1
|
Luca D, Kato H. Mouse models of type I interferonopathies. Hum Mol Genet 2024:ddae187. [PMID: 39680957 DOI: 10.1093/hmg/ddae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024] Open
Abstract
Type I interferonopathies are severe monogenic diseases caused by mutations that result in chronically upregulated production of type I interferon. They present with a broad variety of symptoms, the mechanisms of which are being extensively studied. Mouse models of type I interferonopathies are an important resource for this purpose, and in this context, we review several key molecular and phenotypic findings that are advancing our understanding of the respective diseases. We focus on genotypes related to nucleic acid metabolism, sensing by cytosolic receptors and downstream signalling.
Collapse
Affiliation(s)
- Domnica Luca
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| |
Collapse
|
2
|
Feng Q, Xu X, Zhang S. cGAS-STING pathway in systemic lupus erythematosus: biological implications and therapeutic opportunities. Immunol Res 2024; 72:1207-1216. [PMID: 39096420 DOI: 10.1007/s12026-024-09525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has been identified as a significant modulator of inflammation in various clinical contexts, including infection, cellular stress, and tissue injury. The extensive participation of the cGAS-STING pathway can be attributed to its ability to detect and control the cellular reaction to DNAs originating from both microorganisms and hosts. These DNAs are well recognized as molecules linked with potential risks. At physiological levels, the STING signaling system exhibits protective effects. However, prolonged stimulation of this pathway contributes to autoimmune disorder pathogenesis. The present paper provides an overview of the activation mechanism of the cGAS-STING signaling pathways and their associated significant functions, as well as therapeutic interventions in the context of systemic lupus erythematosus (SLE). The primary objective is to enhance our comprehension of SLE and facilitate more effective diagnosis and treatment strategies for this condition.
Collapse
Affiliation(s)
- Qun Feng
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Xiaolin Xu
- Cardiology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Shoulin Zhang
- Nephropathy Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
3
|
Hofer MJ, Modesti N, Coufal NG, Wang Q, Sase S, Miner JJ, Vanderver A, Bennett ML. The prototypical interferonopathy: Aicardi-Goutières syndrome from bedside to bench. Immunol Rev 2024; 327:83-99. [PMID: 39473130 DOI: 10.1111/imr.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2024]
Abstract
Aicardi-Goutières syndrome (AGS) is a progressive genetic encephalopathy caused by pathogenic mutations in genes controlling cellular anti-viral responses and nucleic acid metabolism. The mutations initiate autoinflammatory processes in the brain and systemically that are triggered by chronic overproduction of type I interferon (IFN), including IFN-alpha. Emerging disease-directed therapies aim to dampen autoinflammation and block cellular responses to IFN production, creating an urgent and unmet need to understand better which cells, compartments, and mechanisms underlying disease pathogenesis. In this review, we highlight existing pre-clinical models of AGS and our current understanding of how causative genetic mutations promote disease in AGS, to promote new model development and a continued focus on improving and directing future therapies.
Collapse
Affiliation(s)
- Markus J Hofer
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, New South Wales, Australia
| | - Nicholson Modesti
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nicole G Coufal
- Department of Pediatrics, University of California, San Diego, California, USA
- Rady Children's Hospital, San Diego, California, USA
- Sanford Consortium for Regenerative Medicine, San Diego, California, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sunetra Sase
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jonathan J Miner
- Department of Medicine and Microbiology, RVCL Research Center, and Colton Center for Autoimmunity, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Adeline Vanderver
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mariko L Bennett
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Lee KH, Woo JS, Jeong HY, Choi JW, Bang CH, Youn J, Park SH, Cho ML. STING-STAT6 Signaling Pathway Promotes IL-4 + and IFN-α + Fibrotic T Cell Activation and Exacerbates Scleroderma in SKG Mice. Immune Netw 2024; 24:e37. [PMID: 39513026 PMCID: PMC11538607 DOI: 10.4110/in.2024.24.e37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024] Open
Abstract
Systemic sclerosis (SS) is an autoimmune disease and pathological mechanisms of SS are unclear. In this study, we investigated the role of T cells in the progression of SS using SKG mice and humanized mice. SKG mice have a spontaneous point mutation in ZAP70. We induced scleroderma in SKG mice and a humanized SS mouse model to assess whether T cell-mediated immune responses induce SS. As a result, we found increased dermal thickness, fibrosis, and lymphocyte infiltration in skin tissue in SKG SS mice compared to BALB/c mice (control). Also, blood cytokine level, including IL-4- and IFN-α which are produced by CD4+ T cells via STIM1/STING/STAT6/IRF3 signaling pathways, were increased in SKG mice. Interestingly, skin fibrosis was reduced by inhibiting STING pathway in skin fibroblast. Next, we demonstrated the pathophysiological role of IL-4 and IFN-α in skin fibrosis using a humanized SS mouse model and found increased IL-4- and IFN-α-producing CD4+ T cells and fibrosis. In this study, we found that STING-induced production of IL-4- and type I IFN by CD4+ T cells is a key factor in mouse model and humanized mouse model of SS. Our findings suggest that the STING/STAT6/IRF3 signaling pathways are potential therapeutic targets in SS.
