1
|
Liu S, Liu J, Fu N, Kornmatitsuk B, Yan Z, Luo J. Phenylalanine-arginine β-naphthylamide could enhance neomycin-sensitivity on Riemerella anatipestifer in vitro and in vivo. Front Microbiol 2023; 13:985789. [PMID: 36713163 PMCID: PMC9873997 DOI: 10.3389/fmicb.2022.985789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Riemerella anatipestifer is an important duck pathogen responsible for septicemia and infectious serositis, which has caused great economic losses to the duck industry. Phenylalanine-arginine β-naphthylamide (PAβN) is an efflux pump inhibitor, which mainly reduces the efflux effect by competing with antibiotics for efflux pump channels. Here, we found that R. anatipestifer strain GD2019 showed resistances to gentamicin, amikacin, kanamycin, and neomycin. Notably, PAβN could significantly reduce the Minimal inhibitory concentrations (MICs) of neomycin on the GD2019 strain. Moreover, PAβN combined with neomycin significantly decreased bacterial loads, relieved pathological injury and increase survival rate (p < 0.05) for the ducks lethally challenged by the GD2019 strain. Therefore, our results suggested, in vitro and in vivo, PAβN could reduce neomycin-resistant of R. anatipestifer. Importantly, finding of this study provide a new approach for treating antibiotic-resistant R. anatipestifer infection.
Collapse
Affiliation(s)
- Shiqi Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China,Jinzhai County Agriculture and Rural Bureau, Jinzhai, Anhui, China
| | - Junfa Liu
- Wen's Group Academy, Xinxing, Guangdong, China
| | - Ning Fu
- Chifeng Institute of Agricultural Sciences, Chifeng, China
| | - Bunlue Kornmatitsuk
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | | | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China,*Correspondence: Junrong Luo, ✉
| |
Collapse
|
2
|
Glucocorticoid-Glucocorticoid Receptor Response to Severe Acute Respiratory Syndrome Coronavirus 2. Crit Care Med 2021; 49:2157-2160. [PMID: 34049310 PMCID: PMC8594515 DOI: 10.1097/ccm.0000000000005162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Dawes RP, Burke KA, Byun DK, Xu Z, Stastka P, Chan L, Brown EB, Madden KS. Chronic Stress Exposure Suppresses Mammary Tumor Growth and Reduces Circulating Exosome TGF-β Content via β-Adrenergic Receptor Signaling in MMTV-PyMT Mice. Breast Cancer (Auckl) 2020; 14:1178223420931511. [PMID: 32595275 PMCID: PMC7301655 DOI: 10.1177/1178223420931511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Preclinical models of breast cancer have established mechanistic links between psychological stress and cancer progression. However, epidemiological evidence linking stress and cancer is equivocal. We tested the impact of stress exposure in female mice expressing the mouse mammary tumor virus polyoma middle-T antigen (MMTV-PyMT), a spontaneous model of mammary adenocarcinoma that mimics metastatic hormone receptor-positive human breast cancer development. MMTV-PyMT mice were socially isolated at 6 to 7 weeks of age during premalignant hyperplasia. To increase the potency of the stressor, singly housed mice were exposed to acute restraint stress (2 hours per day for 3 consecutive days) at 8 to 9 weeks of age during early carcinoma. Exposure to this dual stressor activated both major stress pathways, the sympathetic nervous system and hypothalamic-pituitary-adrenal axis throughout malignant transformation. Stressor exposure reduced mammary tumor burden in association with increased tumor cleaved caspase-3 expression, indicative of increased cell apoptosis. Stress exposure transiently increased tumor vascular endothelial growth factor and reduced tumor interleukin-6, but no other significant alterations in immune/inflammation-associated chemokines and cytokines or changes in myeloid cell populations were detected in tumors. No stress-induced change in second-harmonic generation-emitting collagen, indicative of a switch to a metastasis-promoting tumor extracellular matrix, was detected. Systemic indicators of slowed tumor progression included reduced myeloid-derived suppressor cell (MDSC) frequency in lung and spleen, and decreased transforming growth factor β (TGF-β) content in circulating exosomes, nanometer-sized particles associated with tumor progression. Chronic β-adrenergic receptor (β-AR) blockade with nadolol abrogated stress-induced alterations in tumor burden and cleaved caspase-3 expression, lung MDSC frequency, and exosomal TGF-β content. Despite the evidence for reduced tumor growth, metastatic lesions in the lung were not altered by stress exposure. Unexpectedly, β-blockade in nonstressed mice increased lung metastatic lesions and splenic MDSC frequency, suggesting that in MMTV-PyMT mice, β-AR activation also inhibits tumor progression in the absence of stress exposure. Together, these results suggest stress exposure can act through β-AR signaling to slow primary tumor growth in MMTV-PyMT mice.
