1
|
Adachi Y, Terakura S, Osaki M, Okuno Y, Sato Y, Sagou K, Takeuchi Y, Yokota H, Imai K, Steinberger P, Leitner J, Hanajiri R, Murata M, Kiyoi H. Cullin-5 deficiency promotes chimeric antigen receptor T cell effector functions potentially via the modulation of JAK/STAT signaling pathway. Nat Commun 2024; 15:10376. [PMID: 39658572 PMCID: PMC11631977 DOI: 10.1038/s41467-024-54794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell is a promising therapy for cancer, but factors that enhance the efficacy of CAR T cell remain elusive. Here we perform a genome-wide CRISPR screening to probe genes that regulate the proliferation and survival of CAR T cells following repetitive antigen stimulations. We find that genetic ablation of CUL5, encoding a core element of the multi-protein E3 ubiquitin-protein ligase complex, cullin-RING ligase 5, enhances human CD19 CAR T cell expansion potential and effector functions, potentially via the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. In this regard, CUL5 knockout CD19 CAR T cells show sustained STAT3 and STAT5 phosphorylation, as well as delayed phosphorylation and degradation of JAK1 and JAK3. In vivo, shRNA-mediated knockdown of CUL5 enhances CD19 CAR T treatment outcomes in tumor-bearing mice. Our findings thus imply that targeting CUL5 in the ubiquitin system may enhance CAR T cell effector functions to enhance immunotherapy efficacy.
Collapse
Affiliation(s)
- Yoshitaka Adachi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Masahide Osaki
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ken Sagou
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Takeuchi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirofumi Yokota
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kanae Imai
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Peter Steinberger
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Ryo Hanajiri
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
2
|
Mei A, Letscher KP, Reddy S. Engineering next-generation chimeric antigen receptor-T cells: recent breakthroughs and remaining challenges in design and screening of novel chimeric antigen receptor variants. Curr Opin Biotechnol 2024; 90:103223. [PMID: 39504625 DOI: 10.1016/j.copbio.2024.103223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
Chimeric antigen receptor (CAR) T cells are a powerful treatment against hematologic cancers. The functional phenotype of a CAR-T cell is influenced by the domains that comprise the synthetic receptor. Typically, the potency of therapeutic CAR-T cell candidates is assessed by preclinical functional assays and mouse models (i.e. human tumor xenografts). However, to date, only a few sets of domains (e.g. CD8, CD28, 41BB) have been extensively tested in preclinical assays and human clinical studies. To characterize the efficiency of a CAR, different assays have been utilized to analyze T cell phenotypes, such as expansion, cytotoxicity, secretome, and persistence. However, each of these previous studies evaluated the importance of an assay differently, resulting in a wide range of functionally diverse CARs. In this review, we highlight recent (high-throughput) methods to analyze CAR domains and demonstrate their impact on inducing T cell phenotypes and activity. We also describe advances in computational methods and their potential for identifying CAR variants with enhanced properties. Finally, we reflect on the need for a standardized scoring system to support the clinical development of next-generation CARs.
Collapse
Affiliation(s)
- Anna Mei
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland; Life Science Zurich Graduate School, ETH Zürich, University of Zurich, 8057 Zürich, Switzerland
| | - Kevin P Letscher
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
| | - Sai Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland.