Collapse
Affiliation(s)
- Kun Hee Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jin Seok Woo
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Ha Yeon Jeong
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jeong Won Choi
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Chul Hwan Bang
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jeehee Youn
- Department of Anatomy & Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Mi-La Cho
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
5
|
Heintzman DR, Sinard RC, Fisher EL, Ye X, Patterson AR, Elasy JH, Voss K, Chi C, Sugiura A, Rodriguez-Garcia GJ, Chowdhury NU, Arner EN, Krystoviak ES, Mason FM, Toudji YT, Steiner KK, Khan W, Olson LM, Jones AL, Hong HS, Bass L, Beier KL, Deng W, Lyssiotis CA, Newcomb DC, Bick AG, Rathmell WK, Wilson JT, Rathmell JC. Subset-specific mitochondrial stress and DNA damage shape T cell responses to fever and inflammation. Sci Immunol 2024; 9:eadp3475. [PMID: 39303018 PMCID: PMC11607909 DOI: 10.1126/sciimmunol.adp3475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/05/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Heat is a cardinal feature of inflammation, yet its impacts on immune cells remain uncertain. We show that moderate-grade fever temperatures (39°C) increased murine CD4 T cell metabolism, proliferation, and inflammatory effector activity while decreasing regulatory T cell suppressive capacity. However, heat-exposed T helper 1 (TH1) cells selectively developed mitochondrial stress and DNA damage that activated Trp53 and stimulator of interferon genes pathways. Although many TH1 cells subjected to such temperatures died, surviving TH1 cells exhibited increased mitochondrial mass and enhanced activity. Electron transport chain complex 1 (ETC1) was rapidly impaired under fever-range temperatures, a phenomenon that was specifically detrimental to TH1 cells. TH1 cells with elevated DNA damage and ETC1 signatures were also detected in human chronic inflammation. Thus, fever-relevant temperatures disrupt ETC1 to selectively drive apoptosis or adaptation of TH1 cells to maintain genomic integrity and enhance effector functions.
Collapse
Affiliation(s)
- Darren R Heintzman
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachael C Sinard
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Emilie L Fisher
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew R Patterson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joel H Elasy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelsey Voss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Channing Chi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ayaka Sugiura
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gabriel J Rodriguez-Garcia
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nowrin U Chowdhury
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily N Arner
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Evan S Krystoviak
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Cell Imaging Shared Resource, Vanderbilt University, Nashville, TN, USA
| | - Frank M Mason
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yasmine T Toudji
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - KayLee K Steiner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wasay Khan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lana M Olson
- Vanderbilt Technologies for Advanced Genomics (VANTAGE), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Angela L Jones
- Vanderbilt Technologies for Advanced Genomics (VANTAGE), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hanna S Hong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Lindsay Bass
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katherine L Beier
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wentao Deng
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Dawn C Newcomb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander G Bick
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
6
|
Flowers S, Petronella BA, McQueney MS, Fanelli B, Eisenberg W, Uveges A, Roden AL, Salowe S, Bommireddy V, Letourneau JJ, Huang CY, Beasley JR. A novel TREX1 inhibitor, VB-85680, upregulates cellular interferon responses. PLoS One 2024; 19:e0305962. [PMID: 39178223 PMCID: PMC11343403 DOI: 10.1371/journal.pone.0305962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/07/2024] [Indexed: 08/25/2024] Open