Collapse
Affiliation(s)
- Ryan P Dawes
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Kathleen A Burke
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Daniel K Byun
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Zhou Xu
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Petr Stastka
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Leland Chan
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Edward B Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Kelley S Madden
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
4
|
Ellouze M, Vigouroux L, Tcherakian C, Woerther PL, Guguin A, Robert O, Surenaud M, Tran T, Calmette J, Barbin T, Perlemuter G, Cassard AM, Launay P, Maxime V, Annane D, Levy Y, Godot V. Overexpression of GILZ in macrophages limits systemic inflammation while increasing bacterial clearance in sepsis in mice. Eur J Immunol 2020; 50:589-602. [PMID: 31840802 DOI: 10.1002/eji.201948278] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/06/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022]
Abstract
Studies support the beneficial effects of glucocorticoids (GCs) during septic shock, steering research toward the potential role of GC-induced proteins in controlling excessive inflammatory responses. GILZ is a glucocorticoid-induced protein involved in the anti-inflammatory effects of GCs. We investigated whether the overexpression of GILZ specifically limited to monocytes and macrophages (M/M) alone could control inflammation, thus improving the outcome of septic shock in animal models. We also monitored the expression of GILZ in M/M from septic mice and septic-shock patients. M/M from patients and septic mice displayed significantly lower expression of GILZ than those isolated from controls. Furthermore, transgenic mice (Tg-mice) experiencing sepsis, with increased expression of GILZ restricted to M/M, showed lower frequencies of inflammatory monocytes than their littermates and lower plasma levels of inflammatory cytokines. Tg-mice also had lower blood bacterial counts. We further established that the upregulation of GILZ in M/M enhanced their phagocytic capacity in in vivo assays. The increase of GILZ in M/M was also sufficient to improve the survival rates of septic mice. These results provide evidence for a central role of both GILZ and M/M in the pathophysiology of septic shock and a possible clue for the modulation of inflammation in this disease.
Collapse
Affiliation(s)
- Mehdi Ellouze
- Faculty of Medicine, Univ. Paris Est Créteil, Créteil, France.,Vaccine Research Institute-VRI, Créteil, France.,INSERM U955-Team 16, Créteil, France
| | - Lola Vigouroux
- Faculty of Medicine, Univ. Paris Est Créteil, Créteil, France.,Vaccine Research Institute-VRI, Créteil, France.,INSERM U955-Team 16, Créteil, France
| | | | - Paul-Louis Woerther
- Department of Microbiology and Infection Control, Henri-Mondor Hospital, APHP, Créteil, France.,EA 7380 Dynamyc, EnvA, UPEC, Paris-Est University, Créteil, France
| | | | - Olivier Robert
- Faculty of Medicine, Univ. Paris-Sud, France.,INSERM U996, Clamart, France
| | - Mathieu Surenaud
- Faculty of Medicine, Univ. Paris Est Créteil, Créteil, France.,Vaccine Research Institute-VRI, Créteil, France.,INSERM U955-Team 16, Créteil, France
| | - Thi Tran
- Faculty of Medicine, Univ. Paris-Sud, France.,INSERM U996, Clamart, France
| | - Joseph Calmette
- Faculty of Medicine, Univ. Paris-Sud, France.,INSERM U996, Clamart, France
| | - Thomas Barbin
- Faculty of Medicine, Univ. Paris Est Créteil, Créteil, France.,Vaccine Research Institute-VRI, Créteil, France.,INSERM U955-Team 16, Créteil, France
| | - Gabriel Perlemuter
- Faculty of Medicine, Univ. Paris-Sud, Le Kremlin Bicêtre, France.,INSERM U996, Clamart, France.,Service de Gastro-Entérologie, AP-HP, Clamart, France
| | - Anne-Marie Cassard
- Faculty of Medicine, Univ. Paris-Sud, France.,INSERM U996, Clamart, France
| | - Pierre Launay
- Univ. Paris Diderot, Sorbonne Paris Cité, Paris, France.,Laboratoire d'Excellence INFLAMEX, INSERM U1149, Paris, France
| | - Virginie Maxime
- Hôpital Raymond-Poincaré (AP-HP), INSERM U1173, Univ. Versailles SQY, Garches, France
| | - Djillali Annane
- Hôpital Raymond-Poincaré (AP-HP), INSERM U1173, Univ. Versailles SQY, Garches, France
| | - Yves Levy
- Faculty of Medicine, Univ. Paris Est Créteil, Créteil, France.,Vaccine Research Institute-VRI, Créteil, France.,INSERM U955-Team 16, Créteil, France
| | - Véronique Godot
- Faculty of Medicine, Univ. Paris Est Créteil, Créteil, France.,Vaccine Research Institute-VRI, Créteil, France.,INSERM U955-Team 16, Créteil, France
| |
Collapse
|
5
|
Qin A, Zhong T, Zou H, Wan X, Yao B, Zheng X, Yin D. Critical role of Tim-3 mediated autophagy in chronic stress induced immunosuppression. Cell Biosci 2019; 9:13. [PMID: 30680089 PMCID: PMC6341633 DOI: 10.1186/s13578-019-0275-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/09/2019] [Indexed: 01/02/2023] Open
Abstract
Background Psychological and physical stress can either enhance or suppress immune functions depending on a variety of factors such as duration and severity of stressful situation. Chronic stress exerts a significantly suppressive effect on immune functions. However, the mechanisms responsible for this phenomenon remain to be elucidated. Autophagy plays an essential role in modulating cellular homeostasis and immune responses. However, it is not known yet whether autophagy contributes to chronic stress-induced immunosuppression. T cell immunoglobulin and mucin domain 3 (Tim-3) has shown immune-suppressive effects and obviously positive regulation on cell apoptosis. Tim-3 combines with Tim-3 ligand galectin-9 to modulate apoptosis. However, its impact on autophagy and chronic stress-induced immunosuppression is not yet identified. Results We found remarkably higher autophagy level in the spleens of mice that were subjected to chronic restraint stress compared with