| |
Collapse
|
3
|
Kua L, Ng CH, Tan JW, Tan HC, Seh CC, Wong F, Ong R, Rooney CM, Tan J, Chen Q, Horak ID, Tan KW, Low L. Novel OX40 and 4-1BB derived spacers enhance CD30 CAR activity and safety in CD30 positive lymphoma models. Mol Ther 2024; 32:3504-3521. [PMID: 38946142 PMCID: PMC11489532 DOI: 10.1016/j.ymthe.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 04/26/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024] Open
Abstract
The chimeric antigen receptor (CAR) derived from the CD30 specific murine antibody, HRS-3, has produced promising clinical efficacy with a favorable safety profile in the treatment of relapsed or refractory CD30-positive lymphomas. However, persistence of the autologous CAR-T cells was brief, and many patients relapsed a year after treatment. The lack of persistence may be attributed to the use of a wild-type immunoglobulin (Ig)G1 spacer that can associate with Fc receptors. We first identified the cysteine-rich domain (CRD) 5 of CD30 as the primary binding epitope of HRS-3 and armed with this insight, attempted to improve the HRS-3 CAR functionality with a panel of novel spacer designs. We demonstrate that HRS-3 CARs with OX40 and 4-1BB derived spacers exhibited similar anti-tumor efficacy, circumvented interactions with Fc receptors, and secreted lower levels of cytokines in vitro than a CAR employing the IgG1 spacer. Humanization of the HRS-3 scFv coupled with the 4-1BB spacer preserved potent on-target, on-tumor efficacy, and on-target, off-tumor safety. In a lymphoma mouse model of high tumor burden, T cells expressing humanized HRS-3 CD30.CARs with the 4-1BB spacer potently killed tumors with low levels of circulating inflammatory cytokines, providing a promising candidate for future clinical development in the treatment of CD30-positive malignancies.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Cell Line, Tumor
- Disease Models, Animal
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Ki-1 Antigen/immunology
- Ki-1 Antigen/metabolism
- Lymphoma/therapy
- Lymphoma/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, OX40/metabolism
- Receptors, OX40/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Lindsay Kua
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | - Chee Hoe Ng
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | - Jin Wei Tan
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | | | | | - Fiona Wong
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | - Richard Ong
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joel Tan
- Institute for Molecular and Cellular Biology, A∗STAR Singapore 138673, Singapore
| | - Qingfeng Chen
- Institute for Molecular and Cellular Biology, A∗STAR Singapore 138673, Singapore
| | - Ivan D Horak
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | - Kar Wai Tan
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | - Lionel Low
- Tessa Therapeutics Ltd, Singapore 138673, Singapore.
| |
Collapse
|
4
|
Khopanlert W, Choochuen P, Maneechai K, Jangphattananont N, Ung S, Okuno S, Steinberger P, Leitner J, Sangkhathat S, Viboonjuntra P, Terakura S, Julamanee J. Co-stimulation of CD28/CD40 signaling molecule potentiates CAR-T cell efficacy and stemness. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200837. [PMID: 39050989 PMCID: PMC11268112 DOI: 10.1016/j.omton.2024.200837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/03/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
CD19 chimeric antigen receptor T (CD19CAR-T) cells have achieved promising outcomes in relapsed/refractory B cell malignancies. However, recurrences occur due to the loss of CAR-T cell persistence. We developed dual T/B cell co-stimulatory molecules (CD28 and CD40) in CAR-T cells to enhance intense tumoricidal activity and persistence. CD19.28.40z CAR-T cells promoted pNF-κB and pRelB downstream signaling while diminishing NFAT signaling upon antigen exposure. CD19.28.40z CAR-T cells demonstrated greater proliferation, which translated into effective anti-tumor cytotoxicity in long-term co-culture assay. Repetitive weekly antigen stimulation unveiled continuous CAR-T cell expansion while preserving central memory T cell subset and lower expression of exhaustion phenotypes. The intrinsic genes underlying CD19.28.40z CAR-T cell responses were compared with conventional CARs and demonstrated the up-regulated genes associated with T cell proliferation and memory as well as down-regulated genes related to apoptosis, exhaustion, and glycolysis pathway. Enrichment of genes toward T cell stemness, particularly SELL, IL-7r, TCF7, and KLF2, was observed. Effective and continuing anti-tumor cytotoxicity in vivo was exhibited in both B cell lymphoblastic leukemia and B cell non-Hodgkin lymphoma xenograft models while demonstrating persistent T cell memory signatures. The functional enhancement of CD37.28.40z CAR-T cell activities against CD37+ tumor cells was further validated. The modification of dual T/B cell signaling molecules remarkably maximized the efficacy of CAR-T cell therapy.