Abstract
Activation of the cGAS-STING pathway plays a key role in the innate immune response to cancer through Type-1 Interferon (IFN) production and T cell priming. Accumulation of cytosolic double-stranded DNA (dsDNA) within tumor cells and dying cells is recognized by the DNA sensor cyclic GMP-AMP synthase (cGAS) to create the secondary messenger cGAMP, which in turn activates STING (STimulator of INterferon Genes), resulting in the subsequent expression of IFN-related genes. This process is regulated by Three-prime Repair EXonuclease 1 (TREX1), a 3' → 5' exonuclease that degrades cytosolic dsDNA, thereby dampening activation of the cGAS-STING pathway, which in turn diminishes immunostimulatory IFN secretion. Here, we characterize the activity of VB-85680, a potent small-molecule inhibitor of TREX1. We first demonstrate that VB-85680 inhibits TREX1 exonuclease activity in vitro in lysates from both human and mouse cell lines. We then show that treatment of intact cells with VB-85680 results in activation of downstream STING signaling, and activation of IFN-stimulated genes (ISGs). THP1-Dual™ cells cultured under low-serum conditions exhibited an enhanced ISG response when treated with VB-85680 in combination with exogenous DNA. Collectively, these findings suggest the potential of a TREX1 exonuclease inhibitor to work in combination with agents that generate cytosolic DNA to enhance the acquisition of the anti-tumor immunity widely associated with STING pathway activation.
Collapse
Affiliation(s)
- Stephen Flowers
- Oncoveda, A Division of Genesis Research & Development Institute, LLC, Hamilton, New Jersey, United States of America
| | - Brenda A. Petronella
- Venenum Biodesign, LLC, and Genesis Drug Discovery & Development, LLC, Hamilton, New Jersey, United States of America
| | - Michael S. McQueney
- Oncoveda, A Division of Genesis Research & Development Institute, LLC, Hamilton, New Jersey, United States of America
| | - Barbara Fanelli
- Oncoveda, A Division of Genesis Research & Development Institute, LLC, Hamilton, New Jersey, United States of America
| | - Warren Eisenberg
- Venenum Biodesign, LLC, and Genesis Drug Discovery & Development, LLC, Hamilton, New Jersey, United States of America
| | - Albert Uveges
- Venenum Biodesign, LLC, and Genesis Drug Discovery & Development, LLC, Hamilton, New Jersey, United States of America
| | - Allison L. Roden
- Oncoveda, A Division of Genesis Research & Development Institute, LLC, Hamilton, New Jersey, United States of America
| | - Scott Salowe
- Venenum Biodesign, LLC, and Genesis Drug Discovery & Development, LLC, Hamilton, New Jersey, United States of America
| | - Venu Bommireddy
- Oncoveda, A Division of Genesis Research & Development Institute, LLC, Hamilton, New Jersey, United States of America
| | - Jeffrey J. Letourneau
- Venenum Biodesign, LLC, and Genesis Drug Discovery & Development, LLC, Hamilton, New Jersey, United States of America
| | - Chia-Yu Huang
- Venenum Biodesign, LLC, and Genesis Drug Discovery & Development, LLC, Hamilton, New Jersey, United States of America
| | - James R. Beasley
- Venenum Biodesign, LLC, and Genesis Drug Discovery & Development, LLC, Hamilton, New Jersey, United States of America
| |
Collapse
|
7
|
Chang L. Harnessing cGAS-STING axis for therapeutic benefits in systemic lupus erythematosus. Int J Rheum Dis 2024; 27:e15256. [PMID: 38982864 DOI: 10.1111/1756-185x.15256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024]
Abstract
The cyclic GMP-AMP synthase (cGAS), a prominent intracellular DNA sensor in mammalian cells, controls the innate immune response and the stimulator of interferon genes (STING)-mediated synthesis of pro-inflammatory cytokines, such as type-I interferon (IFN-I). For decades, IFN-I has been hypothesized to be essential in the development of systemic lupus erythematosus (SLE), a chronic multisystem autoimmunity characterized by immune complex (IC) deposition in small vessels. Recent findings revealed that the activation of the cGAS-STING pathway by self-DNA would propagate the autoimmune responses via upregulating IFN-I production in SLE. In this review, we aimed to provide a comprehensive outlook of the role of the cGAS-STING pathway in SLE pathobiology, as well as, a better understanding of current therapeutic opportunities targeting this axis.