the control group. We also found that inhibition of autophagy by the autophagy inhibitor 3-methyladenine (3-MA) significantly attenuated chronic stress-induced alterations of pro-inflammatory and anti-inflammatory cytokine levels. We further elucidated that 3-MA dramatically inhibited the reduction of lymphocyte numbers. Moreover, chronic stress dramatically enhanced the expression of Tim-3 and galectin-9. Inhibition of Tim-3 by small interfering RNA against Tim-3 significantly decreased the level of autophagy and immune suppression in isolated primary splenocytes from stressed mice. In addition, α-lactose, a blocker for the interaction of Tim-3 and galectin-9, also decreased the autophagy level and immune suppression. Conclusion Chronic stress induces autophagy, resulting with suppression of immune system. Tim-3 and galectin-9 play a crucial regulatory role in chronic stress-induced autophagy. These studies suggest that Tim-3 mediated autophagy may offer a novel therapeutic strategy against the deleterious effects of chronic stress on the immune system.
Collapse
Affiliation(s)
- Anna Qin
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Ting Zhong
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Huajiao Zou
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Xiaoya Wan
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Bifeng Yao
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Xinbin Zheng
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Deling Yin
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China.,2Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
| |
Collapse
|
6
|
Role of C1 neurons in anti-inflammatory reflex: Mediation between afferents and efferents. Neurosci Res 2018; 136:6-12. [DOI: 10.1016/j.neures.2018.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/24/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022]
|
7
|
He Z, Chen X, Fu M, Tang J, Li X, Cao H, Wang Y, Zheng SJ. Infectious bursal disease virus protein VP4 suppresses type I interferon expression via inhibiting K48-linked ubiquitylation of glucocorticoid-induced leucine zipper (GILZ). Immunobiology 2017; 223:374-382. [PMID: 29146236 DOI: 10.1016/j.imbio.2017.10.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 02/05/2023]
Abstract
Viruses have developed a variety of methods to evade host immune response. Our previous study showed that infectious bursal disease virus (IBDV) inhibited type I interferon production via interaction of VP4 with cellular glucocorticoid-induced leucine zipper (GILZ) protein. However, the exact underlying molecular mechanism is still unclear. In this study, we found that IBDV VP4 suppressed GILZ degradation by inhibiting K48-linked ubiquitylation of GILZ. Furthermore, mutation of VP4 (R41G) abolished the inhibitory effect of VP4 on IFN-β expression and GILZ ubiquitylation, indicating that the amino acid 41R of VP4 was required for the suppression of IFN-β expression and GILZ ubiquitylation. Moreover, IBDV infection or VP4 expression markedly inhibited endogenous GILZ ubiquitylation. Thus, IBDV VP4 suppresses type I interferon expression by inhibiting K48-linked ubiquitylation of GILZ, revealing a new mechanism employed by IBDV to suppress host response.
Collapse
Affiliation(s)
- Zhiyuan He
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology and Zoonsis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiang Chen
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology and Zoonsis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Mengjiao Fu
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology and Zoonsis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jun Tang
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology and Zoonsis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiaoqi Li
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Hong Cao
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology and Zoonsis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yongqiang Wang
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology and Zoonsis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology and Zoonsis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Xu J, Dai A, Chen Q, Liu X, Zhang Y, Wang H, Li H, Chen Y, Cao M. Genetic regulation analysis reveals involvement of tumor necrosis factor and alpha-induced protein 3 in stress response in mice. Gene 2016; 576:528-36. [PMID: 26546835 DOI: 10.1016/j.gene.2015.10.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/29/2015] [Accepted: 10/31/2015] [Indexed: 11/30/2022]
Abstract
In order to study whether Tnfaip3 is related to stress response and further to find it's genetic regulation, we use C57BL/6J (B6) and DBA/2 (D2) mice to built the model of chronic unpredictable mild stress. RT-PCR, Western blotting and immunohistochemistry were used for studying the expression variation of Tnfaip3 in hippocampus tissue of B6 and D2 mice after being stressed. We found that the expression of Tnfaip3 was more remarkably increased in chronic unpredictable stress models than that in untreated mice (P<0.05). It is indicated that Tnfaip3 might take part in the process of stress response. The expression of Tnfaip3 is regulated by a cis-acting quantitative trait locus (cis-eQTL). We identified 5 genes are controlled by Tnfaip3 and the expression of 64 genes highly associated with Tnfaip3, 9 of those have formerly been participate in stress related pathways. In order to estimate the relationship between Tnfaip3 and its downstream genes or network members, we transfected SH-SY5Y cells with Tnfaip3 siRNA leading to down-regulation of Tnfaip3 mRNA. We confirmed a significant influence of Tnfaip3 depletion on the expression of Tsc22d3, Pex7, Rap2a, Slc2a3, and Gap43. These validated downstream genes and members of Tnfaip3 gene network provide us new insight into the biological mechanisms of Tnfaip3 in chronic unpredictable stress.
