1
|
Qiu W, Han X, Yu T, Jiang L, Wang X, Feng R, Duan X, Teng Y, Yin H, Bokarewa MI, Deng G. Inhibitory effect of hydroxychloroquine on glucocorticoid-induced osteoporosis in lupus therapy. Clin Transl Immunology 2024; 13:e70010. [PMID: 39416769 PMCID: PMC11480648 DOI: 10.1002/cti2.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Objectives Systemic lupus erythematosus (SLE) is a chronic and severe autoimmune disease characterised by persistent inflammation. Hydroxychloroquine (HCQ) and glucocorticoids (GCs) are the primary agents commonly used in combination as the first-line treatment for SLE. Nevertheless, the specific mechanisms responsible for the effectiveness of this combined therapy with HCQ and GCs have not been fully elucidated. This study aimed to reveal the mechanism behind combined HCQ and GC treatment in lupus. Methods An SLE IgG-induced inflammation model was used to investigate the anti-inflammatory effects of HCQ and dexamethasone (DXM). A glucocorticoid-induced osteoporosis (GIOP) model was used to investigate the inhibitory effect of HCQ on osteoclastogenesis. Inflammation was assessed by haematoxylin and eosin staining. Bone metabolism was determined structurally via microcomputer tomography and in bone marrow-derived osteoclast cultures. Results An SLE IgG-induced inflammation model demonstrated that HCQ could not ameliorate inflammation alone but could enhance the anti-inflammatory effect of GCs by decreasing the expression of FcγRI on macrophages. HCQ inhibited osteoclastogenesis induced by GCs and RANKL by upregulating nuclear factor erythroid 2-related factor 2 and limiting reactive oxygen species formation, which mitigated GC-induced bone loss. Conclusion The results indicate that HCQ improved the anti-inflammatory effects of GCs and inhibits the osteoclastogenesis in experimental lupus. This study offers valuable insights into the mechanisms underlying the combined treatment of lupus with HCQ and GCs.
Collapse
Affiliation(s)
- Wenlin Qiu
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoxiao Han
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tong Yu
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lijuan Jiang
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuefei Wang
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ruizhi Feng
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoru Duan
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yao Teng
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Haifeng Yin
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Maria I Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of MedicineGothenburg UniversityGothenburgSweden
- Rheumatology ClinicSahlgrenska University HospitalGothenburgSweden
| | - Guo‐Min Deng
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
2
|
Yamazaki T, Iwasaki K, Tomono S, Imai M, Miwa Y, Shizuku M, Ashimine S, Ishiyama K, Inui M, Okuzaki D, Okada M, Kobayashi T, Akashi-Takamura S. Human RP105 monoclonal antibody enhances antigen-specific antibody production in unique culture conditions. iScience 2024; 27:110649. [PMID: 39246445 PMCID: PMC11380396 DOI: 10.1016/j.isci.2024.110649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/16/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Detecting antibodies, particularly those targeting donor human leukocyte antigens in organ transplantation and self-antigens in autoimmune diseases, is crucial for diagnosis and therapy. Radioprotective 105 (RP105), a Toll-like receptor family protein, is expressed in immune-competent cells, such as B cells. Studies in mice have shown that the anti-mouse RP105 antibody strongly activates B cells and triggers an adjuvant effect against viral infections. However, the anti-human RP105 antibody (ɑhRP105) weakly activates human B cells. This study established new culture conditions under, which human B cells are strongly activated by the ɑhRP105. When combined with CpGDNA, specific antibody production against blood group carbohydrates, ɑGal, and SARS-CoV-2 was successfully detected in human B cell cultures. Furthermore, comprehensive analysis using liquid chromatography-electrospray ionization tandem mass spectrometry, single-cell RNA sequencing, and quantitative real-time PCR revealed that ɑhRP105 triggered a different activation stimulus compared to CpGDNA. These findings could help identify antibody-producing B cells in cases of transplant rejection and autoimmune diseases.
