1
|
Wardell CM, Boardman DA, Levings MK. Harnessing the biology of regulatory T cells to treat disease. Nat Rev Drug Discov 2024:10.1038/s41573-024-01089-x. [PMID: 39681737 DOI: 10.1038/s41573-024-01089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 12/18/2024]
Abstract
Regulatory T (Treg) cells are a suppressive subset of CD4+ T cells that maintain immune homeostasis and restrain inflammation. Three decades after their discovery, the promise of strategies to harness Treg cells for therapy has never been stronger. Multiple clinical trials seeking to enhance endogenous Treg cells or deliver them as a cell-based therapy have been performed and hint at signs of success, as well as to important limitations and unanswered questions. Strategies to deplete Treg cells in cancer are also in active clinical testing. Furthermore, multi-dimensional methods to interrogate the biology of Treg cells are leading to a refined understanding of Treg cell biology and new approaches to harness tissue-specific functions for therapy. A new generation of Treg cell clinical trials is now being fuelled by advances in nanomedicine and synthetic biology, seeking more precise ways to tailor Treg cell function. This Review will discuss recent advances in our understanding of human Treg cell biology, with a focus on mechanisms of action and strategies to assess outcomes of Treg cell-targeted therapies. It highlights results from recent clinical trials aiming to enhance or inhibit Treg cell activity in a variety of diseases, including allergy, transplantation, autoimmunity and cancer, and discusses ongoing strategies to refine these approaches.
Collapse
Affiliation(s)
- Christine M Wardell
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominic A Boardman
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
2
|
Tsakiroglou M, Evans A, Doce-Carracedo A, Little M, Hornby R, Roberts P, Zhang E, Miyajima F, Pirmohamed M. Gene Expression Dysregulation in Whole Blood of Patients with Clostridioides difficile Infection. Int J Mol Sci 2024; 25:12653. [PMID: 39684365 DOI: 10.3390/ijms252312653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Clostridioides difficile (C. difficile) is a global threat and has significant implications for individuals and health care systems. Little is known about host molecular mechanisms and transcriptional changes in peripheral immune cells. This is the first gene expression study in whole blood from patients with C. difficile infection. We took blood and stool samples from patients with toxigenic C. difficile infection (CDI), non-toxigenic C. difficile infection (GDH), inflammatory bowel disease (IBD), diarrhea from other causes (DC), and healthy controls (HC). We performed transcriptome-wide RNA profiling on peripheral blood to identify diarrhea common and CDI unique gene sets. Diarrhea groups upregulated innate immune responses with neutrophils at the epicenter. The common signature associated with diarrhea was non-specific and shared by various other inflammatory conditions. CDI had a unique 45 gene set reflecting the downregulation of humoral and T cell memory functions. Dysregulation of immunometabolic genes was also abundant and linked to immune cell fate during differentiation. Whole transcriptome analysis of white cells in blood from patients with toxigenic C. difficile infection showed that there is an impairment of adaptive immunity and immunometabolism.
Collapse
Affiliation(s)
- Maria Tsakiroglou
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Anthony Evans
- Computational Biology Facility, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK
| | - Alejandra Doce-Carracedo
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Clinical Directorate, GCP Laboratories, University of Liverpool, Liverpool L7 8TX, UK
| | - Margaret Little
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Rachel Hornby
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Paul Roberts
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Faculty of Science and Engineering, School of Biomedical Science and Physiology, University of Wolverhampton, Wolverhampton WV1 1LZ, UK
| | - Eunice Zhang
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Fabio Miyajima
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Oswaldo Cruz Foundation (Fiocruz), Branch Ceara, Eusebio 61773-270, Brazil
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| |
Collapse
|
3
|
de Kivit S, Mensink M, Kostidis S, Derks RJE, Zaal EA, Heijink M, Verleng LJ, de Vries E, Schrama E, Blomberg N, Berkers CR, Giera M, Borst J. Immune suppression by human thymus-derived effector Tregs relies on glucose/lactate-fueled fatty acid synthesis. Cell Rep 2024; 43:114681. [PMID: 39180751 DOI: 10.1016/j.celrep.2024.114681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/10/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
Regulatory T cells (Tregs) suppress pro-inflammatory conventional T cell (Tconv) responses. As lipids impact cell signaling and function, we compare the lipid composition of CD4+ thymus-derived (t)Tregs and Tconvs. Lipidomics reveal constitutive enrichment of neutral lipids in Tconvs and phospholipids in tTregs. TNFR2-co-stimulated effector tTregs and Tconvs are both glycolytic, but only in tTregs are glycolysis and the tricarboxylic acid (TCA) cycle linked to a boost in fatty acid (FA) synthesis (FAS), supported by relevant gene expression. FA chains in tTregs are longer and more unsaturated than in Tconvs. In contrast to Tconvs, tTregs effectively use either lactate or glucose for FAS and rely on this process for proliferation. FASN and SCD1, enzymes responsible for FAS and FA desaturation, prove essential for the ability of tTregs to suppress Tconvs. These data illuminate how effector tTregs can thrive in inflamed or cancerous tissues with limiting glucose but abundant lactate levels.
Collapse
Affiliation(s)
- Sander de Kivit
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| | - Mark Mensink
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Rico J E Derks
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Esther A Zaal
- Division of Cell Biology, Metabolism, and Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Marieke Heijink
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Lotte J Verleng
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Evert de Vries
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Ellen Schrama
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Celia R Berkers
- Division of Cell Biology, Metabolism, and Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Jannie Borst
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| |
Collapse
|
4
|
Deng EZ, Marino GB, Clarke DJB, Diamant I, Resnick AC, Ma W, Wang P, Ma'ayan A. Multiomics2Targets identifies targets from cancer cohorts profiled with transcriptomics, proteomics, and phosphoproteomics. CELL REPORTS METHODS 2024; 4:100839. [PMID: 39127042 PMCID: PMC11384097 DOI: 10.1016/j.crmeth.2024.100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/06/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
The availability of data from profiling of cancer patients with multiomics is rapidly increasing. However, integrative analysis of such data for personalized target identification is not trivial. Multiomics2Targets is a platform that enables users to upload transcriptomics, proteomics, and phosphoproteomics data matrices collected from the same cohort of cancer patients. After uploading the data, Multiomics2Targets produces a report that resembles a research publication. The uploaded matrices are processed, analyzed, and visualized using the tools Enrichr, KEA3, ChEA3, Expression2Kinases, and TargetRanger to identify and prioritize proteins, genes, and transcripts as potential targets. Figures and tables, as well as descriptions of the methods and results, are automatically generated. Reports include an abstract, introduction, methods, results, discussion, conclusions, and references and are exportable as citable PDFs and Jupyter Notebooks. Multiomics2Targets is applied to analyze version 3 of the Clinical Proteomic Tumor Analysis Consortium (CPTAC3) pan-cancer cohort, identifying potential targets for each CPTAC3 cancer subtype. Multiomics2Targets is available from https://multiomics2targets.maayanlab.cloud/.
Collapse
Affiliation(s)
- Eden Z Deng
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Giacomo B Marino
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Daniel J B Clarke
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Ido Diamant
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Adam C Resnick
- Center for Data Driven Discovery in Biomedicine, Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA.
| |
Collapse
|
5
|
Song X, Chen R, Li J, Zhu Y, Jiao J, Liu H, Chen Z, Geng J. Fragile Treg cells: Traitors in immune homeostasis? Pharmacol Res 2024; 206:107297. [PMID: 38977207 DOI: 10.1016/j.phrs.2024.107297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Regulatory T (Treg) cells play a key role in maintaining immune tolerance and tissue homeostasis. However, in some disease microenvironments, Treg cells exhibit fragility, which manifests as preserved FoxP3 expression accompanied by inflammation and loss of immunosuppression. Fragile Treg cells are formatively, phenotypically and functionally diverse in various diseases, further complicating the role of Treg cells in the immunotherapeutic response and offering novel targets for disease treatment by modulating specific Treg subsets. In this review, we summarize findings on fragile Treg cells to provide a framework for characterizing the formation and role of fragile Treg cells in different diseases, and we discuss how this information may guide the development of more specific Treg-targeted immunotherapies.