Collapse
Affiliation(s)
- Jian Xu
- Department of Neurology, Nantong University Affiliated Mental Health Center, Jiangsu, Nantong 226001, China
| | - Aihua Dai
- Department of neurology, Affiliated Hospital of Nantong University, Jiangsu, Nantong 226001, China
| | - Qi Chen
- Department of neurology, Affiliated Hospital of Nantong University, Jiangsu, Nantong 226001, China
| | - Xiaorong Liu
- Department of neurology, Affiliated Hospital of Nantong University, Jiangsu, Nantong 226001, China
| | - Yu Zhang
- Department of neurology, Affiliated Hospital of Nantong University, Jiangsu, Nantong 226001, China
| | - Hongmei Wang
- Department of neurology, Affiliated Hospital of Nantong University, Jiangsu, Nantong 226001, China
| | - Haizhen Li
- Department of neurology, Affiliated Hospital of Nantong University, Jiangsu, Nantong 226001, China
| | - Ying Chen
- Department of Histology and Embryology, Medical College, Nantong University, Jiangsu, Nantong 226001, China
| | - Maohong Cao
- Department of neurology, Affiliated Hospital of Nantong University, Jiangsu, Nantong 226001, China.
| |
Collapse
|
9
|
Systemic Staphylococcus aureus infection in restraint stressed mice modulates impaired immune response resulting in improved behavioral activities. J Neuroimmunol 2015; 288:102-13. [DOI: 10.1016/j.jneuroim.2015.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 01/21/2023]
|
10
|
Ayyar VS, Almon RR, Jusko WJ, DuBois DC. Quantitative tissue-specific dynamics of in vivo GILZ mRNA expression and regulation by endogenous and exogenous glucocorticoids. Physiol Rep 2015; 3:3/6/e12382. [PMID: 26056061 PMCID: PMC4510616 DOI: 10.14814/phy2.12382] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GC) are steroid hormones, which regulate metabolism and immune function. Synthetic GCs, or corticosteroids (CS), have appreciable clinical utility via their ability to suppress inflammation in immune-mediated diseases like asthma and rheumatoid arthritis. Recent work has provided insight to novel GC-induced genes that mediate their anti-inflammatory effects, including glucocorticoid-induced leucine zipper (GILZ). Since GILZ comprises an important part of GC action, its regulation by both drug and hormone will influence CS therapy. In addition, GILZ expression is often employed as a biomarker of GC action, which requires judicious selection of sampling time. Understanding the in vivo regulation of GILZ mRNA expression over time will provide insight into both the physiological regulation of GILZ by endogenous GC and the dynamics of its enhancement by CS. A highly quantitative qRT-PCR assay was developed for measuring GILZ mRNA expression in tissues obtained from normal and CS-treated rats. This assay was applied to measure GILZ mRNA expression in eight tissues; to determine its endogenous regulation over time; and to characterize its dynamics in adipose tissue, muscle, and liver following treatment with CS. We demonstrate that GILZ mRNA is expressed in several tissues. GILZ mRNA expression in adipose tissue displayed a robust circadian rhythm that was entrained with the circadian oscillation of endogenous corticosterone; and is strongly enhanced by acute and chronic dosing. Single dosing also enhanced GILZ mRNA in muscle and liver, but the dynamics varied. In conclusion, GILZ is widely expressed in the rat and highly regulated by endogenous and exogenous GCs.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Richard R Almon
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York
| | - William J Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York
| | - Debra C DuBois
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
11
|
Emont MP, Mantis S, Kahn JH, Landeche M, Han X, Sargis RM, Cohen RN. Silencing Mediator of Retinoid and Thyroid Hormone Receptors (SMRT) regulates glucocorticoid action in adipocytes. Mol Cell Endocrinol 2015; 407:52-6. [PMID: 25766503 PMCID: PMC4390535 DOI: 10.1016/j.mce.2015.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 11/15/2022]
Abstract
Local modulation of glucocorticoid action in adipocytes regulates adiposity and systemic insulin sensitivity. However, the specific cofactors that mediate glucocorticoid receptor (GR) action in adipocytes remain unclear. Here we show that the silencing mediator of retinoid and thyroid hormone receptors (SMRT) is recruited to GR in adipocytes and regulates ligand-dependent GR function. Decreased SMRT expression in adipocytes in vivo increases expression of glucocorticoid-responsive genes. Moreover, adipocytes with decreased SMRT expression exhibit altered glucocorticoid regulation of lipolysis. We conclude that SMRT regulates the metabolic functions of GR in adipocytes in vivo. Modulation of GR-SMRT interactions in adipocytes represents a novel approach to control the local degree of glucocorticoid action and thus influence adipocyte metabolic function.