Collapse
Affiliation(s)
- Tatsuya Yamazaki
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Kenta Iwasaki
- Department of Kidney Diseases and Transplant Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Susumu Tomono
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Masaki Imai
- Department of Medical Technology and Sciences, Kyoto Tachibana University, Kyoto, Kyoto, Japan
| | - Yuko Miwa
- Department of Kidney Diseases and Transplant Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Masato Shizuku
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Satoshi Ashimine
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Kohei Ishiyama
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Masanori Inui
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), WPI-IFReC, Osaka University, Suita, Osaka, Japan
| | - Manabu Okada
- Department of Transplant and Endocrine Surgery, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Aichi, Japan
| | - Takaaki Kobayashi
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Sachiko Akashi-Takamura
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| |
Collapse
|
3
|
Abir AH, Weckwerth L, Wilhelm A, Thomas J, Reichardt CM, Munoz L, Völkl S, Appelt U, Mroz M, Niesner R, Hauser A, Sophie Fischer R, Pracht K, Jäck HM, Schett G, Krönke G, Mielenz D. Metabolic profiling of single cells by exploiting NADH and FAD fluorescence via flow cytometry. Mol Metab 2024; 87:101981. [PMID: 38971403 PMCID: PMC11300934 DOI: 10.1016/j.molmet.2024.101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
OBJECTIVE The metabolism of different cells within the same microenvironment can differ and dictate physiological or pathological adaptions. Current single-cell analysis methods of metabolism are not label-free. METHODS The study introduces a label-free, live-cell analysis method assessing endogenous fluorescence of NAD(P)H and FAD in surface-stained cells by flow cytometry. RESULTS OxPhos inhibition, mitochondrial uncoupling, glucose exposure, genetic inactivation of glucose uptake and mitochondrial respiration alter the optical redox ratios of FAD and NAD(P)H as measured by flow cytometry. Those alterations correlate strongly with measurements obtained by extracellular flux analysis. Consequently, metabolically distinct live B-cell populations can be resolved, showing that human memory B-cells from peripheral blood exhibit a higher glycolytic flexibility than naïve B cells. Moreover, the comparison of blood-derived B- and T-lymphocytes from healthy donors and rheumatoid arthritis patients unleashes rheumatoid arthritis-associated metabolic traits in human naïve and memory B-lymphocytes. CONCLUSIONS Taken together, these data show that the optical redox ratio can depict metabolic differences in distinct cell populations by flow cytometry.
Collapse
Affiliation(s)
- Ariful Haque Abir
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Leonie Weckwerth
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Artur Wilhelm
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jana Thomas
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Clara M Reichardt
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Luis Munoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Uwe Appelt
- Flow cytometry core unit, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glückstr. 6, 91054 Erlangen, Germany
| | - Markus Mroz
- Flow cytometry core unit, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glückstr. 6, 91054 Erlangen, Germany
| | - Raluca Niesner
- Deutsches Rheumaforschungszentrum Berlin, Biophysikalische Analytik, Charitéplatz 1, 10117 Berlin, Germany; Freie Universität Berlin, Dynamisches und funktionelles in vivo Imaging, Adresse: Oertzenweg 19b, 14163 Berlin, Germany
| | - Anja Hauser
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Deutsches Rheumaforschungszentrum Berlin, Immundynamik, Charitéplatz 1, 10117 Berlin, Germany
| | - Rebecca Sophie Fischer
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Katharina Pracht
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany.