Collapse
Affiliation(s)
- Wannakorn Khopanlert
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Bangkok, Thailand
| | - Pongsakorn Choochuen
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Kajornkiat Maneechai
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Bangkok, Thailand
| | - Nawaphat Jangphattananont
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Socheatraksmey Ung
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Shingo Okuno
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Peter Steinberger
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna 1090, Austria
| | - Judith Leitner
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna 1090, Austria
| | - Surasak Sangkhathat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Pongtep Viboonjuntra
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Jakrawadee Julamanee
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Bangkok, Thailand
| |
Collapse
|
5
|
Caulier B, Joaquina S, Gelebart P, Dowling TH, Kaveh F, Thomas M, Tandaric L, Wernhoff P, Katyayini NU, Wogsland C, Gjerstad ME, Fløisand Y, Kvalheim G, Marr C, Kobold S, Enserink JM, Gjertsen BT, McCormack E, Inderberg EM, Wälchli S. CD37 is a safe chimeric antigen receptor target to treat acute myeloid leukemia. Cell Rep Med 2024; 5:101572. [PMID: 38754420 PMCID: PMC11228397 DOI: 10.1016/j.xcrm.2024.101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
Acute myeloid leukemia (AML) is characterized by the accumulation of immature myeloid cells in the bone marrow and the peripheral blood. Nearly half of the AML patients relapse after standard induction therapy, and new forms of therapy are urgently needed. Chimeric antigen receptor (CAR) T therapy has so far not been successful in AML due to lack of efficacy and safety. Indeed, the most attractive antigen targets are stem cell markers such as CD33 or CD123. We demonstrate that CD37, a mature B cell marker, is expressed in AML samples, and its presence correlates with the European LeukemiaNet (ELN) 2017 risk stratification. We repurpose the anti-lymphoma CD37CAR for the treatment of AML and show that CD37CAR T cells specifically kill AML cells, secrete proinflammatory cytokines, and control cancer progression in vivo. Importantly, CD37CAR T cells display no toxicity toward hematopoietic stem cells. Thus, CD37 is a promising and safe CAR T cell AML target.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Animals
- Immunotherapy, Adoptive/methods
- Mice
- Tetraspanins/immunology
- Cell Line, Tumor
- T-Lymphocytes/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Female
- Male
- Antigens, Neoplasm
Collapse
Affiliation(s)
- Benjamin Caulier
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway; Institute for Cancer Research, Department of Molecular Cell Biology, Oslo University Hospital, Oslo, Norway; Center for Cancer Cell Reprogramming (CanCell), Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sandy Joaquina
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Pascal Gelebart
- Department of Clinical Science, Precision Oncology Research Group, University of Bergen, 5021 Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Tara Helén Dowling
- Department of Clinical Science, Precision Oncology Research Group, University of Bergen, 5021 Bergen, Norway; Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Fatemeh Kaveh
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Moritz Thomas
- Institue of AI for Health, Helmholtz Munich, 85764 Neuherberg, Germany; School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Luka Tandaric
- Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway; Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Patrik Wernhoff
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Niveditha Umesh Katyayini
- Institute for Cancer Research, Department of Molecular Cell Biology, Oslo University Hospital, Oslo, Norway; Center for Cancer Cell Reprogramming (CanCell), Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Cara Wogsland
- Department of Clinical Science, Precision Oncology Research Group, University of Bergen, 5021 Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - May Eriksen Gjerstad
- Department of Clinical Science, Precision Oncology Research Group, University of Bergen, 5021 Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Yngvar Fløisand
- Institute for Cancer Research, Department of Molecular Cell Biology, Oslo University Hospital, Oslo, Norway
| | - Gunnar Kvalheim
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Carsten Marr
- Institue of AI for Health, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Translational Cancer Research (DKTK), Partner Site Munich, Munich, Germany; Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Jorrit M Enserink
- Institute for Cancer Research, Department of Molecular Cell Biology, Oslo University Hospital, Oslo, Norway; Center for Cancer Cell Reprogramming (CanCell), Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Bjørn Tore Gjertsen
- Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway; Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Emmet McCormack
- Department of Clinical Science, Precision Oncology Research Group, University of Bergen, 5021 Bergen, Norway; Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Else Marit Inderberg
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
6
|
Bobrowicz M, Kusowska A, Krawczyk M, Zhylko A, Forcados C, Slusarczyk A, Barankiewicz J, Domagala J, Kubacz M, Šmída M, Dostalova L, Marhelava K, Fidyt K, Pepek M, Baranowska I, Szumera-Cieckiewicz A, Inderberg EM, Wälchli S, Granica M, Graczyk-Jarzynka A, Majchrzak M, Poreba M, Gehlert CL, Peipp M, Firczuk M, Prochorec-Sobieszek M, Winiarska M. CD20 expression regulates CD37 levels in B-cell lymphoma - implications for immunotherapies. Oncoimmunology 2024; 13:2362454. [PMID: 38846084 PMCID: PMC11155707 DOI: 10.1080/2162402x.2024.2362454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Rituximab (RTX) plus chemotherapy (R-CHOP) applied as a first-line therapy for lymphoma leads to a relapse in approximately 40% of the patients. Therefore, novel approaches to treat aggressive lymphomas are being intensively investigated. Several RTX-resistant (RR) cell lines have been established as surrogate models to study resistance to R-CHOP. Our study reveals that RR cells are characterized by a major downregulation of CD37, a molecule currently explored as a target for immunotherapy. Using CD20 knockout (KO) cell lines, we demonstrate that CD20 and CD37 form a complex, and hypothesize that the presence of CD20 stabilizes CD37 in the cell membrane. Consequently, we observe a diminished cytotoxicity of anti-CD37 monoclonal antibody (mAb) in complement-dependent cytotoxicity in both RR and CD20 KO cells that can be partially restored upon lysosome inhibition. On the other hand, the internalization rate of anti-CD37 mAb in CD20 KO cells is increased when compared to controls, suggesting unhampered efficacy of antibody drug conjugates (ADCs). Importantly, even a major downregulation in CD37 levels does not hamper the efficacy of CD37-directed chimeric antigen receptor (CAR) T cells. In summary, we present here a novel mechanism of CD37 regulation with further implications for the use of anti-CD37 immunotherapies.