Collapse
Affiliation(s)
- Margo P Emont
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, 900 E 57th Street, KCBD 8126, Chicago, IL 60637, USA
| | - Stelios Mantis
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, 900 E 57th Street, KCBD 8126, Chicago, IL 60637, USA
| | - Jonathan H Kahn
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, 900 E 57th Street, KCBD 8126, Chicago, IL 60637, USA
| | - Michael Landeche
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, 900 E 57th Street, KCBD 8126, Chicago, IL 60637, USA
| | - Xuan Han
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, 900 E 57th Street, KCBD 8126, Chicago, IL 60637, USA
| | - Robert M Sargis
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, 900 E 57th Street, KCBD 8126, Chicago, IL 60637, USA
| | - Ronald N Cohen
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, 900 E 57th Street, KCBD 8126, Chicago, IL 60637, USA.
| |
Collapse
|
12
|
Kasahara E, Sekiyama A, Hori M, Kuratsune D, Fujisawa N, Chida D, Hiramoto K, Li J, Okamura H, Inoue M, Kitagawa S. Stress-Induced Glucocorticoid Release Upregulates Uncoupling Protein-2 Expression and Enhances Resistance to Endotoxin-Induced Lethality. Neuroimmunomodulation 2015; 22:279-92. [PMID: 26074181 DOI: 10.1159/000368802] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/02/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Although psychological and/or physiological stress has been well documented to influence immune responses, the precise mechanism for immunomodulation remains to be elucidated. The present work describes the role of the hypothalamic-pituitary-adrenal (HPA) axis in the mechanism of stress-mediated enhanced-resistance to lethality after lipopolysaccharide (LPS) injection. METHODS/RESULTS Preconditioning with restraint stress (RS) resulted in enhanced activation of the HPA axis in response to LPS injection and suppressed LPS-induced release of proinflammatory cytokines and nitric oxide metabolites. Melanocortin 2 receptor-deficient mice (MC2R(-/-)) failed to increase plasma levels of glucocorticoids in response to LPS injection, and exhibited high sensitivity to LPS-induced lethality with enhanced release of proinflammatory cytokines as compared with MC2R(+/-) mice. Real-time PCR analysis revealed that RS induced upregulation of uncoupling protein-2 (UCP2) in macrophages in the lung and the liver of MC2R(+/-), but not of MC2R(-/-), mice. In addition, RS increased UCP2-dependent uncoupling activity of isolated mitochondria from the liver of MC2R(+/-), but not of MC2R(-/-), mice. In vitro study revealed that corticosterone and dexamethasone directly increased UCP2 expression in mouse RAW 264.7 macrophages and suppressed the generation of LPS-induced mitochondrial reactive oxygen species (ROS) and TNF-α production. Knockdown of UCP2 by small interfering RNA blunted the dexamethasone action for suppressing LPS-induced mitochondrial ROS and TNF-α production. CONCLUSION The present work suggests that RS enhances activation of the HPA axis to release glucocorticoids and upregulation of UCP2 in macrophages, thereby increasing the resistance to endotoxin-induced systemic inflammation and death.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/metabolism
- Animals
- Cell Line, Transformed
- Corticosterone/metabolism
- Cytokines/metabolism
- Disease Models, Animal
- Glucocorticoids/metabolism
- Ion Channels/metabolism
- Lipopolysaccharides/pharmacology
- Macrophages/drug effects
- Macrophages/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitochondrial Proteins/metabolism
- Nitric Oxide/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptor, Melanocortin, Type 2/deficiency
- Receptor, Melanocortin, Type 2/genetics
- Stress, Psychological/metabolism
- Uncoupling Protein 2
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Emiko Kasahara
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kasahara E, Inoue M. Cross-talk between HPA-axis-increased glucocorticoids and mitochondrial stress determines immune responses and clinical manifestations of patients with sepsis. Redox Rep 2015; 20:1-10. [PMID: 25310535 PMCID: PMC6837532 DOI: 10.1179/1351000214y.0000000107] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Various stressors activate the hypothalamo-pituitary-adrenal axis (HPA-axis) that stimulates adrenal secretion of glucocorticoids, thereby playing critical roles in the modulation of immune responses. Transcriptional regulation of nuclear genes has been well documented to underlie the mechanism of glucocorticoid-dependent modulation of cytokine production and immune reactions. Glucocorticoids also regulate inflammatory responses via non-genomic pathways in cytoplasm and mitochondria. Recent studies have revealed that glucocorticoids modulate mitochondrial calcium homeostasis and generation of reactive oxygen species (ROS). Although redox status and ROS generation in inflammatory cells have been well documented to play important roles in defense against pathogens, the roles of glucocorticoids and mitochondria in the modulation of immunological responses remain obscure. This review describes the role of stress-induced activation of the HPA-axis and glucocorticoid secretion by the adrenal gland in mitochondria-dependent signaling pathways that modulate endotoxin-induced inflammatory reactions and innate immunity.