| |
Collapse
|
4
|
Sun C, Ruan Z, Zhang Y, Guo R, Li H, Wang T, Gao T, Tang Y, Song N, Hao S, Huang X, Li S, Ning F, Su Y, Lu Q, Wang Q, Cao X, Li Z, Chang T. High indirect bilirubin levels as an independent predictor of postoperative myasthenic crisis: a single-center, retrospective study. Front Neurol 2024; 14:1336823. [PMID: 38283685 PMCID: PMC10811789 DOI: 10.3389/fneur.2023.1336823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Background Thymectomy is an efficient and standard treatment strategy for patients with myasthenia gravis (MG), postoperative myasthenic crisis (POMC) is the major complication related to thymectomy and has a strongly life-threatening effect. As a biomarker, whether the bilirubin level is a risk factor for MG progression remains unclear. This study aimed to investigate the association between the preoperative bilirubin level and postoperative myasthenic crisis (POMC). Methods We analyzed 375 patients with MG who underwent thymectomy at Tangdu Hospital between January 2012 and September 2021. The primary outcome measurement was POMC. The association between POMC and bilirubin level was analyzed by restricted cubic spline (RCS). Indirect bilirubin (IBIL) was divided into two subgroups based on the normal upper limit of IBIL, 14 μmol/L. Results Compared with non-POMC group, IBIL levels were significantly higher in patients with POMC. Elevated IBIL levels were closely associated with an increased risk of POMC (p for trend = 0.002). There was a dose-response curve relationship between IBIL levels and POMC incidence (p for non-linearity = 0.93). However, DBIL levels showed a U-shaped association with POMC incidence. High IBIL level (≥14 μmol/L) was an independent predictive factor for POMC [odds ratio = 3.47, 95% confidence interval (CI): 1.56-7.8, p = 0.002]. The addition of high IBIL levels improved the prediction model performance (net reclassification index = 0.186, 95% CI: 0.039-0.334; integrated discrimination improvement = 0.0345, 95% CI: 0.005-0.065). Conclusion High preoperative IBIL levels, especially those exceeding the normal upper limit, could independently predict the incidence of POMC.
Collapse
Affiliation(s)
- Chao Sun
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhe Ruan
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu Zhang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rongjing Guo
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huanhuan Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tantan Wang
- School of Pharmaceutical Sciences, Peking-Tsinghua Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Ting Gao
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yonglan Tang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Na Song
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sijia Hao
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoxi Huang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shuang Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fan Ning
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yue Su
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qingqing Wang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiangqi Cao
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhuyi Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Richartz N, Pietka W, Yadav A, Bostad M, Bhagwat S, Naderi S, Naderi EH, Stokke T, Ruud E, Blomhoff HK. N-acetyl cysteine turns EPAC activators into potent killers of acute lymphoblastic leukemia cells. J Biol Chem 2024; 300:105509. [PMID: 38042493 PMCID: PMC10772734 DOI: 10.1016/j.jbc.2023.105509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023] Open
Abstract
Today, the majority of patients with pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL, hereafter ALL) survive their disease, but many of the survivors suffer from life-limiting late effects of the treatment. ALL develops in the bone marrow, where the cells are exposed to cAMP-generating prostaglandin E2. We have previously identified the cAMP signaling pathway as a putative target for improved efficacy of ALL treatment, based on the ability of cAMP signaling to reduce apoptosis induced by DNA damaging agents. In the present study, we have identified the antioxidant N-acetyl cysteine (NAC) as a powerful modifier of critical events downstream of the cell-permeable cAMP analog 8-(4-chlorophenylthio) adenosine-3', 5'- cyclic monophosphate (8-CPT). Accordingly, we found NAC to turn 8-CPT into a potent killer of ALL cells in vitro both in the presence and absence of DNA damaging treatment. Furthermore, we revealed that NAC in combination with 8-CPT is able to delay the progression of ALL in a xenograft model in NOD-scid IL2Rγnull mice. NAC was shown to rely on the ability of 8-CPT to activate the guanine-nucleotide exchange factor EPAC, and we demonstrated that the ALL cells are killed by apoptosis involving sustained elevated levels of calcium imposed by the combination of the two drugs. Taken together, we propose that 8-CPT in the presence of NAC might be utilized as a novel strategy for treating pediatric ALL patients, and that this powerful combination might be exploited to enhance the therapeutic index of current ALL targeting therapies.