Collapse
Affiliation(s)
- Xiyu Song
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Ruo Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Jiaxin Li
- Student Brigade of Basic Medicine School, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Yumeng Zhu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Jianhua Jiao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Hongjiao Liu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Zhinan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Jiejie Geng
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China; State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, PR China.
| |
Collapse
|
6
|
Lorenzini T, Faigle W, Ruder J, Docampo MJ, Opitz L, Martin R. Alterations of Thymus-Derived Tregs in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200251. [PMID: 38838284 PMCID: PMC11160584 DOI: 10.1212/nxi.0000000000200251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND AND OBJECTIVES Multiple sclerosis (MS) is considered a prototypic autoimmune disease of the CNS. It is the leading cause of chronic neurologic disability in young adults. Proinflammatory B cells and autoreactive T cells both play important roles in its pathogenesis. We aimed to study alterations of regulatory T cells (Tregs), which likely also contribute to the disease, but their involvement is less clear. METHODS By combining multiple experimental approaches, we examined the Treg compartments in 41 patients with relapsing-remitting MS and 17 healthy donors. RESULTS Patients with MS showed a reduced frequency of CD4+ T cells and Foxp3+ Tregs and age-dependent alterations of Treg subsets. Treg suppressive function was compromised in patients, who were treated with natalizumab, while it was unaffected in untreated and anti-CD20-treated patients. The changes in natalizumab-treated patients included increased proinflammatory cytokines and an altered transcriptome in thymus-derived (t)-Tregs, but not in peripheral (p)-Tregs. DISCUSSION Treg dysfunction in patients with MS might be related to an altered transcriptome of t-Tregs and a proinflammatory environment. Our findings contribute to a better understanding of Tregs and their subtypes in MS.
Collapse
Affiliation(s)
- Tiziana Lorenzini
- From the Neuroimmunology and MS Research (T.L., W.F., J.R., M.J.D., R.M.), Neurology Clinic, University Hospital Zurich; Division of Immunology (T.L.), University Children's Hospital Zurich, University of Zurich; Cellerys AG (W.F., R.M.), Schlieren, Switzerland; Immunity and Cancer (U932) (W.F.), Immune Response to Cancer Laboratory, Institut Curie, 26 rue d'Ulm, CEDEX 05, Paris, France; Functional Genomics Center Zurich (L.O.), Swiss Federal Institute of Technology and University of Zurich; Institute of Experimental Immunology (R.M.), University of Zurich, Switzerland; and Therapeutic Design Unit (R.M.), Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Wolfgang Faigle
- From the Neuroimmunology and MS Research (T.L., W.F., J.R., M.J.D., R.M.), Neurology Clinic, University Hospital Zurich; Division of Immunology (T.L.), University Children's Hospital Zurich, University of Zurich; Cellerys AG (W.F., R.M.), Schlieren, Switzerland; Immunity and Cancer (U932) (W.F.), Immune Response to Cancer Laboratory, Institut Curie, 26 rue d'Ulm, CEDEX 05, Paris, France; Functional Genomics Center Zurich (L.O.), Swiss Federal Institute of Technology and University of Zurich; Institute of Experimental Immunology (R.M.), University of Zurich, Switzerland; and Therapeutic Design Unit (R.M.), Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Josefine Ruder
- From the Neuroimmunology and MS Research (T.L., W.F., J.R., M.J.D., R.M.), Neurology Clinic, University Hospital Zurich; Division of Immunology (T.L.), University Children's Hospital Zurich, University of Zurich; Cellerys AG (W.F., R.M.), Schlieren, Switzerland; Immunity and Cancer (U932) (W.F.), Immune Response to Cancer Laboratory, Institut Curie, 26 rue d'Ulm, CEDEX 05, Paris, France; Functional Genomics Center Zurich (L.O.), Swiss Federal Institute of Technology and University of Zurich; Institute of Experimental Immunology (R.M.), University of Zurich, Switzerland; and Therapeutic Design Unit (R.M.), Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - María José Docampo
- From the Neuroimmunology and MS Research (T.L., W.F., J.R., M.J.D., R.M.), Neurology Clinic, University Hospital Zurich; Division of Immunology (T.L.), University Children's Hospital Zurich, University of Zurich; Cellerys AG (W.F., R.M.), Schlieren, Switzerland; Immunity and Cancer (U932) (W.F.), Immune Response to Cancer Laboratory, Institut Curie, 26 rue d'Ulm, CEDEX 05, Paris, France; Functional Genomics Center Zurich (L.O.), Swiss Federal Institute of Technology and University of Zurich; Institute of Experimental Immunology (R.M.), University of Zurich, Switzerland; and Therapeutic Design Unit (R.M.), Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Lennart Opitz
- From the Neuroimmunology and MS Research (T.L., W.F., J.R., M.J.D., R.M.), Neurology Clinic, University Hospital Zurich; Division of Immunology (T.L.), University Children's Hospital Zurich, University of Zurich; Cellerys AG (W.F., R.M.), Schlieren, Switzerland; Immunity and Cancer (U932) (W.F.), Immune Response to Cancer Laboratory, Institut Curie, 26 rue d'Ulm, CEDEX 05, Paris, France; Functional Genomics Center Zurich (L.O.), Swiss Federal Institute of Technology and University of Zurich; Institute of Experimental Immunology (R.M.), University of Zurich, Switzerland; and Therapeutic Design Unit (R.M.), Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Roland Martin
- From the Neuroimmunology and MS Research (T.L., W.F., J.R., M.J.D., R.M.), Neurology Clinic, University Hospital Zurich; Division of Immunology (T.L.), University Children's Hospital Zurich, University of Zurich; Cellerys AG (W.F., R.M.), Schlieren, Switzerland; Immunity and Cancer (U932) (W.F.), Immune Response to Cancer Laboratory, Institut Curie, 26 rue d'Ulm, CEDEX 05, Paris, France; Functional Genomics Center Zurich (L.O.), Swiss Federal Institute of Technology and University of Zurich; Institute of Experimental Immunology (R.M.), University of Zurich, Switzerland; and Therapeutic Design Unit (R.M.), Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Blinova VG, Zhdanov DD. Many Faces of Regulatory T Cells: Heterogeneity or Plasticity? Cells 2024; 13:959. [PMID: 38891091 PMCID: PMC11171907 DOI: 10.3390/cells13110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory T cells (Tregs) are essential for maintaining the immune balance in normal and pathological conditions. In autoimmune diseases and transplantation, they restrain the loss of self-tolerance and promote engraftment, whereas in cancer, an increase in Treg numbers is mostly associated with tumor growth and poor prognosis. Numerous markers and their combinations have been used to identify Treg subsets, demonstrating the phenotypic diversity of Tregs. The complexity of Treg identification can be hampered by the unstable expression of some markers, the decrease in the expression of a specific marker over time or the emergence of a new marker. It remains unclear whether such phenotypic shifts are due to new conditions or whether the observed changes are due to initially different populations. In the first case, cellular plasticity is observed, whereas in the second, cellular heterogeneity is observed. The difference between these terms in relation to Tregs is rather blurred. Considering the promising perspectives of Tregs in regenerative cell-based therapy, the existing confusing data on Treg phenotypes require further investigation and analysis. In our review, we introduce criteria that allow us to distinguish between the heterogeneity and plasticity of Tregs normally and pathologically, taking a closer look at their diversity and drawing the line between two terms.
Collapse
Affiliation(s)
- Varvara G. Blinova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia;
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia;
- Department of Biochemistry, People’s Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russia
| |
Collapse
|
8
|
Gootjes C, Zwaginga JJ, Roep BO, Nikolic T. Defining Human Regulatory T Cells beyond FOXP3: The Need to Combine Phenotype with Function. Cells 2024; 13:941. [PMID: 38891073 PMCID: PMC11172350 DOI: 10.3390/cells13110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory T cells (Tregs) are essential to maintain immune homeostasis by promoting self-tolerance. Reduced Treg numbers or functionality can lead to a loss of tolerance, increasing the risk of developing autoimmune diseases. An overwhelming variety of human Tregs has been described, based on either specific phenotype, tissue compartment, or pathological condition, yet the bulk of the literature only addresses CD25-positive and CD127-negative cells, coined by naturally occurring Tregs (nTregs), most of which express the transcription factor Forkhead box protein 3 (FOXP3). While the discovery of FOXP3 was seminal to understanding the origin and biology of nTregs, there is evidence in humans that not all T cells expressing FOXP3 are regulatory, and that not all Tregs express FOXP3. Namely, the activation of human T cells induces the transient expression of FOXP3, irrespective of whether they are regulatory or inflammatory effectors, while some induced T cells that may be broadly defined as Tregs (e.g., Tr1 cells) typically lack demethylation and do not express FOXP3. Furthermore, it is unknown whether and how many nTregs exist without FOXP3 expression. Several other candidate regulatory molecules, such as GITR, Lag-3, GARP, GPA33, Helios, and Neuropilin, have been identified but subsequently discarded as Treg-specific markers. Multiparametric analyses have uncovered a plethora of Treg phenotypes, and neither single markers nor combinations thereof can define all and only Tregs. To date, only the functional capacity to inhibit immune responses defines a Treg and distinguishes Tregs from inflammatory T cells (Teffs) in humans. This review revisits current knowledge of the Treg universe with respect to their heterogeneity in phenotype and function. We propose that it is unavoidable to characterize human Tregs by their phenotype in combination with their function, since phenotype alone does not unambiguously define Tregs. There is an unmet need to align the expression of specific markers or combinations thereof with a particular suppressive function to coin functional Treg entities and categorize Treg diversity.