Collapse
Affiliation(s)
- Emiko Kasahara
- Department of PhysiologyOsaka City University, Graduate School of Medicine, Osaka, Japan
| | | |
Collapse
|
14
|
Voorhees JL, Tarr AJ, Wohleb ES, Godbout JP, Mo X, Sheridan JF, Eubank TD, Marsh CB. Prolonged restraint stress increases IL-6, reduces IL-10, and causes persistent depressive-like behavior that is reversed by recombinant IL-10. PLoS One 2013; 8:e58488. [PMID: 23520517 PMCID: PMC3592793 DOI: 10.1371/journal.pone.0058488] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/05/2013] [Indexed: 12/19/2022] Open
Abstract
Altered inflammatory cytokine profiles are often observed in individuals suffering from major depression. Recent clinical work reports on elevated IL-6 and decreased IL-10 in depression. Elevated IL-6 has served as a consistent biomarker of depression and IL-10 is proposed to influence depressive behavior through its ability to counterbalance pro-inflammatory cytokine expression. Clinical and animal studies suggest a role for IL-10 in modifying depressive behavior. Murine restraint stress (RST) is regularly employed in the study of behavioral and biological symptoms associated with depressive disorders. While responses to acute RST exposure have been widely characterized, few studies have examined the ongoing and longitudinal effects of extended RST and fewer still have examined the lasting impact during the post-stress period. Consistent with clinical data, we report that a protocol of prolonged murine RST produced altered cytokine profiles similar to those observed in major depressive disorder. Parallel to these changes in circulating cytokines, IL-10 mRNA expression was diminished in the cortex and hippocampus throughout the stress period and following cessation of RST. Moreover, chronic RST promoted depressive-like behavior throughout the 28-day stress period and these depressive-like complications were maintained weeks after cessation of RST. Because of the correlation between IL-10 suppression and depressive behavior and because many successful antidepressant therapies yield increases in IL-10, we examined the effects of IL-10 treatment on RST-induced behavioral changes. Behavioral deficits induced by RST were reversed by exogenous administration of recombinant IL-10. This work provides one of the first reports describing the biological and behavioral impact following prolonged RST and, taken together, this study provides details on the correlation between responses to chronic RST and those seen in depressive disorders.
Collapse
Affiliation(s)
- Jeffrey L. Voorhees
- The Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Andrew J. Tarr
- Division of Oral Biology, The Ohio State University, Columbus, Ohio, United States of America
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, United States of America
| | - Eric S. Wohleb
- Division of Oral Biology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Jonathan P. Godbout
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, United States of America
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, United States of America
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, United States of America
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, United States of America
| | - John F. Sheridan
- Division of Oral Biology, The Ohio State University, Columbus, Ohio, United States of America
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Timothy D. Eubank
- The Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (TDE); (CBM)
| | - Clay B. Marsh
- The Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (TDE); (CBM)
| |
Collapse
|
15
|
Increased resistance of immobilized-stressed mice to infection: correlation with behavioral alterations. Brain Behav Immun 2013; 28:115-27. [PMID: 23142705 DOI: 10.1016/j.bbi.2012.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/01/2012] [Accepted: 11/01/2012] [Indexed: 01/07/2023] Open
Abstract
Immobilization is an easy and convenient method to induce both psychological and physical stress resulting in restricted motility and aggression and is believed to be the most severe type of stress in rodent models. Although it has been generally accepted that chronic stress often results in immunosuppression while acute stress has been shown to enhance immune responses, the effects of IS on the host resistance to Escherichia coli (E. coli) infection and associated behavioral changes are still not clear. In a series of experiments aimed at determining the level of hypothalamic COX-2, HSP-90, HSP-70, SOD-1 and plasma level of corticosterone, cytokine, antibody titer and their association with behavioral activities, mice were infected with viable E. coli during acute and chronic IS by taping their paws. In this study we show that acute and chronic IS enhances the resistance of mice to E. coli infection via inhibiting the production of pro-inflammatory cytokines, free radicals, and by improving the exploratory behavior. Altogether, our findings support the notion that cytokines released during immune activation and under the influence of corticosterone can modulate the open field behavior both in terms of locomotor activity as well as exploration. One of the features observed with chronic stressor was a lower ability to resist bacterial infection, although in case of acute stress, a better clearance of bacterial infection was observed in vivo with improvement of exploratory behavior and cognitive functions.