Collapse
Affiliation(s)
- Liu Chang
- Department of Rheumatology, Henan Provincial Hospital of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Toufektchan E, Dananberg A, Striepen J, Hickling JH, Shim A, Chen Y, Nichols A, Duran Paez MA, Mohr L, Bakhoum SF, Maciejowski J. Intratumoral TREX1 Induction Promotes Immune Evasion by Limiting Type I IFN. Cancer Immunol Res 2024; 12:673-686. [PMID: 38408184 PMCID: PMC11148545 DOI: 10.1158/2326-6066.cir-23-1093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Chromosomal instability is a hallmark of human cancer that is associated with aggressive disease characteristics. Chromosome mis-segregations help fuel natural selection, but they risk provoking a cGAS-STING immune response through the accumulation of cytosolic DNA. The mechanisms of how tumors benefit from chromosomal instability while mitigating associated risks, such as enhanced immune surveillance, are poorly understood. Here, we identify cGAS-STING-dependent upregulation of the nuclease TREX1 as an adaptive, negative feedback mechanism that promotes immune evasion through digestion of cytosolic DNA. TREX1 loss diminishes tumor growth, prolongs survival of host animals, increases tumor immune infiltration, and potentiates response to immune checkpoint blockade selectively in tumors capable of mounting a type I IFN response downstream of STING. Together, these data demonstrate that TREX1 induction shields chromosomally unstable tumors from immune surveillance by dampening type I IFN production and suggest that TREX1 inhibitors might be used to selectively target tumors that have retained the inherent ability to mount an IFN response downstream of STING. See related article by Lim et al., p. 663.
Collapse
Affiliation(s)
- Eléonore Toufektchan
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexandra Dananberg
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Josefine Striepen
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James H. Hickling
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Abraham Shim
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yanyang Chen
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ashley Nichols
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mercedes A. Duran Paez
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lisa Mohr
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel F. Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
9
|
Queiroz MAF, Moura TCF, Bichara CDA, Lima LLPD, Oliveira AQTD, Souza RGD, Gomes STM, Amoras EDSG, Vallinoto ACR. TREX1 531C/T Polymorphism and Autoantibodies Associated with the Immune Status of HIV-1-Infected Individuals. Int J Mol Sci 2023; 24:ijms24119660. [PMID: 37298611 DOI: 10.3390/ijms24119660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Autoimmune diseases can develop during HIV-1 infection, mainly related to the individual's immune competence. The study investigated the association of the TREX1 531C/T polymorphism and antinuclear antibodies (ANA) in HIV-1 infection and the time of antiretroviral therapy (ART) used. Cross-sectional and longitudinal assessments were carried out in 150 individuals, divided into three groups: ART-naïve, 5 years and 10 years on ART; ART-naïve individuals were evaluated for 2 years after initiation of treatment. The individuals' blood samples were submitted to indirect immunofluorescence tests, real-time PCR and flow cytometry. The TREX1 531C/T polymorphism was associated with higher levels of TCD4+ lymphocytes and IFN-α in individuals with HIV-1. Individuals on ART had a higher frequency of ANA, higher levels of T CD4+ lymphocytes, a higher ratio of T CD4+/CD8+ lymphocytes and higher levels of IFN-α than therapy-naïve individuals (p < 0.05). The TREX1 531C/T polymorphism was associated with better maintenance of the immune status of individuals with HIV-1 and ANA with immune restoration in individuals on ART, indicating the need to identify individuals at risk of developing an autoimmune disease.
Collapse
Affiliation(s)
- Maria Alice Freitas Queiroz
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Tuane Carolina Ferreira Moura
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Carlos David Araújo Bichara
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | | | - Allysson Quintino Tenório de Oliveira
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Ranilda Gama de Souza
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | | | | | - Antonio Carlos Rosário Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
10
|
Jeremiah N, Ferran H, Antoniadou K, De Azevedo K, Nikolic J, Maurin M, Benaroch P, Manel N. RELA tunes innate-like interferon I/III responses in human T cells. J Exp Med 2023; 220:e20220666. [PMID: 36820829 PMCID: PMC9998965 DOI: 10.1084/jem.20220666] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 11/11/2022] [Accepted: 01/10/2023] [Indexed: 02/24/2023] Open
Abstract
In innate immune cells, intracellular sensors such as cGAS-STING stimulate type I/III interferon (IFN) expression, which promotes antiviral defense and immune activation. However, how IFN-I/III expression is controlled in adaptive cells is poorly understood. Here, we identify a transcriptional rheostat orchestrated by RELA that confers human T cells with innate-like abilities to produce IFN-I/III. Despite intact cGAS-STING signaling, IFN-I/III responses are stunted in CD4+ T cells compared with dendritic cells or macrophages. We find that lysine residues in RELA tune the IFN-I/III response at baseline and in response to STING stimulation in CD4+ T cells. This response requires positive feedback driven by cGAS and IRF7 expression. By combining RELA with IRF3 and DNA demethylation, IFN-I/III production in CD4+ T cells reaches levels observed in dendritic cells. IFN-I/III production provides self-protection of CD4+ T cells against HIV infection and enhances the elimination of tumor cells by CAR T cells. Therefore, innate-like functions can be tuned and leveraged in human T cells.