Collapse
Affiliation(s)
- Chelsea Gootjes
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (J.J.Z.); (T.N.)
| | | | | | | |
Collapse
|
9
|
Mensink M, Verleng LJ, Schrama E, Janssen GM, Tjokrodirijo RT, van Veelen PA, Jiang Q, Pascutti MF, van der Hoorn ML, Eikmans M, de Kivit S, Borst J. Tregs from human blood differentiate into nonlymphoid tissue-resident effector cells upon TNFR2 costimulation. JCI Insight 2024; 9:e172942. [PMID: 38341270 PMCID: PMC10972588 DOI: 10.1172/jci.insight.172942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Tregs can facilitate transplant tolerance and attenuate autoimmune and inflammatory diseases. Therefore, it is clinically relevant to stimulate Treg expansion and function in vivo and to create therapeutic Treg products in vitro. We report that TNF receptor 2 (TNFR2) is a unique costimulus for naive, thymus-derived Tregs (tTregs) from human blood that promotes their differentiation into nonlymphoid tissue-resident (NLT-resident) effector Tregs, without Th-like polarization. In contrast, CD28 costimulation maintains a lymphoid tissue-resident (LT-resident) Treg phenotype. We base this conclusion on transcriptome and proteome analysis of TNFR2- and CD28-costimulated CD4+ tTregs and conventional T cells (Tconvs), followed by bioinformatic comparison with published transcriptomic Treg signatures from NLT and LT in health and disease, including autoimmunity and cancer. These analyses illuminate that TNFR2 costimulation promoted tTreg capacity for survival, migration, immunosuppression, and tissue regeneration. Functional studies confirmed improved migratory ability of TNFR2-costimulated tTregs. Flow cytometry validated the presence of the TNFR2-driven tTreg signature in effector/memory Tregs from the human placenta, as opposed to blood. Thus, TNFR2 can be exploited as a driver of NLT-resident tTreg differentiation for adoptive cell therapy or antibody-based immunomodulation in human disease.
Collapse
|
10
|
Ciudad M, Ouandji S, Lamarthée B, Cladière C, Ghesquière T, Nivet M, Thébault M, Boidot R, Soudry-Faure A, Chevrier S, Richard C, Maillet T, Maurier F, Greigert H, Genet C, Ramon A, Trad M, Predan V, Saas P, Samson M, Bonnotte B, Audia S. Regulatory T-cell dysfunctions are associated with increase in tumor necrosis factor α in autoimmune hemolytic anemia and participate in Th17 polarization. Haematologica 2024; 109:444-457. [PMID: 37534543 PMCID: PMC10828774 DOI: 10.3324/haematol.2023.282859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Warm autoimmune hemolytic anemia (wAIHA) is a rare acquired autoimmune disease mediated by antibodies targeting red blood cells. The involvement of CD4 T-helper cells has been scarcely explored, with most findings extrapolated from animal models. Here, we performed quantification of both effector T lymphocytes (Teff) and regulatory T cells (Treg), associated with functional and transcriptomic analyses of Treg in human wAIHA. We observed a shift of Teff toward a Th17 polarization concordant with an increase in serum interleukin-17 concentration that correlates with red blood cell destruction parameters, namely lactate dehydrogenase and bilirubin levels. A decrease in circulating Treg, notably effector Treg, associated with a functional deficiency, as represented by their decrease capability to inhibit Teff proliferation, were also observed. Treg deficiency was associated with a reduced expression of Foxp3, the master transcription factor known to maintain the Treg phenotype stability and suppressive functions. Transcriptomic profiling of Treg revealed activation of the tumor necrosis facto (TNF)-α pathway, which was linked to increased serum TNF-α concentrations that were twice as high as in controls. Treg transcriptomic profiling also suggested that post-translational mechanisms possibly accounted for Foxp3 downregulation and Treg dysfunctions. Since TNF-α participates in the rupture of immune tolerance during wAIHA, its inhibition could be of interest. To this end, the effects of fostamatinib, a SYK inhibitor, were investigated in vitro, and we showed that besides the inhibition of erythrocyte phagocytosis by monocytes, fostamatinib is also able to dampen TNF-α production, thus appearing as a promising multitargeting therapy in wAIHA (clinicaltrials gov. Identifier: NCT02158195).
Collapse
Affiliation(s)
- Marion Ciudad
- Department of Internal Medicine and Clinical Immunology, Referral Center for adult autoimmune cytopenia (CeReCAI) - Dijon University Hospital - F-21000 Dijon, France; Université de Bourgogne, INSERM, UMR1098, RIGHT -F-21000 Dijon
| | - Sethi Ouandji
- Department of Internal Medicine and Clinical Immunology, Referral Center for adult autoimmune cytopenia (CeReCAI) - Dijon University Hospital - F-21000 Dijon, France; Université de Bourgogne, INSERM, UMR1098, RIGHT -F-21000 Dijon
| | | | - Claudie Cladière
- Department of Internal Medicine and Clinical Immunology, Referral Center for adult autoimmune cytopenia (CeReCAI) - Dijon University Hospital - F-21000 Dijon, France; Université de Bourgogne, INSERM, UMR1098, RIGHT -F-21000 Dijon
| | - Thibault Ghesquière
- Department of Internal Medicine and Clinical Immunology, Referral Center for adult autoimmune cytopenia (CeReCAI) - Dijon University Hospital - F-21000 Dijon, France; Université de Bourgogne, INSERM, UMR1098, RIGHT -F-21000 Dijon
| | - Martin Nivet
- Department of Internal Medicine and Clinical Immunology, Referral Center for adult autoimmune cytopenia (CeReCAI) - Dijon University Hospital - F-21000 Dijon, France; Université de Bourgogne, INSERM, UMR1098, RIGHT -F-21000 Dijon
| | - Marine Thébault
- Department of Internal Medicine and Clinical Immunology, Referral Center for adult autoimmune cytopenia (CeReCAI) - Dijon University Hospital - F-21000 Dijon, France; Université de Bourgogne, INSERM, UMR1098, RIGHT -F-21000 Dijon
| | - Romain Boidot
- Unit of Molecular Biology, Georges-François Leclerc Cancer Center - F-21000 Dijon
| | - Agnès Soudry-Faure
- Department of Clinical Research and Innovation (DRCI), Clinical Research Unit-Methodological Support Network (USMR), Dijon Bourgogne University Hospital, Dijon
| | - Sandy Chevrier
- Unit of Molecular Biology, Georges-François Leclerc Cancer Center - F-21000 Dijon
| | - Corentin Richard
- Unit of Molecular Biology, Georges-François Leclerc Cancer Center - F-21000 Dijon
| | - Thibault Maillet
- Department of Internal Medicine - Centre Hospitalier de Mâcon, Groupe Hospitalier Bourgogne Méridionale - F-71000 Macon
| | - François Maurier
- Department of Internal Medicine, Groupe Hospitalier UNEOS - F-57000 Metz
| | - Hélène Greigert
- Department of Internal Medicine and Clinical Immunology, Referral Center for adult autoimmune cytopenia (CeReCAI) - Dijon University Hospital - F-21000 Dijon, France; Université de Bourgogne, INSERM, UMR1098, RIGHT -F-21000 Dijon
| | - Coraline Genet
- Université de Bourgogne, INSERM, UMR1098, RIGHT -F-21000 Dijon
| | - André Ramon
- Université de Bourgogne, INSERM, UMR1098, RIGHT -F-21000 Dijon
| | - Malika Trad
- Université de Bourgogne, INSERM, UMR1098, RIGHT -F-21000 Dijon
| | - Valérie Predan
- Department of Internal Medicine and Clinical Immunology, Referral Center for adult autoimmune cytopenia (CeReCAI) - Dijon University Hospital - F-21000 Dijon
| | - Philippe Saas
- Université de Bourgogne, INSERM, UMR1098, RIGHT -F-21000 Dijon
| | - Maxime Samson
- Department of Internal Medicine and Clinical Immunology, Referral Center for adult autoimmune cytopenia (CeReCAI) - Dijon University Hospital - F-21000 Dijon, France; Université de Bourgogne, INSERM, UMR1098, RIGHT -F-21000 Dijon
| | - Bernard Bonnotte
- Department of Internal Medicine and Clinical Immunology, Referral Center for adult autoimmune cytopenia (CeReCAI) - Dijon University Hospital - F-21000 Dijon, France; Université de Bourgogne, INSERM, UMR1098, RIGHT -F-21000 Dijon
| | - Sylvain Audia
- Department of Internal Medicine and Clinical Immunology, Referral Center for adult autoimmune cytopenia (CeReCAI) - Dijon University Hospital - F-21000 Dijon, France; Université de Bourgogne, INSERM, UMR1098, RIGHT -F-21000 Dijon.