Collapse
Affiliation(s)
- Nina Richartz
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Wojciech Pietka
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ajay Yadav
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Monica Bostad
- Department of Core Facilities, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sampada Bhagwat
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Soheil Naderi
- Division of Laboratory Medicine, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Elin Hallan Naderi
- Section of Head and Neck Oncology, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Trond Stokke
- Department of Core Facilities, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ellen Ruud
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Heidi Kiil Blomhoff
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
6
|
Chen X, Zhou L, Ma H, Wu J, Liu S, Wu Y, Yan D. Mitochondrial dynamics modulate the allergic inflammation in a murine model of allergic rhinitis. Immun Inflamm Dis 2023; 11:e1002. [PMID: 37773697 PMCID: PMC10515506 DOI: 10.1002/iid3.1002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 10/01/2023] Open
Abstract
OBJECTIVE Allergic rhinitis (AR) is a common allergic disorder, afflicting thousands of human beings. Aberrant mitochondrial dynamics are important pathological elements for various immune cell dysfunctions and allergic diseases. However, the connection between mitochondrial dynamics and AR remains poorly understood. This study aimed to determine whether mitochondrial dynamics influence the inflammatory response in AR. METHODS In the present study, we established a murine model of AR by sensitization with ovalbumin (OVA). Then, we investigated the mitochondrial morphology in mice with AR by transmission electron microscopy and confocal fluorescence microscopy, and evaluated the role of Mdivi-1 (an inhibitor of mitochondrial fission) on allergic symptoms, inflammatory responses, allergic-related signals, and reactive oxygen species formation. RESULTS There was a notable enhancement in mitochondrial fragmentation in the nasal mucosa of mice following OVA stimulation, whereas Mdivi-1 prevented aberrant mitochondrial morphology. Indeed, Mdivi-1 alleviated the rubbing and sneezing responses in OVA-sensitized mice. Compared with vehicle-treated ones, mice treated with Mdivi-1 exhibited a reduction in interleukin (IL)-4, IL-5, and specific IgE levels in both serum and nasal lavage fluid, and shown an amelioration in inflammatory response of nasal mucosa. Meanwhile, Mdivi-1 treatment was associated with a suppression in JAK2 and STAT6 activation and reactive oxygen species generation, which act as important signaling for allergic response. CONCLUSION Our findings reveal mitochondrial dynamics modulate the allergic responses in AR. Mitochondrial dynamics may represent a promising target for the treatment of AR.
Collapse
Affiliation(s)
- Xu‐qing Chen
- Department of Otolaryngology, Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Long‐yun Zhou
- Department of Rehabilitation Medicine, Jiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Hua‐an Ma
- Department of Otolaryngology, Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Ji‐yong Wu
- Department of Otolaryngology, Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Shu‐fen Liu
- Spine Disease Institute, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yong‐jun Wu
- Department of Otolaryngology, Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
- The First Clinical Medical CollegeNanjing University of Chinese MedicineNanjingChina
| | - Dao‐nan Yan
- Department of Otolaryngology, Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
- The First Clinical Medical CollegeNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
7
|
Edwards K, Lydyard PM, Kulikova N, Tsertsvadze T, Volpi EV, Chiorazzi N, Porakishvili N. The role of CD180 in hematological malignancies and inflammatory disorders. Mol Med 2023; 29:97. [PMID: 37460961 PMCID: PMC10353253 DOI: 10.1186/s10020-023-00682-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023] Open
Abstract
Toll-like receptors play a significant role in the innate immune system and are also involved in the pathophysiology of many different diseases. Over the past 35 years, there have been a growing number of publications exploring the role of the orphan toll-like receptor, CD180. We therefore set out to provide a narrative review of the current evidence surrounding CD180 in both health and disease. We first explore the evidence surrounding the role of CD180 in physiology including its expression, function and signaling in antigen presenting cells (APCs) (dendritic cells, monocytes, and B cells). We particularly focus on the role of CD180 as a modulator of other TLRs including TLR2, TLR4, and TLR9. We then discuss the role of CD180 in inflammatory and autoimmune diseases, as well as in hematological malignancies of B cell origin, including chronic lymphocytic leukemia (CLL). Based on this evidence we produce a current model for CD180 in disease and explore the potential role for CD180 as both a prognostic biomarker and therapeutic target. Throughout, we highlight specific areas of research which should be addressed to further the understanding of CD180 biology and the translational potential of research into CD180 in various diseases.