Collapse
Affiliation(s)
- Nadia Jeremiah
- Institut Curie, Paris Sciences et Lettres Research University, INSERM U932, Paris, France
| | - Hermine Ferran
- Institut Curie, Paris Sciences et Lettres Research University, INSERM U932, Paris, France
| | - Konstantina Antoniadou
- Institut Curie, Paris Sciences et Lettres Research University, INSERM U932, Paris, France
| | - Kevin De Azevedo
- Institut Curie, Paris Sciences et Lettres Research University, INSERM U932, Paris, France
| | - Jovan Nikolic
- Institut Curie, Paris Sciences et Lettres Research University, INSERM U932, Paris, France
| | - Mathieu Maurin
- Institut Curie, Paris Sciences et Lettres Research University, INSERM U932, Paris, France
| | - Philippe Benaroch
- Institut Curie, Paris Sciences et Lettres Research University, INSERM U932, Paris, France
| | - Nicolas Manel
- Institut Curie, Paris Sciences et Lettres Research University, INSERM U932, Paris, France
| |
Collapse
|
11
|
Fang L, Ying S, Xu X, Wu D. TREX1 cytosolic DNA degradation correlates with autoimmune disease and cancer immunity. Clin Exp Immunol 2023; 211:193-207. [PMID: 36745566 PMCID: PMC10038326 DOI: 10.1093/cei/uxad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023] Open
Abstract
The N-terminal domain of Three Prime Repair Exonuclease 1 (TREX1) is catalytically active and can degrade dsDNA or ssDNA in the cytosol, whereas the C-terminal domain is primarily involved in protein localization. TREX1 deficiency induces cytosolic DNA accumulation as well as activation of the cGAS-STING-IFN signaling pathway, which results in tissue inflammation and autoimmune diseases. Furthermore, TREX1 expression in cancer immunity can be adaptively regulated to promote tumor proliferation, making it a promising therapeutic target.
Collapse
Affiliation(s)
- Liwei Fang
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xi Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - De Wu
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Yu Y, Dou S, Peng P, Ma L, Qi X, Liu T, Yu Y, Wei C, Shi W. Targeting Type I IFN/STAT1 signaling inhibited and reversed corneal squamous metaplasia in Aire-deficient mouse. Pharmacol Res 2023; 187:106615. [PMID: 36535573 DOI: 10.1016/j.phrs.2022.106615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Corneal transparency and integrity are essential for obtaining good vision; nevertheless, squamous metaplasia (SQM) of ocular epithelium is a kind of serious blinding corneal diseases, without therapeutic medication in clinic. Here, we found that deficiency of the autoimmune regulator (AIRE) in corneas spontaneously developed corneal plaques. Using corneal abrasion model, we revealed that deletion of Aire not only resulted in delayed corneal re-epithelialization, but also promoted a cell-fate transition from transparent corneal epithelium to keratinized epithelium, histopathologically characterized with SQM based on the transcriptomic analysis. Mechanistically, Aire-deficient corneas led to the heightened Type I interferon (IFN-I)/STAT1 signaling after abrasion. Pharmacological blockade of IFN-I/JAK/STAT1 signaling in Aire-knockout (KO) corneas not only accelerated epithelial wound healing, but also alleviated corneal plaques and SQM. Collectively, our findings revealed critical roles of AIRE in governing corneal epithelial homeostasis and pathologic keratinization, and further identified IFN-I/STAT1 signaling as a potential target for treating ocular surface diseases with SQM, and even for treating pathological scenarios related to SQM in other tissues.