| |
Collapse
|
11
|
Santosh Nirmala S, Kayani K, Gliwiński M, Hu Y, Iwaszkiewicz-Grześ D, Piotrowska-Mieczkowska M, Sakowska J, Tomaszewicz M, Marín Morales JM, Lakshmi K, Marek-Trzonkowska NM, Trzonkowski P, Oo YH, Fuchs A. Beyond FOXP3: a 20-year journey unravelling human regulatory T-cell heterogeneity. Front Immunol 2024; 14:1321228. [PMID: 38283365 PMCID: PMC10811018 DOI: 10.3389/fimmu.2023.1321228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Abstract
The initial idea of a distinct group of T-cells responsible for suppressing immune responses was first postulated half a century ago. However, it is only in the last three decades that we have identified what we now term regulatory T-cells (Tregs), and subsequently elucidated and crystallized our understanding of them. Human Tregs have emerged as essential to immune tolerance and the prevention of autoimmune diseases and are typically contemporaneously characterized by their CD3+CD4+CD25high CD127lowFOXP3+ phenotype. It is important to note that FOXP3+ Tregs exhibit substantial diversity in their origin, phenotypic characteristics, and function. Identifying reliable markers is crucial to the accurate identification, quantification, and assessment of Tregs in health and disease, as well as the enrichment and expansion of viable cells for adoptive cell therapy. In our comprehensive review, we address the contributions of various markers identified in the last two decades since the master transcriptional factor FOXP3 was identified in establishing and enriching purity, lineage stability, tissue homing and suppressive proficiency in CD4+ Tregs. Additionally, our review delves into recent breakthroughs in innovative Treg-based therapies, underscoring the significance of distinct markers in their therapeutic utilization. Understanding Treg subsets holds the key to effectively harnessing human Tregs for immunotherapeutic approaches.
Collapse
Affiliation(s)
| | - Kayani Kayani
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Department of Academic Surgery, Queen Elizabeth Hospital, University of Birmingham, Birmingham, United Kingdom
- Department of Renal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Mateusz Gliwiński
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Yueyuan Hu
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | | | - Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Martyna Tomaszewicz
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Kavitha Lakshmi
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ye Htun Oo
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Transplant and Hepatobiliary Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Birmingham Advanced Cellular Therapy Facility, University of Birmingham, Birmingham, United Kingdom
- Centre for Rare Diseases, European Reference Network - Rare Liver Centre, Birmingham, United Kingdom
| | - Anke Fuchs
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| |
Collapse
|
12
|
Kennedy-Batalla R, Acevedo D, Luo Y, Esteve-Solé A, Vlagea A, Correa-Rocha R, Seoane-Reula ME, Alsina L. Treg in inborn errors of immunity: gaps, knowns and future perspectives. Front Immunol 2024; 14:1278759. [PMID: 38259469 PMCID: PMC10800401 DOI: 10.3389/fimmu.2023.1278759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Regulatory T cells (Treg) are essential for immune balance, preventing overreactive responses and autoimmunity. Although traditionally characterized as CD4+CD25+CD127lowFoxP3hi, recent research has revealed diverse Treg subsets such as Tr1, Tr1-like, and CD8 Treg. Treg dysfunction leads to severe autoimmune diseases and immune-mediated inflammatory disorders. Inborn errors of immunity (IEI) are a group of disorders that affect correct functioning of the immune system. IEI include Tregopathies caused by genetic mutations affecting Treg development or function. In addition, Treg dysfunction is also observed in other IEIs, whose underlying mechanisms are largely unknown, thus requiring further research. This review provides a comprehensive overview and discussion of Treg in IEI focused on: A) advances and controversies in the evaluation of Treg extended subphenotypes and function; B) current knowledge and gaps in Treg disturbances in Tregopathies and other IEI including Treg subpopulation changes, genotype-phenotype correlation, Treg changes with disease activity, and available therapies, and C) the potential of Treg cell-based therapies for IEI with immune dysregulation. The aim is to improve both the diagnostic and the therapeutic approaches to IEI when there is involvement of Treg. We performed a non-systematic targeted literature review with a knowledgeable selection of current, high-quality original and review articles on Treg and IEI available since 2003 (with 58% of the articles within the last 6 years) in the PubMed database.
Collapse
Affiliation(s)
- Rebeca Kennedy-Batalla
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Daniel Acevedo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Yiyi Luo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Ana Esteve-Solé
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Immunology Department, Biomedic Diagnostic Center (CDB), Hospital Clínic of Barcelona, Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Ma Elena Seoane-Reula
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
- Pediatric Immuno-Allergy Unit, Allergy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Primary Immunodeficiencies Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
King LA, Toffoli EC, Veth M, Iglesias-Guimarais V, Slot MC, Amsen D, van de Ven R, Derks S, Fransen MF, Tuynman JB, Riedl T, Roovers RC, Adang AEP, Ruben JM, Parren PWHI, de Gruijl TD, van der Vliet HJ. A Bispecific γδ T-cell Engager Targeting EGFR Activates a Potent Vγ9Vδ2 T cell-Mediated Immune Response against EGFR-Expressing Tumors. Cancer Immunol Res 2023; 11:1237-1252. [PMID: 37368791 DOI: 10.1158/2326-6066.cir-23-0189] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
Vγ9Vδ2 T cells are effector cells with proven antitumor efficacy against a broad range of cancers. This study aimed to assess the antitumor activity and safety of a bispecific antibody directing Vγ9Vδ2 T cells to EGFR-expressing tumors. An EGFR-Vδ2 bispecific T-cell engager (bsTCE) was generated, and its capacity to activate Vγ9Vδ2 T cells and trigger antitumor activity was tested in multiple in vitro, in vivo, and ex vivo models. Studies to explore safety were conducted using cross-reactive surrogate engagers in nonhuman primates (NHP). We found that Vγ9Vδ2 T cells from peripheral blood and tumor specimens of patients with EGFR+ cancers had a distinct immune checkpoint expression profile characterized by low levels of PD-1, LAG-3, and TIM-3. Vγ9Vδ2 T cells could be activated by EGFR-Vδ2 bsTCEs to mediate lysis of various EGFR+ patient-derived tumor samples, and substantial tumor growth inhibition and improved survival were observed in in vivo xenograft mouse models using peripheral blood mononuclear cells (PBMC) as effector cells. EGFR-Vδ2 bsTCEs exerted preferential activity toward EGFR+ tumor cells and induced downstream activation of CD4+ and CD8+ T cells and natural killer (NK) cells without concomitant activation of suppressive regulatory T cells observed with EGFR-CD3 bsTCEs. Administration of fully cross-reactive and half-life extended surrogate engagers to NHPs did not trigger signals in the safety parameters that were assessed. Considering the effector and immune-activating properties of Vγ9Vδ2 T cells, the preclinical efficacy data and acceptable safety profile reported here provide a solid basis for testing EGFR-Vδ2 bsTCEs in patients with EGFR+ malignancies.
Collapse
Affiliation(s)
- Lisa A King
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Elisa C Toffoli
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Myrthe Veth
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | | | - Manon C Slot
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Derk Amsen
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rieneke van de Ven
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Otolaryngology and Head and Neck Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Sarah Derks
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Marieke F Fransen
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Pulmonary Diseases, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Jurriaan B Tuynman
- Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Thilo Riedl
- Lava Therapeutics NV, Utrecht, the Netherlands
| | | | | | | | - Paul W H I Parren
- Lava Therapeutics NV, Utrecht, the Netherlands
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Lava Therapeutics NV, Utrecht, the Netherlands
| |
Collapse
|
14
|
Lamarche C, Ward-Hartstonge K, Mi T, Lin DTS, Huang Q, Brown A, Edwards K, Novakovsky GE, Qi CN, Kobor MS, Zebley CC, Weber EW, Mackall CL, Levings MK. Tonic-signaling chimeric antigen receptors drive human regulatory T cell exhaustion. Proc Natl Acad Sci U S A 2023; 120:e2219086120. [PMID: 36972454 PMCID: PMC10083618 DOI: 10.1073/pnas.2219086120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Regulatory T cell (Treg) therapy is a promising approach to improve outcomes in transplantation and autoimmunity. In conventional T cell therapy, chronic stimulation can result in poor in vivo function, a phenomenon termed exhaustion. Whether or not Tregs are also susceptible to exhaustion, and if so, if this would limit their therapeutic effect, was unknown. To "benchmark" exhaustion in human Tregs, we used a method known to induce exhaustion in conventional T cells: expression of a tonic-signaling chimeric antigen receptor (TS-CAR). We found that TS-CAR-expressing Tregs rapidly acquired a phenotype that resembled exhaustion and had major changes in their transcriptome, metabolism, and epigenome. Similar to conventional T cells, TS-CAR Tregs upregulated expression of inhibitory receptors and transcription factors such as PD-1, TIM3, TOX and BLIMP1, and displayed a global increase in chromatin accessibility-enriched AP-1 family transcription factor binding sites. However, they also displayed Treg-specific changes such as high expression of 4-1BB, LAP, and GARP. DNA methylation analysis and comparison to a CD8+ T cell-based multipotency index showed that Tregs naturally exist in a relatively differentiated state, with further TS-CAR-induced changes. Functionally, TS-CAR Tregs remained stable and suppressive in vitro but were nonfunctional in vivo, as tested in a model of xenogeneic graft-versus-host disease. These data are the first comprehensive investigation of exhaustion in Tregs and reveal key similarities and differences with exhausted conventional T cells. The finding that human Tregs are susceptible to chronic stimulation-driven dysfunction has important implications for the design of CAR Treg adoptive immunotherapy strategies.