Collapse
MESH Headings
- Humans
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antigens, CD20/immunology
- Antigens, CD20/metabolism
- Antigens, CD20/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cell Line, Tumor
- Cyclophosphamide/pharmacology
- Cyclophosphamide/therapeutic use
- Doxorubicin/pharmacology
- Doxorubicin/administration & dosage
- Drug Resistance, Neoplasm/drug effects
- Gene Expression Regulation, Neoplastic
- Immunotherapy/methods
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/therapy
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/drug therapy
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Rituximab/pharmacology
- Rituximab/therapeutic use
- Tetraspanins/genetics
- Tetraspanins/metabolism
- Vincristine/pharmacology
- Vincristine/therapeutic use
Collapse
Affiliation(s)
| | - Aleksandra Kusowska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Krawczyk
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
- Doctoral School of Translational Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Andriy Zhylko
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Christopher Forcados
- Translational Research Unit, Department of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Aleksander Slusarczyk
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Barankiewicz
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
- Faculty of Medicine, Lazarski University, Warsaw, Poland
| | - Joanna Domagala
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Matylda Kubacz
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Michal Šmída
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Lenka Dostalova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | - Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Monika Pepek
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Baranowska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Szumera-Cieckiewicz
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Biobank, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Else Marit Inderberg
- Translational Research Unit, Department of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Department of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Monika Granica
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Graczyk-Jarzynka
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Martyna Majchrzak
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Marcin Poreba
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
- Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Carina Lynn Gehlert
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Matthias Peipp
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Malgorzata Firczuk
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Monika Prochorec-Sobieszek
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Imai K, Takeuchi Y, Terakura S, Okuno S, Adachi Y, Osaki M, Umemura K, Hanajiri R, Shimada K, Murata M, Kiyoi H. Dual CAR-T Cells Targeting CD19 and CD37 Are Effective in Target Antigen Loss B-cell Tumor Models. Mol Cancer Ther 2024; 23:381-393. [PMID: 37828726 DOI: 10.1158/1535-7163.mct-23-0408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/04/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cells targeting multiple antigens (Ag), may reduce the risk of immune escape following the loss of the target Ag and further increase the efficacy of treatment. We developed dual-targeting CAR-T cells that target CD19 and CD37 Ags and evaluated their antitumor effects. CD19/CD37 dual CAR-T cells were generated using cotransduction and simultaneous gene transfer of two types of lentiviral vectors transferring CD19CAR or CD37CAR genes, including the intracellular domains of CD28 and CD3ζ signaling domains. These dual CAR-T cells contained three fractions: CD19/CD37 bispecific CAR-T cells, single CD19CAR-T cells, and single CD37CAR-T cells. In the functional evaluation of CAR-T cells in vitro, CD19/CD37 dual CAR-T cells showed adequate proliferation and cytokine production in response to CD19 and CD37 antigen stimulation alone or in combination. Evaluation of intracellular signaling revealed that dual CAR-T cell-mediated signals were comparable with single CAR-T cells in response to CD19- and CD37-positive B-cell tumors. Although the cytotoxicity of CD19/CD37 dual CAR-T cells in both CD19- and CD37-positive B-cell tumors was similar to that of single CD19 and CD37CAR-T cells, against CD19 and CD37 Ag-heterogeneous tumor, dual CAR-T cells demonstrated significantly superior tumor lysis compared with single CAR-T cells. Furthermore, CD19/CD37 dual CAR-T cells effectively suppressed Ag-heterogeneous Raji cells in a xenograft mouse model. Collectively, these results suggest that CD19/CD37 dual CAR-T cells may be effective target-Ag-loss B-cell tumor models in vitro and in vivo, which represents a promising treatment for patients with relapsed/refractory B-cell malignancies.