Collapse
Affiliation(s)
- Yaoyao Yu
- Medical College of Qingdao University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Peng Peng
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China; School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Li Ma
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yang Yu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China; School of Ophthalmology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
13
|
Skopelja-Gardner S, An J, Elkon KB. Role of the cGAS-STING pathway in systemic and organ-specific diseases. Nat Rev Nephrol 2022; 18:558-572. [PMID: 35732833 PMCID: PMC9214686 DOI: 10.1038/s41581-022-00589-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 12/21/2022]
Abstract
Cells are equipped with numerous sensors that recognize nucleic acids, which probably evolved for defence against viruses. Once triggered, these sensors stimulate the production of type I interferons and other cytokines that activate immune cells and promote an antiviral state. The evolutionary conserved enzyme cyclic GMP-AMP synthase (cGAS) is one of the most recently identified DNA sensors. Upon ligand engagement, cGAS dimerizes and synthesizes the dinucleotide second messenger 2',3'-cyclic GMP-AMP (cGAMP), which binds to the endoplasmic reticulum protein stimulator of interferon genes (STING) with high affinity, thereby unleashing an inflammatory response. cGAS-binding DNA is not restricted by sequence and must only be >45 nucleotides in length; therefore, cGAS can also be stimulated by self genomic or mitochondrial DNA. This broad specificity probably explains why the cGAS-STING pathway has been implicated in a number of autoinflammatory, autoimmune and neurodegenerative diseases; this pathway might also be activated during acute and chronic kidney injury. Therapeutic manipulation of the cGAS-STING pathway, using synthetic cyclic dinucleotides or inhibitors of cGAMP metabolism, promises to enhance immune responses in cancer or viral infections. By contrast, inhibitors of cGAS or STING might be useful in diseases in which this pro-inflammatory pathway is chronically activated.
Collapse
Affiliation(s)
| | - Jie An
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Keith B Elkon
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
14
|
Amico G, Hemphill WO, Severino M, Moratti C, Pascarella R, Bertamino M, Napoli F, Volpi S, Rosamilia F, Signa S, Perrino F, Zedde M, Ceccherini I. Genotype-Phenotype Correlation and Functional Insights for Two Monoallelic TREX1 Missense Variants Affecting the Catalytic Core. Genes (Basel) 2022; 13:genes13071179. [PMID: 35885962 PMCID: PMC9323106 DOI: 10.3390/genes13071179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
The TREX1 exonuclease degrades DNA to prevent aberrant nucleic-acid sensing through the cGAS-STING pathway, and dominant Aicardi–Goutières Syndrome type 1 (AGS1) represents one of numerous TREX1-related autoimmune diseases. Monoallelic TREX1 mutations were identified in patients showing early-onset cerebrovascular disease, ascribable to small vessel disease, and CADASIL-like neuroimaging. We report the clinical-neuroradiological features of two patients with AGS-like (Patient A) and CADASIL-like (Patient B) phenotypes carrying the heterozygous p.A136V and p.R174G TREX1 variants, respectively. Genetic findings, obtained by a customized panel including 183 genes associated with monogenic stroke, were combined with interferon signature testing and biochemical assays to determine the mutations’ effects in vitro. Our results for the p.A136V variant are inconsistent with prior biochemistry-pathology correlates for dominant AGS-causing TREX1 mutants. The p.R174G variant modestly altered exonuclease activity in a manner consistent with perturbation of substrate interaction rather than catalysis, which represents the first robust enzymological data for a TREX1 variant identified in a CADASIL-like patient. In conclusion, functional analysis allowed us to interpret the impact of TREX1 variants on patients’ phenotypes. While the p.A136V variant is unlikely to be causative for AGS in Patient A, Patient B’s phenotype is potentially related to the p.R174G variant. Therefore, further functional investigations of TREX1 variants found in CADASIL-like patients are warranted to determine any causal link and interrogate the molecular disease mechanism(s).
Collapse
Affiliation(s)
- Giulia Amico
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy;
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Wayne O. Hemphill
- Center for Structural Biology, Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Correspondence: (W.O.H.); (F.P.)
| | | | - Claudio Moratti
- Neuroradiology Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (C.M.); (R.P.)