Collapse
Affiliation(s)
- Caroline Lamarche
- Department of Surgery, University of British Columbia, VancouverV6T 1Z4, BC, Canada
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- Department of Medicine, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, MontrealH1T 2M4, QC, Canada
| | - Kirsten Ward-Hartstonge
- Department of Surgery, University of British Columbia, VancouverV6T 1Z4, BC, Canada
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- Department of Microbiology and Immunology, University of Otago, Dunedin9016, New Zealand
| | - Tian Mi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - David T. S. Lin
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- Department of Medical Genetics, University of British Columbia, VancouverV6T 1Z4, BC, Canada
| | - Qing Huang
- Department of Surgery, University of British Columbia, VancouverV6T 1Z4, BC, Canada
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
| | - Andrew Brown
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- School of Biomedical Engineering, University of British Columbia, VancouverV6T 1Z4, BC, Canada
| | - Karlie Edwards
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- Department of Medical Genetics, University of British Columbia, VancouverV6T 1Z4, BC, Canada
| | - Gherman E. Novakovsky
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- Department of Medical Genetics, University of British Columbia, VancouverV6T 1Z4, BC, Canada
| | - Christopher N. Qi
- Department of Surgery, University of British Columbia, VancouverV6T 1Z4, BC, Canada
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
| | - Michael S. Kobor
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- Department of Medical Genetics, University of British Columbia, VancouverV6T 1Z4, BC, Canada
| | - Caitlin C. Zebley
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN38105
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Evan W. Weber
- Division of Oncology, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA19104
| | - Crystal L. Mackall
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA94305
- Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Megan K Levings
- Department of Surgery, University of British Columbia, VancouverV6T 1Z4, BC, Canada
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- School of Biomedical Engineering, University of British Columbia, VancouverV6T 1Z4, BC, Canada
| |
Collapse
|
15
|
Boerman O, Abedin Z, DiMaria-Ghalili RA, Weingarten MS, Neidrauer M, Lewin PA, Spiller KL. Gene expression changes in therapeutic ultrasound-treated venous leg ulcers. Front Med (Lausanne) 2023; 10:1144182. [PMID: 37064037 PMCID: PMC10098114 DOI: 10.3389/fmed.2023.1144182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction Low-frequency, low-intensity ultrasound has been previously shown to promote healing of chronic wounds in humans, but mechanisms behind these effects are poorly understood. The purpose of this study was to evaluate gene expression differences in debrided human venous ulcer tissue from patients treated with low-frequency (20 kHz), low-intensity (100 mW/cm2) ultrasound compared to a sham treatment in an effort to better understand the potential biological mechanisms. Methods Debrided venous ulcer tissue was collected from 32 subjects one week after sham treatment or low-frequency, low-intensity ultrasound treatment. Of these samples, 7 samples (3 ultrasound treated and 4 sham treated) yielded sufficient quality total RNA for analysis by ultra-high multiplexed PCR (Ampliseq) and expression of more than 24,000 genes was analyzed. 477 genes were found to be significantly differentially expressed between the ultrasound and sham groups using cut-off values of p < 0.05 and fold change of 2. Results and Discussion The top differentially expressed genes included those involved in regulation of cell metabolism, proliferation, and immune cell signaling. Gene set enrichment analysis identified 20 significantly enriched gene sets from upregulated genes and 4 significantly enriched gene sets from downregulated genes. Most of the enriched gene sets from upregulated genes were related to cell-cell signaling pathways. The most significantly enriched gene set from downregulated genes was the inflammatory response gene set. These findings show that therapeutic ultrasound influences cellular behavior in chronic wounds as early as 1 week after application. Considering the well-known role of chronic inflammation in impairing wound healing in chronic wounds, these results suggest that a downregulation of inflammatory genes is a possible biological mechanism of ultrasound-mediated venous chronic wound healing. Such increased understanding may ultimately lead to the enhancement of ultrasound devices to accelerate chronic wound healing and increase patient quality of life.
Collapse
Affiliation(s)
- Olivia Boerman
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
- Biomedical Engineering, Bucknell University, Lewisburg, PA, United States
| | - Zahidur Abedin
- Division of Molecular Biology - Research Services, PrimBio Research Institute, Exton, PA, United States
| | - Rose Ann DiMaria-Ghalili
- Department of Nursing, College of Nursing and Health Professions, Drexel University, Philadelphia, PA, United States
| | - Michael S. Weingarten
- Department of Surgery, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Michael Neidrauer
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Peter A. Lewin
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Kara L. Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
16
|
Mensink M, Schrama E, Cuadrado E, Amsen D, de Kivit S, Borst J. Proteomics reveals unique identities of human TGF-β-induced and thymus-derived CD4 + regulatory T cells. Sci Rep 2022; 12:20268. [PMID: 36434024 PMCID: PMC9700829 DOI: 10.1038/s41598-022-23515-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022] Open
Abstract
The CD4+ regulatory T (Treg) cell lineage, defined by FOXP3 expression, comprises thymus-derived (t)Treg cells and peripherally induced (p)Treg cells. As a model for Treg cells, studies employ TGF-β-induced (i)Treg cells generated from CD4+ conventional T (Tconv) cells in vitro. Here, we describe how human iTreg cells relate to human blood-derived tTreg and Tconv cells according to proteomic analysis. Each of these cell populations had a unique protein expression pattern. iTreg cells had very limited overlap in protein expression with tTreg cells, regardless of cell activation status and instead shared signaling and metabolic proteins with Tconv cells. tTreg cells had a uniquely modest response to CD3/CD28-mediated stimulation. As a benchmark, we used a previously defined proteomic signature that discerns ex vivo naïve and effector Treg cells from Tconv cells and includes conserved Treg cell properties. iTreg cells largely lacked this Treg cell core signature and highly expressed e.g. STAT4 and NFATC2, which may contribute to inflammatory responses. We also used a proteomic signature that distinguishes ex vivo effector Treg cells from Tconv cells and naïve Treg cells. iTreg cells contained part of this effector Treg cell signature, suggesting acquisition of pTreg cell features. In conclusion, iTreg cells are distinct from tTreg cells and share limited features with ex vivo Treg cells at the proteomic level.
Collapse
Affiliation(s)
- Mark Mensink
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Ellen Schrama
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Eloy Cuadrado
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Derk Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sander de Kivit
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands.
| | - Jannie Borst
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
17
|
Schmitt EG, Toth KA, Risma SI, Kolicheski A, Saucier N, Berríos RJF, Greenberg ZJ, Leiding JW, Bleesing JJ, Thatayatikom A, Schuettpelz LG, Edwards JR, Vogel TP, Cooper MA. A human STAT3 gain-of-function variant confers T cell dysregulation without predominant Treg dysfunction in mice. JCI Insight 2022; 7:162695. [PMID: 36136607 PMCID: PMC9675480 DOI: 10.1172/jci.insight.162695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022] Open
Abstract
Primary immune regulatory disorders (PIRD) represent a group of disorders characterized by immune dysregulation, presenting with a wide range of clinical disease, including autoimmunity, autoinflammation, or lymphoproliferation. Autosomal dominant germline gain-of-function (GOF) variants in STAT3 result in a PIRD with a broad clinical spectrum. Studies in patients have documented a decreased frequency of FOXP3+ Tregs and an increased frequency of Th17 cells in some patients with active disease. However, the mechanisms of disease pathogenesis in STAT3 GOF syndrome remain largely unknown, and treatment is challenging. We developed a knock-in mouse model harboring a de novo pathogenic human STAT3 variant (p.G421R) and found these mice developed T cell dysregulation, lymphoproliferation, and CD4+ Th1 cell skewing. Surprisingly, Treg numbers, phenotype, and function remained largely intact; however, mice had a selective deficiency in the generation of iTregs. In parallel, we performed single-cell RNA-Seq on T cells from STAT3 GOF patients. We demonstrate only minor changes in the Treg transcriptional signature and an expanded, effector CD8+ T cell population. Together, these findings suggest that Tregs are not the primary driver of disease and highlight the importance of preclinical models in the study of disease mechanisms in rare PIRD.