Collapse
Affiliation(s)
- Kurtis Edwards
- School of Life Sciences, University of Westminster, London, UK
| | - Peter M Lydyard
- School of Life Sciences, University of Westminster, London, UK.
- The University of Georgia, Tbilisi, Georgia.
- Division of Infection of Immunity, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Nino Kulikova
- Agricultural University of Georgia, Tbilisi, Georgia
| | | | | | | | | |
Collapse
|
8
|
Sato K, Fujii K, Tanaka H, Hori M, Hibi H, Toyokuni S. Exposure of low-temperature plasma after vaccination in tongue promotes systemic IgM induction against spike protein of SARS-CoV-2. Free Radic Res 2023; 57:30-37. [PMID: 36919453 DOI: 10.1080/10715762.2023.2190486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
COVID-19 has been pandemic since 2020 with persistent generation of new variants. Cellular receptor for SARS-CoV-2 is angiotensin-converting enzyme 2 (ACE2), where transmembrane serine protease-2 (TMPRSS2) is essential for viral internalization. We recently reported abundant expression of ACE2 and TMPRSS2 in the oral cavity of humans and mice. Therefore, oral cavity may work for COVID-19 infection gates. Here we undertook to evaluate whether vaccination in the tongue harbors any merit in comparison to subcutaneous injection. Low-temperature plasma (LTP) is the fourth physical state of matters with ionization above gas but at body temperature. LTP provides complex chemistry, eventually supplying oxidative and/or nitrosative stress on the interface. LTP-associated cellular death has been reported to cause apoptosis and/or ferroptosis. However, there is few data available on immunogenicity retention after LTP exposure. We therefore studied the effect of LTP exposure after the injection of keyhole limpet hemocyanin (KLH) or spike 2 protein of SARS-CoV-2 to the tongue of six-week-old male BALB/c mice, compared to subcutaneous vaccination. Whereas LTP did not change the expression of ACE2 and TMPRSS2 in the tongue, repeated LTP exposure after tongue vaccination significantly promoted systemic and specific IgM production at day 11. In contrast, repeated LTP exposure after subcutaneous vaccination of KLH decreased systemic IgM production. Of note, tongue injection produced significantly higher titer of IgM and IgG in the case of KLH. In conclusion, LTP significantly reinforced humoral immunity by IgM after tongue injection. Vaccination to the tongue can be a novel strategy to acquire immediate immunity.
Collapse
Affiliation(s)
- Kotaro Sato
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kouki Fujii
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiromasa Tanaka
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Masaru Hori
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
9
|
Jing W, Liu C, Su C, Liu L, Chen P, Li X, Zhang X, Yuan B, Wang H, Du X. Role of reactive oxygen species and mitochondrial damage in rheumatoid arthritis and targeted drugs. Front Immunol 2023; 14:1107670. [PMID: 36845127 PMCID: PMC9948260 DOI: 10.3389/fimmu.2023.1107670] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation, pannus formation, and bone and cartilage damage. It has a high disability rate. The hypoxic microenvironment of RA joints can cause reactive oxygen species (ROS) accumulation and mitochondrial damage, which not only affect the metabolic processes of immune cells and pathological changes in fibroblastic synovial cells but also upregulate the expression of several inflammatory pathways, ultimately promoting inflammation. Additionally, ROS and mitochondrial damage are involved in angiogenesis and bone destruction, thereby accelerating RA progression. In this review, we highlighted the effects of ROS accumulation and mitochondrial damage on inflammatory response, angiogenesis, bone and cartilage damage in RA. Additionally, we summarized therapies that target ROS or mitochondria to relieve RA symptoms and discuss the gaps in research and existing controversies, hoping to provide new ideas for research in this area and insights for targeted drug development in RA.