Collapse
|
16
|
Critical roles of glucocorticoid-induced leucine zipper in infectious bursal disease virus (IBDV)-induced suppression of type I Interferon expression and enhancement of IBDV growth in host cells via interaction with VP4. J Virol 2012; 87:1221-31. [PMID: 23152515 DOI: 10.1128/jvi.02421-12] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). Although IBDV-induced immunosuppression has been well established, the underlying exact molecular mechanism for such induction is not very clear. We report here the identification of IBDV VP4 as an interferon suppressor by interaction with the glucocorticoid-induced leucine zipper (GILZ) in host cells. We found that VP4 suppressed the expression of type I interferon in HEK293T cells after tumor necrosis factor alpha (TNF-α) treatment or Sendai virus (SeV) infection and in DF-1 cells after poly(I·C) stimulation. In addition, the VP4-induced suppression of type I interferon could be completely abolished by knockdown of GILZ by small interfering RNA (siRNA). Furthermore, knockdown of GILZ significantly inhibited IBDV growth in host cells, and this inhibition could be markedly mitigated by anti-alpha/beta interferon antibodies in the cell cultures (P < 0.001). Thus, VP4-induced suppression of type I interferon is mediated by interaction with GILZ, a protein that appears to inhibit cell responses to viral infection.
Collapse
|
17
|
Silvennoinen R, Escola-Gil JC, Julve J, Rotllan N, Llaverias G, Metso J, Valledor AF, He J, Yu L, Jauhiainen M, Blanco-Vaca F, Kovanen PT, Lee-Rueckert M. Acute Psychological Stress Accelerates Reverse Cholesterol Transport via Corticosterone-Dependent Inhibition of Intestinal Cholesterol Absorption. Circ Res 2012; 111:1459-69. [DOI: 10.1161/circresaha.112.277962] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rationale:
Psychological stress is associated with an increased risk of cardiovascular diseases. However, the connecting mechanisms of the stress-inducing activation of the hypothalamic-pituitary-adrenal axis with atherosclerosis are not well-understood.
Objective:
To study the effect of acute psychological stress on reverse cholesterol transport (RCT), which transfers peripheral cholesterol to the liver for its ultimate fecal excretion.
Methods and Results:
C57Bl/6J mice were exposed to restraint stress for 3 hours to induce acute psychological stress. RCT in vivo was quantified by measuring the transfer of [
3
H]cholesterol from intraperitoneally injected mouse macrophages to the lumen of the small intestine within the stress period. Surprisingly, stress markedly increased the contents of macrophage-derived [
3
H]cholesterol in the intestinal lumen. In the stressed mice, intestinal absorption of [
14
C]cholesterol was significantly impaired, the intestinal mRNA expression level of peroxisome proliferator–activated receptor-α increased, and that of the sterol influx transporter Niemann-Pick C1–like 1 decreased. The stress-dependent effects on RCT rate and peroxisome proliferator–activated receptor-α gene expression were fully mimicked by administration of the stress hormone corticosterone (CORT) to nonstressed mice, and they were blocked by the inhibition of CORT synthesis in stressed mice. Moreover, the intestinal expression of Niemann-Pick C1–like 1 protein decreased when circulating levels of CORT increased. Of note, when either peroxisome proliferator-activated receptor α or liver X receptor α knockout mice were exposed to stress, the RCT rate remained unchanged, although plasma CORT increased. This indicates that activities of both transcription factors were required for the RCT-accelerating effect of stress.
Conclusions:
Acute psychological stress accelerated RCT by compromising intestinal cholesterol absorption. The present results uncover a novel functional connection between the hypothalamic-pituitary-adrenal axis and RCT that can be triggered by a stress-induced increase in circulating CORT.