Collapse
Affiliation(s)
- Erica G. Schmitt
- Department of Pediatrics, Division of Rheumatology and Immunology
| | - Kelsey A. Toth
- Department of Pediatrics, Division of Rheumatology and Immunology
| | - Samuel I. Risma
- Department of Pediatrics, Division of Rheumatology and Immunology
| | - Ana Kolicheski
- Department of Pediatrics, Division of Rheumatology and Immunology
| | - Nermina Saucier
- Department of Pediatrics, Division of Rheumatology and Immunology
| | | | - Zev J. Greenberg
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jennifer W. Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland.,Infectious Diseases and Immunology, Arnold Palmer Hospital for Children, Orlando, Florida, USA
| | - Jack J. Bleesing
- Division of BM Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Laura G. Schuettpelz
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Tiphanie P. Vogel
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, USA
| | - Megan A. Cooper
- Department of Pediatrics, Division of Rheumatology and Immunology,,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
18
|
Du C, Zhao Y, Wang K, Nan X, Chen R, Xiong B. Effects of Milk-Derived Extracellular Vesicles on the Colonic Transcriptome and Proteome in Murine Model. Nutrients 2022; 14:nu14153057. [PMID: 35893911 PMCID: PMC9332160 DOI: 10.3390/nu14153057] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/29/2022] Open
Abstract
Evidence shows that effective nutritional intervention can prevent or mitigate the risk and morbidity of inflammatory bowel disease (IBD). Bovine milk extracellular vesicles (mEVs), a major bioactive constituent of milk, play an important role in maintaining intestinal health. The aims of this study were to assess the effects of mEV pre-supplementation on the colonic transcriptome and proteome in dextran sulphate sodium (DSS)-induced acute colitis, in order to understand the underlying molecular mechanisms of mEV protection against acute colitis. Our results revealed that dietary mEV supplementation alleviated the severity of acute colitis, as evidenced by the reduced disease activity index scores, histological damage, and infiltration of inflammatory cells. In addition, transcriptome profiling analysis found that oral mEVs significantly reduced the expression of pro-inflammatory cytokines (IL-1β, IL-6, IL-17A and IL-33), chemokine ligands (CXCL1, CXCL2, CXCL3, CXCL5, CCL3 and CCL11) and chemokine receptors (CXCR2 and CCR3). Moreover, oral mEVs up-regulated 109 proteins and down-regulated 150 proteins in the DSS-induced murine model, which were involved in modulating amino acid metabolism and lipid metabolism. Collectively, this study might provide new insights for identifying potential targets for the therapeutic effects of mEVs on colitis.
Collapse
|
19
|
Mensink M, Tran TNM, Zaal EA, Schrama E, Berkers CR, Borst J, de Kivit S. TNFR2 Costimulation Differentially Impacts Regulatory and Conventional CD4 + T-Cell Metabolism. Front Immunol 2022; 13:881166. [PMID: 35844585 PMCID: PMC9282886 DOI: 10.3389/fimmu.2022.881166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022] Open
Abstract
CD4+ conventional T cells (Tconvs) mediate adaptive immune responses, whereas regulatory T cells (Tregs) suppress those responses to safeguard the body from autoimmunity and inflammatory diseases. The opposing activities of Tconvs and Tregs depend on the stage of the immune response and their environment, with an orchestrating role for cytokine- and costimulatory receptors. Nutrient availability also impacts T-cell functionality via metabolic and biosynthetic processes that are largely unexplored. Many data argue that costimulation by Tumor Necrosis Factor Receptor 2 (TNFR2) favors support of Treg over Tconv responses and therefore TNFR2 is a key clinical target. Here, we review the pertinent literature on this topic and highlight the newly identified role of TNFR2 as a metabolic regulator for thymus-derived (t)Tregs. We present novel transcriptomic and metabolomic data that show the differential impact of TNFR2 on Tconv and tTreg gene expression and reveal distinct metabolic impact on both cell types.
Collapse
Affiliation(s)
- Mark Mensink
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Thi Ngoc Minh Tran
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Esther A. Zaal
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Ellen Schrama
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Celia R. Berkers
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Jannie Borst
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Sander de Kivit
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
20
|
Qu G, Chen J, Li Y, Yuan Y, Liang R, Li B. Current status and perspectives of regulatory T cell-based therapy. J Genet Genomics 2022; 49:599-611. [DOI: 10.1016/j.jgg.2022.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 02/08/2023]
|
21
|
Srivastava RK, Sapra L. The Rising Era of “Immunoporosis”: Role of Immune System in the Pathophysiology of Osteoporosis. J Inflamm Res 2022; 15:1667-1698. [PMID: 35282271 PMCID: PMC8906861 DOI: 10.2147/jir.s351918] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
Discoveries in the last few years have emphasized the existence of an enormous breadth of communication between bone and the immune system in maintaining skeletal homeostasis. Originally, the discovery of various factors was assigned to the immune system viz. interleukin (IL)-6, IL-10, IL-17, tumor necrosis factor (TNF)-α, receptor activator of nuclear factor kappa B ligand (RANKL), nuclear factor of activated T cells (NFATc1), etc., but now these factors have also been shown to have a significant impact on osteoblasts (OBs) and osteoclasts (OCs) biology. These discoveries led to an alteration in the approach for the treatment of several bone pathologies including osteoporosis. Osteoporosis is an inflammatory bone anomaly affecting more than 500 million people globally. In 2018, to highlight the importance of the immune system in the pathophysiology of osteoporosis, our group coined the term “immunoporosis”. In the present review, we exhaustively revisit the characteristics, mechanism of action, and function of both innate and adaptive immune cells with the goal of understanding the potential of immune cells in osteoporosis. We also highlight the Immunoporotic role of gut microbiota (GM) for the treatment and management of osteoporosis. Importantly, we further discuss whether an immune cell-based strategy to treat and manage osteoporosis is feasible and relevant in clinical settings.
Collapse
Affiliation(s)
- Rupesh K Srivastava
- Immunoporosis Lab, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
- Correspondence: Rupesh K Srivastava, Tel +91 11-26593548, Email ;
| | - Leena Sapra
- Immunoporosis Lab, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| |
Collapse
|
22
|
Morgana F, Opstelten R, Slot MC, Scott AM, van Lier RAW, Blom B, Mahfouz A, Amsen D. Single-Cell Transcriptomics Reveals Discrete Steps in Regulatory T Cell Development in the Human Thymus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:384-395. [PMID: 34937744 DOI: 10.4049/jimmunol.2100506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
CD4+CD25+FOXP3+ regulatory T (Treg) cells control immunological tolerance. Treg cells are generated in the thymus (tTreg) or in the periphery. Their superior lineage fidelity makes tTregs the preferred cell type for adoptive cell therapy (ACT). How human tTreg cells develop is incompletely understood. By combining single-cell transcriptomics and flow cytometry, we in this study delineated three major Treg developmental stages in the human thymus. At the first stage, which we propose to name pre-Treg I, cells still express lineage-inappropriate genes and exhibit signs of TCR signaling, presumably reflecting recognition of self-antigen. The subsequent pre-Treg II stage is marked by the sharp appearance of transcription factor FOXO1 and features induction of KLF2 and CCR7, in apparent preparation for thymic exit. The pre-Treg II stage can further be refined based on the sequential acquisition of surface markers CD31 and GPA33. The expression of CD45RA, finally, completes the phenotype also found on mature recent thymic emigrant Treg cells. Remarkably, the thymus contains a substantial fraction of recirculating mature effector Treg cells, distinguishable by expression of inflammatory chemokine receptors and absence of CCR7. The developmental origin of these cells is unclear and warrants caution when using thymic tissue as a source of stable cells for ACT. We show that cells in the major developmental stages can be distinguished using the surface markers CD1a, CD27, CCR7, and CD39, allowing for their viable isolation. These insights help identify fully mature tTreg cells for ACT and can serve as a basis for further mechanistic studies into tTreg development.