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (C.M.); (R.P.)
| | - Marta Bertamino
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Flavia Napoli
- Departments of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Stefano Volpi
- Autoinflammatory Diseases and Immunodeficiencies Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.V.); (S.S.)
| | - Francesca Rosamilia
- Biostatistic Unit, Health Science Department (DISSAL), University of Genoa, 16132 Genoa, Italy;
| | - Sara Signa
- Autoinflammatory Diseases and Immunodeficiencies Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.V.); (S.S.)
| | - Fred Perrino
- Center for Structural Biology, Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Correspondence: (W.O.H.); (F.P.)
| | - Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | | |
Collapse
|
15
|
Zhang ZD, Zhong B. Regulation and function of the cGAS-MITA/STING axis in health and disease. CELL INSIGHT 2022; 1:100001. [PMID: 37192983 PMCID: PMC10120319 DOI: 10.1016/j.cellin.2021.100001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 05/18/2023]
Abstract
The innate immune systems detect pathogens via pattern-recognition receptors including nucleic acid sensors and non-nucleic acid sensors. Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS, also known as MB21D1) is a cytosolic DNA sensor that recognizes double-stranded DNA (dsDNA) and catalyzes the synthesis of 2',3'-cGAMP. Subsequently, 2',3'-cGAMP binds to the adaptor protein mediator of IRF3 activation (MITA, also known as STING, MPYS, ERIS, and TMEM173) to activate downstream signaling cascades. The cGAS-MITA/STING signaling critically mediates immune responses against DNA viruses, retroviruses, bacteria, and protozoan parasites. In addition, recent discoveries have extended our understanding of the roles of the cGAS-MITA/STING pathway in autoimmune diseases and cancers. Here, we summarize the identification and activation of cGAS and MITA/STING, present the updated functions and regulatory mechanisms of cGAS-MITA/STING signaling and provide a comprehensive understanding of the cGAS-MITA/STING axis in autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Zhi-Dong Zhang
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
- Department of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| |
Collapse
|
16
|
Hemphill WO, Simpson SR, Liu M, Salsbury FR, Hollis T, Grayson JM, Perrino FW. TREX1 as a Novel Immunotherapeutic Target. Front Immunol 2021; 12:660184. [PMID: 33868310 PMCID: PMC8047136 DOI: 10.3389/fimmu.2021.660184] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in the TREX1 3' → 5' exonuclease are associated with a spectrum of autoimmune disease phenotypes in humans and mice. Failure to degrade DNA activates the cGAS-STING DNA-sensing pathway signaling a type-I interferon (IFN) response that ultimately drives immune system activation. TREX1 and the cGAS-STING DNA-sensing pathway have also been implicated in the tumor microenvironment, where TREX1 is proposed to degrade tumor-derived DNA that would otherwise activate cGAS-STING. If tumor-derived DNA were not degraded, the cGAS-STING pathway would be activated to promote IFN-dependent antitumor immunity. Thus, we hypothesize TREX1 exonuclease inhibition as a novel immunotherapeutic strategy. We present data demonstrating antitumor immunity in the TREX1 D18N mouse model and discuss theory surrounding the best strategy for TREX1 inhibition. Potential complications of TREX1 inhibition as a therapeutic strategy are also discussed.
Collapse
Affiliation(s)
- Wayne O. Hemphill
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sean R. Simpson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mingyong Liu
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Freddie R. Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, NC, United States
| | - Thomas Hollis
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jason M. Grayson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Fred W. Perrino
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
17
|
Mohr L, Toufektchan E, von Morgen P, Chu K, Kapoor A, Maciejowski J. ER-directed TREX1 limits cGAS activation at micronuclei. Mol Cell 2021; 81:724-738.e9. [PMID: 33476576 PMCID: PMC7897315 DOI: 10.1016/j.molcel.2020.12.037] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/18/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Micronuclei are aberrant nuclear compartments that can form as a result of chromosome mis-segregation. Frequent loss of micronuclear envelope integrity exposes DNA to the cytoplasm, leading to chromosome fragmentation and immune activation. Here, we use micronuclei purification to show that the endoplasmic reticulum (ER)-associated nuclease TREX1 inhibits cGAS activation at micronuclei by degrading micronuclear DNA upon micronuclear envelope rupture. We demonstrate that the ER accesses ruptured micronuclei and plays a critical role in enabling TREX1 nucleolytic attack. TREX1 mutations, previously implicated in immune disease, untether TREX1 from the ER, disrupt TREX1 localization to micronuclei, diminish micronuclear DNA damage, and enhance cGAS activation. These results establish ER-directed resection of micronuclear DNA by TREX1 as a critical regulator of cytosolic DNA sensing in chromosomally unstable cells and provide a mechanistic basis for the importance of TREX1 ER tethering in preventing autoimmunity.