Collapse
Affiliation(s)
- Reija Silvennoinen
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Joan Carles Escola-Gil
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Josep Julve
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Noemi Rotllan
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Gemma Llaverias
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Jari Metso
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Annabel F. Valledor
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Jianming He
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Liqing Yu
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Matti Jauhiainen
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Francisco Blanco-Vaca
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Petri T. Kovanen
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Miriam Lee-Rueckert
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| |
Collapse
|
18
|
Peters EM, Liezmann C, Klapp BF, Kruse J. The neuroimmune connection interferes with tissue regeneration and chronic inflammatory disease in the skin. Ann N Y Acad Sci 2012; 1262:118-26. [DOI: 10.1111/j.1749-6632.2012.06647.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Suarez PE, Rodriguez EG, Soundararajan R, Mérillat AM, Stehle JC, Rotman S, Roger T, Voirol MJ, Wang J, Gross O, Pétrilli V, Nadra K, Wilson A, Beermann F, Pralong FP, Maillard M, Pearce D, Chrast R, Rossier BC, Hummler E. The glucocorticoid-induced leucine zipper (gilz/Tsc22d3-2) gene locus plays a crucial role in male fertility. Mol Endocrinol 2012; 26:1000-13. [PMID: 22556341 DOI: 10.1210/me.2011-1249] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The glucocorticoid-induced leucine zipper (Tsc22d3-2) is a widely expressed dexamethasone-induced transcript that has been proposed to be important in immunity, adipogenesis, and renal sodium handling based on in vitro studies. To address its function in vivo, we have used Cre/loxP technology to generate mice deficient for Tsc22d3-2. Male knockout mice were viable but surprisingly did not show any major deficiencies in immunological processes or inflammatory responses. Tsc22d3-2 knockout mice adapted to a sodium-deprived diet and to water deprivation conditions but developed a subtle deficiency in renal sodium and water handling. Moreover, the affected animals developed a mild metabolic phenotype evident by a reduction in weight from 6 months of age, mild hyperinsulinemia, and resistance to a high-fat diet. Tsc22d3-2-deficient males were infertile and exhibited severe testis dysplasia from postnatal d 10 onward with increases in apoptotic cells within seminiferous tubules, an increased number of Leydig cells, and significantly elevated FSH and testosterone levels. Thus, our analysis of the Tsc22d3-2-deficient mice demonstrated a previously uncharacterized function of glucocorticoid-induced leucine zipper protein in testis development.
Collapse
Affiliation(s)
- Philippe Emmanuel Suarez
- Departments of Pharmacology and Toxicology, University of Lausanne, CH-1005 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li H, Li X, Lu Y, Wang X, Zheng SJ. Staphylococcus sciuriexfoliative toxin C is a dimer that modulates macrophage functions. Can J Microbiol 2011; 57:722-9. [PMID: 21854098 DOI: 10.1139/w11-066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Haihua Li
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Xiaying Li
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Ying Lu
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Xiaojia Wang
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Shijun J. Zheng
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People’s Republic of China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuan-Ming-Yuan West Road, Beijing 100193, People’s Republic of China
| |
Collapse
|
21
|
Kim BJ, Kayembe K, Simecka JW, Pulse M, Jones HP. Corticotropin-releasing hormone receptor-1 and 2 activity produces divergent resistance against stress-induced pulmonary Streptococcus pneumoniae infection. J Neuroimmunol 2011; 237:57-65. [PMID: 21774994 DOI: 10.1016/j.jneuroim.2011.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/27/2011] [Accepted: 06/29/2011] [Indexed: 12/11/2022]
Abstract
Utilizing a murine model of S. pneumoniae infection and restraint stress, we determined how corticotropin releasing hormone (CRH-R) receptors impacts disease. CRH-R1 (antalarmin) and CRH-R2 (astressin2B) antagonists were administered intraperitoneally prior to restraint stress followed by pulmonary S. pneumoniae infection. CRH-R1 inhibition is not protective against pneumococcal disease induced by stress. Conversely, CRH-R2 inhibition attenuates stress-induced bacterial growth and significantly prevented severe sepsis. Neutrophillic responses were associated with CRH receptor-specific disease outcome providing a potential cellular target for stress-induced susceptibility to the development of severe pneumococcal disease. CRH receptor-mediated effects on immune responses could prove valuable for novel therapeutics.
Collapse
Affiliation(s)
- Byung-Jin Kim
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | | | | | | | | |
Collapse
|
22
|
Role of GILZ in immune regulation, glucocorticoid actions and rheumatoid arthritis. Nat Rev Rheumatol 2011; 7:340-8. [PMID: 21556028 DOI: 10.1038/nrrheum.2011.59] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glucocorticoids have been exploited therapeutically for more than six decades through the use of synthetic glucocorticoids as anti-inflammatory agents, and are still used in as many as 50% of patients suffering from inflammatory diseases such as rheumatoid arthritis (RA). Better understanding of the mechanisms of action of glucocorticoids could enable the development of therapies that dissociate the broad-spectrum benefits of glucocorticoids from their adverse metabolic effects. The glucocorticoid-induced leucine zipper protein (GILZ; also known as TSC22 domain family protein 3) is a glucocorticoid-responsive molecule whose interactions with signal transduction pathways, many of which are operative in RA and other inflammatory diseases, suggest that it is a key endogenous regulator of the immune response. The overlap between the observed effects of GILZ on the immune system and those of glucocorticoids strongly suggest GILZ as a critical mediator of the therapeutic effects of glucocorticoids. Observations of the immunomodulatory effects of GILZ in human RA synovial cells, and in an in vivo model of RA, support the hypothesis that GILZ is a key glucocorticoid-induced regulator of inflammation in RA. Moreover, evidence that the effect of GILZ on bone loss might be in contrast to those of glucocorticoids suggests manipulation of GILZ as a potential means of dissociating the beneficial anti-inflammatory effects of glucocorticoids from their negative metabolic repercussions.
Collapse
|