Collapse
Affiliation(s)
- Florencia Morgana
- Department of Hematopoiesis, Sanquin Research, Amsterdam, the Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Rianne Opstelten
- Department of Hematopoiesis, Sanquin Research, Amsterdam, the Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Manon C Slot
- Department of Hematopoiesis, Sanquin Research, Amsterdam, the Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Andrew M Scott
- Tumor Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - René A W van Lier
- Department of Hematopoiesis, Sanquin Research, Amsterdam, the Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Bianca Blom
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ahmed Mahfouz
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.,Delft Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands; and
| | - Derk Amsen
- Department of Hematopoiesis, Sanquin Research, Amsterdam, the Netherlands; .,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands.,Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Docampo MJ, Lutterotti A, Sospedra M, Martin R. Mechanistic and Biomarker Studies to Demonstrate Immune Tolerance in Multiple Sclerosis. Front Immunol 2022; 12:787498. [PMID: 35069562 PMCID: PMC8766750 DOI: 10.3389/fimmu.2021.787498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
The induction of specific immunological tolerance represents an important therapeutic goal for multiple sclerosis and other autoimmune diseases. Sound knowledge of the target antigens, the underlying pathomechanisms of the disease and the presumed mechanisms of action of the respective tolerance-inducing approach are essential for successful translation. Furthermore, suitable tools and assays to evaluate the induction of immune tolerance are key aspects for the development of such treatments. However, investigation of the mechanisms of action underlying tolerance induction poses several challenges. The optimization of sensitive, robust methods which allow the assessment of low frequency autoreactive T cells and the long-term reduction or change of their responses, the detection of regulatory cell populations and their immune mediators, as well as the validation of specific biomarkers indicating reduction of inflammation and damage, are needed to develop tolerance-inducing approaches successfully to patients. This short review focuses on how to demonstrate mechanistic proof-of-concept in antigen-specific tolerance-inducing therapies in MS.
Collapse
Affiliation(s)
| | | | | | - Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section, Neurology Clinic, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Janjua KA, Shahzad R, Shehzad A. Development of Novel Cancer Biomarkers for Diagnosis and Prognosis. CANCER BIOMARKERS IN DIAGNOSIS AND THERAPEUTICS 2022:277-343. [DOI: 10.1007/978-981-16-5759-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Haddadi MH, Negahdari B. Clinical and diagnostic potential of regulatory T cell markers: From bench to bedside. Transpl Immunol 2021; 70:101518. [PMID: 34922022 DOI: 10.1016/j.trim.2021.101518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022]
Abstract
Regulatory T (Treg) cells are heterogeneous immune cell populations residing in the thymus and peripheral lymphatic tissues. This immune cell plays a central and critical role in maintaining immune tolerance against undesirable immune responses. Treg cells' phenotypic heterogeneity caused by different pathological conditions makes their identification and differentiation from non-suppressive T cells difficult. On the other hand, using nonspecific markers and variable isolation panels leads to undesirable outcomes. There are a variety of markers to identify functional Treg cells, including CD25, FOXP3, and CTLA-4, as well as the epigenetic signature of forkhead box P3 (FOXP3), which can be used for both natural and induced Treg cells. Phenotypic heterogeneity is a major concern in Treg purification when using nonspecific markers, which can be addressed by utilizing suitable isolation panels designed for different purposes. This review presents a clinical framework for Treg detection and isolation, focusing on Treg markers such as CD25, FOXP3, CTLA-4, CD127, GPA-33, and TSDR demethylation to design Treg isolation panels suitable for different Treg therapy purposes. The current review also highlights new reliable Treg markers applicable for different purposes.
Collapse
Affiliation(s)
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Lam AJ, Lin DTS, Gillies JK, Uday P, Pesenacker AM, Kobor MS, Levings MK. Optimized CRISPR-mediated gene knockin reveals FOXP3-independent maintenance of human Treg identity. Cell Rep 2021; 36:109494. [PMID: 34348163 DOI: 10.1016/j.celrep.2021.109494] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/28/2021] [Accepted: 07/14/2021] [Indexed: 12/30/2022] Open
Abstract
Regulatory T cell (Treg) therapy is a promising curative approach for a variety of immune-mediated conditions. CRISPR-based genome editing allows precise insertion of transgenes through homology-directed repair, but its use in human Tregs has been limited. We report an optimized protocol for CRISPR-mediated gene knockin in human Tregs with high-yield expansion. To establish a benchmark of human Treg dysfunction, we target the master transcription factor FOXP3 in naive and memory Tregs. Although FOXP3-ablated Tregs upregulate cytokine expression, effects on suppressive capacity in vitro manifest slowly and primarily in memory Tregs. Moreover, FOXP3-ablated Tregs retain their characteristic protein, transcriptional, and DNA methylation profile. Instead, FOXP3 maintains DNA methylation at regions enriched for AP-1 binding sites. Thus, although FOXP3 is important for human Treg development, it has a limited role in maintaining mature Treg identity. Optimized gene knockin with human Tregs will enable mechanistic studies and the development of tailored, next-generation Treg cell therapies.
Collapse
Affiliation(s)
- Avery J Lam
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - David T S Lin
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Jana K Gillies
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Prakruti Uday
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Anne M Pesenacker
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Michael S Kobor
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
27
|
Negi S, Saini S, Tandel N, Sahu K, Mishra RP, Tyagi RK. Translating Treg Therapy for Inflammatory Bowel Disease in Humanized Mice. Cells 2021; 10:1847. [PMID: 34440615 PMCID: PMC8393385 DOI: 10.3390/cells10081847] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Crohn's disease and ulcerative colitis, two major forms of inflammatory bowel disease (IBD) in humans, afflicted in genetically predisposed individuals due to dysregulated immune response directed against constituents of gut flora. The defective immune responses mounted against the regulatory mechanisms amplify and maintain the IBD-induced mucosal inflammation. Therefore, restoring the balance between inflammatory and anti-inflammatory immunepathways in the gut may contribute to halting the IBD-associated tissue-damaging immune response. Phenotypic and functional characterization of various immune-suppressive T cells (regulatory T cells; Tregs) over the last decade has been used to optimize the procedures for in vitro expansion of these cells for developing therapeutic interventional strategies. In this paper, we review the mechanisms of action and functional importance of Tregs during the pathogenesis of IBD and modulating the disease induced inflammation as well as role of mouse models including humanized mice repopulated with the human immune system (HIS) to study the IBD. "Humanized" mouse models provide new tools to analyze human Treg ontogeny, immunobiology, and therapy and the role of Tregs in developing interventional strategies against IBD. Overall, humanized mouse models replicate the human conditions and prove a viable tool to study molecular functions of human Tregs to harness their therapeutic potential.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Colitis, Ulcerative/genetics
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/metabolism
- Colitis, Ulcerative/therapy
- Crohn Disease/genetics
- Crohn Disease/immunology
- Crohn Disease/metabolism
- Crohn Disease/therapy
- Disease Models, Animal
- Hematopoietic Stem Cell Transplantation
- Humans
- Mice, Transgenic
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Sushmita Negi
- Biomedical Parasitology and Nano-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; (S.N.); (S.S.); (K.S.)
- BERPDC Department, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India
| | - Sheetal Saini
- Biomedical Parasitology and Nano-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; (S.N.); (S.S.); (K.S.)
| | - Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India;
| | - Kiran Sahu
- Biomedical Parasitology and Nano-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; (S.N.); (S.S.); (K.S.)
| | - Ravi P.N. Mishra
- BERPDC Department, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India
| | - Rajeev K. Tyagi
- Biomedical Parasitology and Nano-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; (S.N.); (S.S.); (K.S.)
| |
Collapse
|
28
|
Zhang Y, Zhang J, Shi Y, Shen M, Lv H, Chen S, Feng Y, Chen H, Xu X, Yang T, Xu K. Differences in Maturation Status and Immune Phenotypes of Circulating Helios + and Helios - Tregs and Their Disrupted Correlations With Monocyte Subsets in Autoantibody-Positive T1D Individuals. Front Immunol 2021; 12:628504. [PMID: 34054801 PMCID: PMC8149963 DOI: 10.3389/fimmu.2021.628504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
CD4 Tregs are involved in the regulation of various autoimmune diseases but believed to be highly heterogeneous. Studies have indicated that Helios controls a distinct subset of functional Tregs. However, the immunological changes in circulating Helios+ and Helios− Tregs are not fully explored in type 1 diabetes (T1D). Here, we elucidated the differences in maturation status and immune regulatory phenotypes of Helios+ and Helios− Tregs and their correlations with monocyte subsets in T1D individuals. As CD25−/low FOXP3+ Tregs also represent a subset of functional Tregs, we defined Tregs as FOXP3+CD127−/low and examined circulating Helios+ and Helios− Treg subpopulations in 68 autoantibody-positive T1D individuals and 68 age-matched healthy controls. We found that expression of both FOXP3 and CTLA4 diminished in Helios− Tregs, while the proportion of CD25−/low Tregs increased in Helios+ Tregs of T1D individuals. Although the frequencies of neither Helios+ nor Helios− Tregs were affected by investigated T1D genetic risk loci, Helios+ Tregs correlated with age at T1D diagnosis negatively and disease duration positively. Moreover, the negative correlation between central and effector memory proportions of Helios+ Tregs in healthy controls was disrupted in T1D individuals. Finally, regulatory non-classical and intermediate monocytes also decreased in T1D individuals, and positive correlations between these regulatory monocytes and Helios+/Helios− Treg subsets in healthy controls disappeared in T1D individuals. In conclusion, we demonstrated the alternations in maturation status and immune phenotypes in Helios+ and Helios− Treg subsets and revealed the missing association between these Treg subsets and monocyte subsets in T1D individuals, which might point out another option for elucidating T1D mechanisms.