Collapse
Affiliation(s)
- Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cui Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chenghong Su
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Limei Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ping Chen
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xiangjun Li
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xinghua Zhang
- Department of Acupuncture, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Bo Yuan
- Department of Acupuncture and Pain, Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Haidong Wang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaozheng Du
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
10
|
Biswas M, Yamazaki T, Tomono S, Karnan S, Takagi H, Ichimonji I, Inui M, Nagaoka F, Hosokawa Y, Akashi-Takamura S. Cell surface expression of human RP105 depends on N-glycosylation of MD-1. FEBS Lett 2022; 596:3211-3231. [PMID: 35849076 DOI: 10.1002/1873-3468.14452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/14/2023]
Abstract
For its cell surface expression, radioprotective 105 (RP105) - an orphan Toll-like receptor - must form a complex with a soluble glycoprotein called myeloid differentiation 1 (MD-1). The number of RP105-negative cells is significantly increased in patients with systemic lupus erythematosus (SLE); however, to elucidate the mechanism underlying this increase, how RP105 is expressed on the cell surface depending on MD-1 should be investigated. We demonstrated that RP105 exhibits two forms depending on MD-1 and its two N-glycosylation sites, N96 and N156. Cell surface expression of RP105 decreased in the presence of mutant MD-1 (N96Q/N156Q). Nonglycosylated MD-1 decreased the de novo cell surface expression of RP105 but not pre-expressed RP105. Thus, the N-glycans of MD-1 may represent targets for SLE therapy.
Collapse
Affiliation(s)
- Mrityunjoy Biswas
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Japan
| | - Tatsuya Yamazaki
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Japan
| | - Susumu Tomono
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Japan
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, Japan
| | - Hidekazu Takagi
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Japan
| | - Isao Ichimonji
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Japan
| | - Masanori Inui
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Japan
| | - Fumiaki Nagaoka
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Japan
| | - Sachiko Akashi-Takamura
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Japan
| |
Collapse
|
11
|
Zhan XL, Chen SY, Jiang R, Dai YW, Lu JF, Yang GJ, Chen J, Lu XJ. Two paralogs of CXCR4 in the Japanese sea bass (Lateolabrax japonica) are involved in the immune response of B lymphocytes. Mol Immunol 2022; 143:27-40. [PMID: 35016116 DOI: 10.1016/j.molimm.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 11/28/2022]
Abstract
CXC chemokine receptor 4 (CXCR4), a member of the G-protein-coupled receptor family, plays an important role in host immune responses. Within the teleost lineage, there are two paralogs of CXCR4; however, the role of CXCR4 in teleost B cells is poorly understood. In this study, we determined the cDNA sequences of the two CXCR4 paralogs from the Japanese sea bass (Lateolabrax japonica; LjCXCR4a and LjCXCR4b). Sequence and phylogenetic tree analyses revealed that LjCXCR4a and LjCXCR4b are most closely related to CXCR4a and CXCR4b, respectively, in the large yellow croaker (Larimichthys crocea). CXCR4 transcripts were mainly expressed in the gills, and their expression in different tissues was altered upon infection with Vibrio harveyi. LjCXCR4a and LjCXCR4b protein levels were upregulated in infected B cells. Knockdown of LjCXCR4a and LjCXCR4b in B cells by RNA interference, the phagocytic activity of B cells was not affected. Furthermore, knockdown of LjCXCR4a, not of LjCXCR4b, was observed to inhibit LjIgM expression in lipopolysaccharide-stimulated B cells. In addition, knockdown of LjCXCR4a, not of LjCXCR4b, was found to reduce reactive oxygen species levels in B cells. Our results indicate that LjCXCR4a and LjCXCR4b modulate the immune response of Japanese sea bass B cells against bacterial infection, albeit via different pathways.