Collapse
Affiliation(s)
- Lisa Mohr
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eléonore Toufektchan
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Patrick von Morgen
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kevan Chu
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aakanksha Kapoor
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
18
|
Kumar V. The Trinity of cGAS, TLR9, and ALRs Guardians of the Cellular Galaxy Against Host-Derived Self-DNA. Front Immunol 2021; 11:624597. [PMID: 33643304 PMCID: PMC7905024 DOI: 10.3389/fimmu.2020.624597] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
The immune system has evolved to protect the host from the pathogens and allergens surrounding their environment. The immune system develops in such a way to recognize self and non-self and develops self-tolerance against self-proteins, nucleic acids, and other larger molecules. However, the broken immunological self-tolerance leads to the development of autoimmune or autoinflammatory diseases. Pattern-recognition receptors (PRRs) are expressed by immunological cells on their cell membrane and in the cytosol. Different Toll-like receptors (TLRs), Nod-like receptors (NLRs) and absent in melanoma-2 (AIM-2)-like receptors (ALRs) forming inflammasomes in the cytosol, RIG (retinoic acid-inducible gene)-1-like receptors (RLRs), and C-type lectin receptors (CLRs) are some of the PRRs. The DNA-sensing receptor cyclic GMP–AMP synthase (cGAS) is another PRR present in the cytosol and the nucleus. The present review describes the role of ALRs (AIM2), TLR9, and cGAS in recognizing the host cell DNA as a potent damage/danger-associated molecular pattern (DAMP), which moves out to the cytosol from its housing organelles (nucleus and mitochondria). The introduction opens with the concept that the immune system has evolved to recognize pathogens, the idea of horror autotoxicus, and its failure due to the emergence of autoimmune diseases (ADs), and the discovery of PRRs revolutionizing immunology. The second section describes the cGAS-STING signaling pathway mediated cytosolic self-DNA recognition, its evolution, characteristics of self-DNAs activating it, and its role in different inflammatory conditions. The third section describes the role of TLR9 in recognizing self-DNA in the endolysosomes during infections depending on the self-DNA characteristics and various inflammatory diseases. The fourth section discusses about AIM2 (an ALR), which also binds cytosolic self-DNA (with 80–300 base pairs or bp) that inhibits cGAS-STING-dependent type 1 IFN generation but induces inflammation and pyroptosis during different inflammatory conditions. Hence, this trinity of PRRs has evolved to recognize self-DNA as a potential DAMP and comes into action to guard the cellular galaxy. However, their dysregulation proves dangerous to the host and leads to several inflammatory conditions, including sterile-inflammatory conditions autoinflammatory and ADs.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, St. Lucia, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, Brisbane, QLD, Australia
| |
Collapse
|
19
|
Simpson SR, Hemphill WO, Hudson T, Perrino FW. TREX1 - Apex predator of cytosolic DNA metabolism. DNA Repair (Amst) 2020; 94:102894. [PMID: 32615442 DOI: 10.1016/j.dnarep.2020.102894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
The cytosolic Three prime Repair EXonuclease 1 (TREX1) is a powerful DNA-degrading enzyme required for clearing cytosolic DNA to prevent aberrant inflammation and autoimmunity. In the absence of TREX1 activity, cytosolic DNA pattern recognition receptors of the innate immune system are constitutively activated by undegraded TREX1 substrates. This triggers a chronic inflammatory response in humans expressing mutant TREX1 alleles, eliciting a spectrum of rare autoimmune diseases dependent on the nature of the mutation. The precise origins of cytosolic DNA targeted by TREX1 continue to emerge, but DNA emerging from the nucleus or taken up by the cell could represent potential sources. In this Review, we explore the biochemical and immunological data supporting the role of TREX1 in suppressing cytosolic DNA sensing, and discuss the possibility that TREX1 may contribute to maintenance of genome integrity.
Collapse
Affiliation(s)
- Sean R Simpson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Wayne O Hemphill
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Teesha Hudson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Fred W Perrino
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|