumors by creating an in situ vaccine by eliciting antigen release from dying tumor cells. Harnessing the specificity and dynamic nature of the immune system to target tumors in conjunction with RT is an emerging field with much promise. To optimize this approach, it is important to systematically evaluate the intricacies of the host immune system, the new generation of immunotherapeutics and the RT approach. Here we will discuss the current biologic mechanisms thought to regulate the RT-induced abscopal effect and how these may be translated to the clinical setting.
Collapse
|