Collapse
Affiliation(s)
- Xiao-Lin Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, and Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Si-Ying Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, and Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Jiang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, and Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - You-Wu Dai
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, and Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Fei Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Guan-Jun Yang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, and Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| |
Collapse
|
12
|
Cheng YC, Duarte ME, Kim SW. Nutritional and functional values of lysed Corynebacterium glutamicum cell mass for intestinal health and growth of nursery pigs. J Anim Sci 2021; 99:skab331. [PMID: 34902029 PMCID: PMC8668180 DOI: 10.1093/jas/skab331] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
The objective was to determine the nutritional and functional values of lysed Corynebacterium glutamicum cell mass (CGCM) as a protein supplement and a source of cell wall fragments supporting the growth and intestinal health of nursery pigs. Thirty-two pigs (21 d of age) were allotted to four treatments (n = 8) based on the randomized block design with sex and initial body weight (BW) as blocks. The main effect was the dietary supplementation of lysed CGCM (0, 0.7, 1.4, and 2.1%) replacing blood plasma and fed in two phases (10 and 11 d, respectively). Feed intake and BW were measured at the end of each phase. Pigs were euthanized on day 21 to collect jejunal tissue and mucosa to evaluate intestinal health. Ileal digesta were collected to measure the apparent ileal digestibility of nutrients in diets. Data were analyzed using Proc Mixed and Reg of SAS. Increasing daily intake of CGCM increased (linear; P < 0.05) ADG of pigs. Increasing CGCM supplementation affected (quadratic; P < 0.05) the relative abundance of Lactobacillaceae (minimum: 26.4% at 1.2% CGCM), Helicobacteraceae (maximum: 29.3% at 1.2% CGCM), and Campylobacteraceae (maximum: 9.0% at 1.0% CGCM). Increasing CGCM supplementation affected (quadratic; P < 0.05) the concentrations of immunoglobulin G (maximum: 4.94 µg/mg of protein at 1.0% CGCM) and protein carbonyl (PC; maximum: 6.12 nmol/mg of protein at 1.1% CGCM), whereas linearly decreased (P < 0.05) malondialdehyde (MDA) in the proximal jejunal mucosa. Increasing CGCM supplemention affected (quadratic; P < 0.05) intestinal enterocyte proliferation rate (maximum: 13.3% at 1.0% CGCM), whereas it did not affect intestinal morphology and the nutrient digestibility. In conclusion, supplementing 1.0% to 1.2%, reducing blood plasma supplementation by 0.7% to 0.9%, respectively, increased potential pathogenic microbiota associated in the jejunal mucosa resulting in increased immune response, enterocyte proliferation, and PC concentration. However, supplementing diets with 2.1% CGCM, replacing 1.5% blood plasma, improved growth performance, and reduced MDA without affecting nutrient digestibility, intestinal morphology, and microbiota in the jejunal mucosa. In this study, based on the polynomial contrast, supplementing 1.0% to 1.2% CGCM suppressed the benefits from blood plasma, whereas supplementing 2.1% CGCM showed functional benefits of CGCM with similar effects from blood plasma supplementation.