Collapse
Affiliation(s)
- Kanae Imai
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Takeuchi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shingo Okuno
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Adachi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Osaki
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Umemura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryo Hanajiri
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuyuki Shimada
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
8
|
Wang JY, Wang L. CAR-T cell therapy: Where are we now, and where are we heading? BLOOD SCIENCE 2023; 5:237-248. [PMID: 37941917 PMCID: PMC10629745 DOI: 10.1097/bs9.0000000000000173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapies have exhibited remarkable efficacy in the treatment of hematologic malignancies, with 9 CAR-T-cell products currently available. Furthermore, CAR-T cells have shown promising potential for expanding their therapeutic applications to diverse areas, including solid tumors, myocardial fibrosis, and autoimmune and infectious diseases. Despite these advancements, significant challenges pertaining to treatment-related toxic reactions and relapses persist. Consequently, current research efforts are focused on addressing these issues to enhance the safety and efficacy of CAR-T cells and reduce the relapse rate. This article provides a comprehensive overview of the present state of CAR-T-cell therapies, including their achievements, existing challenges, and potential future developments.
Collapse
Affiliation(s)
- Jia-Yi Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
9
|
Abrantes R, Duarte HO, Gomes C, Wälchli S, Reis CA. CAR-Ts: new perspectives in cancer therapy. FEBS Lett 2022; 596:403-416. [PMID: 34978080 DOI: 10.1002/1873-3468.14270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022]
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy is a promising anticancer treatment that exploits the host's immune system to fight cancer. CAR-T cell therapy relies on immune cells being modified to express an artificial receptor targeting cancer-specific markers, and infused into the patients where they will recognize and eliminate the tumour. Although CAR-T cell therapy has produced encouraging outcomes in patients with haematologic malignancies, solid tumours remain challenging to treat, mainly due to the lack of cancer-specific molecular targets and the hostile, often immunosuppressive, tumour microenvironment. CAR-T cell therapy also depends on the quality of the injected product, which is closely connected to CAR design. Here, we explain the technology of CAR-Ts, focusing on the composition of CARs, their application, and limitations in cancer therapy, as well as on the current strategies to overcome the challenges encountered. We also address potential future targets to overcome the flaws of CAR-T cell technology in the treatment of cancer, emphasizing glycan antigens, the aberrant forms of which attain high tumour-specific expression, as promising targets for CAR-T cell therapy.
Collapse
Affiliation(s)
- Rafaela Abrantes
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Portugal
- ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Portugal
| | - Henrique O Duarte
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Portugal
| | - Catarina Gomes
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Portugal
| | - Sébastien Wälchli
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Norway
| | - Celso A Reis
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Portugal
- ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Portugal
- FMUP, Faculty of Medicine, University of Porto, Portugal
| |
Collapse
|
10
|
Miyagi S, Watanabe T, Hara Y, Arata M, Uddin MK, Mantoku K, Sago K, Yanagi Y, Suzuki T, Masud HMAA, Kawada JI, Nakamura S, Miyake Y, Sato Y, Murata T, Kimura H. A STING inhibitor suppresses EBV-induced B cell transformation and lymphomagenesis. Cancer Sci 2021; 112:5088-5099. [PMID: 34609775 PMCID: PMC8645724 DOI: 10.1111/cas.15152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 12/21/2022] Open
Abstract
Epstein‐Barr virus‐associated lymphoproliferative disease (EBV‐LPD) is frequently fatal. Innate immunity plays a key role in protecting against pathogens and cancers. The stimulator of interferon genes (STING) is regarded as a key adaptor protein allowing DNA sensors recognizing exogenous cytosolic DNA to activate the type I interferon signaling cascade. In terms of EBV tumorigenicity, the role of STING remains elusive. Here we showed that treatment with the STING inhibitor, C‐176, suppressed EBV‐induced transformation in peripheral blood mononuclear cells. In an EBV‐LPD mouse model, C‐176 treatment also inhibited tumor formation and prolonged survival. Treatment with B cells alone did not affect EBV transformation, but suppression of EBV‐induced transformation was observed in the presence of T cells. Even without direct B cell‐T cell contact in a transwell system, the inhibitor reduced the transformation activity, indicating that intercellular communication by humoral factors was critical to prevent EBV‐induced transformation. These findings suggest that inhibition of STING signaling pathway with C‐176 could be a new therapeutic target of EBV‐LPD.
Collapse
Affiliation(s)
- Shouhei Miyagi
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Pathology and Laboratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiro Watanabe
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuya Hara
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masataka Arata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Md Kamal Uddin
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Mantoku
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ken Sago
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Yanagi
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Suzuki
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - H M Abdullah Al Masud
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Microbiology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Jun-Ichi Kawada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shigeo Nakamura
- Department of Pathology and Laboratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuyuki Miyake
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|