Collapse
Affiliation(s)
- Yuyue Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Shi
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Shen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Lv
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shu Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingjie Feng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Heng Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kuanfeng Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Opstelten R, Suwandi JS, Slot MC, Morgana F, Scott AM, Laban S, Nikolic T, Turksma AW, Kroeze A, Voermans C, Zwaginga JJ, Roep BO, Amsen D. GPA33 is expressed on multiple human blood cell types and distinguishes CD4 + central memory T cells with and without effector function. Eur J Immunol 2021; 51:1377-1389. [PMID: 33728639 PMCID: PMC8251590 DOI: 10.1002/eji.202048744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/13/2021] [Accepted: 03/10/2021] [Indexed: 11/23/2022]
Abstract
The Ig superfamily protein glycoprotein A33 (GPA33) has been implicated in immune dysregulation, but little is known about its expression in the immune compartment. Here, we comprehensively determined GPA33 expression patterns on human blood leukocyte subsets, using mass and flow cytometry. We found that GPA33 was expressed on fractions of B, dendritic, natural killer and innate lymphoid cells. Most prominent expression was found in the CD4+ T cell compartment. Naïve and CXCR5+ regulatory T cells were GPA33high, and naïve conventional CD4+ T cells expressed intermediate GPA33 levels. The expression pattern of GPA33 identified functional heterogeneity within the CD4+ central memory T cell (Tcm) population. GPA33+ CD4+ Tcm cells were fully undifferentiated, bona fide Tcm cells that lack immediate effector function, whereas GPA33– Tcm cells exhibited rapid effector functions and may represent an early stage of differentiation into effector/effector memory T cells before loss of CD62L. Expression of GPA33 in conventional CD4+ T cells suggests a role in localization and/or preservation of an undifferentiated state. These results form a basis to study the function of GPA33 and show it to be a useful marker to discriminate between different cellular subsets, especially in the CD4+ T cell lineage.
Collapse
Affiliation(s)
- Rianne Opstelten
- Department of Hematopoiesis and Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jessica S Suwandi
- Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Manon C Slot
- Department of Hematopoiesis and Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Florencia Morgana
- Department of Hematopoiesis and Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Sandra Laban
- Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Tatjana Nikolic
- Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Annelies W Turksma
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anna Kroeze
- Department of Hematopoiesis and Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Carlijn Voermans
- Department of Hematopoiesis and Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jaap-Jan Zwaginga
- Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands.,Sanquin Research, Center for Clinical Transfusion Research and Jon J van Rood Center for Clinical Transfusion Science, Leiden University Medical Center, Leiden, Netherlands
| | - Bart O Roep
- Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands.,Department of Diabetes Immunology, Diabetes & Metabolism Research Institute at the Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Derk Amsen
- Department of Hematopoiesis and Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
30
|
Swatler J, Turos-Korgul L, Kozlowska E, Piwocka K. Immunosuppressive Cell Subsets and Factors in Myeloid Leukemias. Cancers (Basel) 2021; 13:cancers13061203. [PMID: 33801964 PMCID: PMC7998753 DOI: 10.3390/cancers13061203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Effector immune system cells have the ability to kill tumor cells. However, as a cancer (such as leukemia) develops, it inhibits and evades the effector immune response. Such a state of immunosuppression can be driven by several factors – receptors, soluble cytokines, as well as by suppressive immune cells. In this review, we describe factors and cells that constitute immunosuppressive microenvironment of myeloid leukemias. We characterize factors of direct leukemic origin, such as inhibitory receptors, enzymes and extracellular vesicles. Furthermore, we describe suppressive immune cells, such as myeloid derived suppressor cells and regulatory T cells. Finally, we sum up changes in these drivers of immune evasion in myeloid leukemias during therapy. Abstract Both chronic myeloid leukemia and acute myeloid leukemia evade the immune response during their development and disease progression. As myeloid leukemia cells modify their bone marrow microenvironment, they lead to dysfunction of cytotoxic cells, such as CD8+ T cells or NK cells, simultaneously promoting development of immunosuppressive regulatory T cells and suppressive myeloid cells. This facilitates disease progression, spreading of leukemic blasts outside the bone marrow niche and therapy resistance. The following review focuses on main immunosuppressive features of myeloid leukemias. Firstly, factors derived directly from leukemic cells – inhibitory receptors, soluble factors and extracellular vesicles, are described. Further, we outline function, properties and origin of main immunosuppressive cells - regulatory T cells, myeloid derived suppressor cells and macrophages. Finally, we analyze interplay between recovery of effector immunity and therapeutic modalities, such as tyrosine kinase inhibitors and chemotherapy.
Collapse
Affiliation(s)
- Julian Swatler
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (J.S.); (L.T.-K.)
| | - Laura Turos-Korgul
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (J.S.); (L.T.-K.)
| | - Ewa Kozlowska
- Department of Immunology, Institute of Functional Biology and Ecology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (J.S.); (L.T.-K.)
- Correspondence:
| |
Collapse
|
31
|
Bayati F, Mohammadi M, Valadi M, Jamshidi S, Foma AM, Sharif-Paghaleh E. The Therapeutic Potential of Regulatory T Cells: Challenges and Opportunities. Front Immunol 2021; 11:585819. [PMID: 33519807 PMCID: PMC7844143 DOI: 10.3389/fimmu.2020.585819] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) are an immunosuppressive subgroup of CD4+ T cells which are identified by the expression of forkhead box protein P3 (Foxp3). The modulation capacity of these immune cells holds an important role in both transplantation and the development of autoimmune diseases. These cells are the main mediators of self-tolerance and are essential for avoiding excessive immune reactions. Tregs play a key role in the induction of peripheral tolerance that can prevent autoimmunity, by protecting self-reactive lymphocytes from the immune reaction. In contrast to autoimmune responses, tumor cells exploit Tregs in order to prevent immune cell recognition and anti-tumor immune response during the carcinogenesis process. Recently, numerous studies have focused on unraveling the biological functions and principles of Tregs and their primary suppressive mechanisms. Due to the promising and outstanding results, Tregs have been widely investigated as an alternative tool in preventing graft rejection and treating autoimmune diseases. On the other hand, targeting Tregs for the purpose of improving cancer immunotherapy is being intensively evaluated as a desirable and effective method. The purpose of this review is to point out the characteristic function and therapeutic potential of Tregs in regulatory immune mechanisms in transplantation tolerance, autoimmune diseases, cancer therapy, and also to discuss that how the manipulation of these mechanisms may increase the therapeutic options.
Collapse
Affiliation(s)
- Fatemeh Bayati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research & Development Department, Aryogen Pharmed, Karaj, Iran
| | - Mahsa Mohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Maryam Valadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Jamshidi
- Research & Development Department, Aryogen Pharmed, Karaj, Iran
| | - Arron Munggela Foma
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Sharif-Paghaleh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
32
|
de Kivit S, Mensink M, Hoekstra AT, Berlin I, Derks RJE, Both D, Aslam MA, Amsen D, Berkers CR, Borst J. Stable human regulatory T cells switch to glycolysis following TNF receptor 2 costimulation. Nat Metab 2020; 2:1046-1061. [PMID: 32958937 DOI: 10.1038/s42255-020-00271-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 07/27/2020] [Indexed: 01/08/2023]
Abstract
Following activation, conventional T (Tconv) cells undergo an mTOR-driven glycolytic switch. Regulatory T (Treg) cells reportedly repress the mTOR pathway and avoid glycolysis. However, here we demonstrate that human thymus-derived Treg (tTreg) cells can become glycolytic in response to tumour necrosis factor receptor 2 (TNFR2) costimulation. This costimulus increases proliferation and induces a glycolytic switch in CD3-activated tTreg cells, but not in Tconv cells. Glycolysis in CD3-TNFR2-activated tTreg cells is driven by PI3-kinase-mTOR signalling and supports tTreg cell identity and suppressive function. In contrast to glycolytic Tconv cells, glycolytic tTreg cells do not show net lactate secretion and shuttle glucose-derived carbon into the tricarboxylic acid cycle. Ex vivo characterization of blood-derived TNFR2hiCD4+CD25hiCD127lo effector T cells, which were FOXP3+IKZF2+, revealed an increase in glucose consumption and intracellular lactate levels, thus identifying them as glycolytic tTreg cells. Our study links TNFR2 costimulation in human tTreg cells to metabolic remodelling, providing an additional avenue for drug targeting.
Collapse
Affiliation(s)
- Sander de Kivit
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
- Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mark Mensink
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
- Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anna T Hoekstra
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Ilana Berlin
- Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rico J E Derks
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Demi Both
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Muhammad A Aslam
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Derk Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Jannie Borst
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands.
- Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|