Collapse
Affiliation(s)
- Yi-Chi Cheng
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
13
|
Delaloy C, Schuh W, Jäck HM, Bonaud A, Espéli M. Single cell resolution of Plasma Cell fate programming in health and disease. Eur J Immunol 2021; 52:10-23. [PMID: 34694625 DOI: 10.1002/eji.202149216] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/14/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022]
Abstract
Long considered a homogeneous population dedicated to antibody secretion, plasma cell phenotypic and functional heterogeneity is increasingly recognised. Plasma cells were first segregated based on their maturation level, but the complexity of this subset might well be underestimated by this simple dichotomy. Indeed, in the last decade new functions have been attributed to plasma cells including but not limited to cytokine secretion. However, a proper characterization of plasma cell heterogeneity has remained elusive partly due to technical issues and cellular features that are specific to this cell type. Cell intrinsic and cell extrinsic signals could be at the origin of this heterogeneity. Recent advances in technologies like single cell RNA-seq, ATAC-seq or ChIP-seq on low cell numbers helped to elucidate the fate decision in other cell lineages and similar approaches could be implemented to evaluate the heterogeneous fate of activated B cells in health and disease. Here, we summarized published work shedding some lights on the stimuli and genetic program shaping B cell terminal differentiation at the single cell level in mice and men. We also discuss the fate and heterogeneity of plasma cells during immune responses, vaccination and in the frame of human plasma cell disorders. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Céline Delaloy
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, LabEx IGO, 2 Av du Pr Léon Bernard, Rennes, 35043, France.,French Germinal Center Club, French Society for Immunology (SFI), Paris, 75015, France
| | - Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine III, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine III, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany
| | - Amélie Bonaud
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, F-75010, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Marion Espéli
- French Germinal Center Club, French Society for Immunology (SFI), Paris, 75015, France.,Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, F-75010, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
14
|
Yamazaki T, Biswas M, Kosugi K, Nagashima M, Inui M, Tomono S, Takagi H, Ichimonji I, Nagaoka F, Ainai A, Hasegawa H, Chiba J, Akashi-Takamura S. A Novel Gene Delivery Vector of Agonistic Anti-Radioprotective 105 Expressed on Cell Membranes Shows Adjuvant Effect for DNA Immunization Against Influenza. Front Immunol 2020; 11:606518. [PMID: 33414788 PMCID: PMC7783388 DOI: 10.3389/fimmu.2020.606518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022] Open
Abstract
Radioprotective 105 (RP105) (also termed CD180) is an orphan and unconventional Toll-like receptor (TLR) that lacks an intracellular signaling domain. The agonistic anti-RP105 monoclonal antibody (mAb) can cross-link RP105 on B cells, resulting in the proliferation and activation of B cells. Anti-RP105 mAb also has a potent adjuvant effect, providing higher levels of antigen-specific antibodies compared to alum. However, adjuvanticity is required for the covalent link between anti-RP105 mAb and the antigen. This is a possible obstacle to immunization due to the link between anti-RP105 mAb and some antigens, especially multi-transmembrane proteins. We have previously succeeded in inducing rapid and potent recombinant mAbs in mice using antibody gene-based delivery. To simplify the covalent link between anti-RP105 mAb and antigens, we generated genetic constructs of recombinant anti-RP105 mAb (αRP105) bound to the transmembrane domain of the IgG-B cell receptor (TM) (αRP105-TM), which could enable the anti-RP105 mAb to link the antigen via the cell membrane. We confirmed the expression of αRP105-TM and the antigen hemagglutinin, which is a membrane protein of the influenza virus, on the same cell. We also found that αRP105-TM could activate splenic B cells, including both mature and immature cells, depending on the cell surface RP105 in vitro. To evaluate the adjuvanticity of αRP105-TM, we conducted DNA immunization in mice with the plasmids encoding αRP105-TM and hemagglutinin, followed by challenge with an infection of a lethal dose of an influenza virus. We then obtained partially but significantly hemagglutinin-specific antibodies and observed protective effects against a lethal dose of influenza virus infection. The current αRP105-TM might provide adjuvanticity for a vaccine via a simple preparation of the expression plasmids encoding αRP105-TM and of that encoding the target antigen.
Collapse
MESH Headings
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/pharmacology
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Membrane/drug effects
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cell Proliferation/drug effects
- Coculture Techniques
- Gene Transfer Techniques
- Genetic Vectors
- HEK293 Cells
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/pharmacology
- Humans
- Hybridomas
- Immunization
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/pharmacology
- Lymphocyte Activation/drug effects
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice, Inbred BALB C
- Mice, Knockout
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/metabolism
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Rats
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Spleen/drug effects
- Spleen/immunology
- Spleen/metabolism
- Vaccines, DNA/pharmacology
Collapse
Affiliation(s)
- Tatsuya Yamazaki
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Mrityunjoy Biswas
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Kouyu Kosugi
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Maria Nagashima
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Masanori Inui
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Susumu Tomono
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Hidekazu Takagi
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Isao Ichimonji
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Fumiaki Nagaoka
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Joe Chiba
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Sachiko Akashi-Takamura
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi, Japan
| |
Collapse
|