1
|
Jaeger N, Antonova AU, Kreisel D, Roan F, Lantelme E, Ziegler SF, Cella M, Colonna M. Diversity of group 1 innate lymphoid cells in human tissues. Nat Immunol 2024; 25:1460-1473. [PMID: 38956380 DOI: 10.1038/s41590-024-01885-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024]
Abstract
Group 1 innate lymphoid cells (ILC1s) are cytotoxic and interferon gamma-producing lymphocytes lacking antigen-specific receptors, which include ILC1s and natural killer (NK) cells. In mice, ILC1s differ from NK cells, as they develop independently of the NK-specifying transcription factor EOMES, while requiring the repressor ZFP683 (ZNF683 in humans) for tissue residency. Here we identify highly variable ILC1 subtypes across tissues through investigation of human ILC1 diversity by single-cell RNA sequencing and flow cytometry. The intestinal epithelium contained abundant mature EOMES- ILC1s expressing PRDM1 rather than ZNF683, alongside a few immature TCF7+PRDM1- ILC1s. Other tissues harbored NK cells expressing ZNF683 and EOMES transcripts; however, EOMES protein content was variable. These ZNF683+ NK cells are tissue-imprinted NK cells phenotypically resembling ILC1s. The tissue ILC1-NK spectrum also encompassed conventional NK cells and NK cells distinguished by PTGDS expression. These findings establish a foundation for evaluating phenotypic and functional changes within the NK-ILC1 spectrum in diseases.
Collapse
Affiliation(s)
- Natalia Jaeger
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alina Ulezko Antonova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Kreisel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Florence Roan
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
- Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA, USA
| | - Erica Lantelme
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven F Ziegler
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Loffredo LF, Savage TM, Ringham OR, Arpaia N. Treg-tissue cell interactions in repair and regeneration. J Exp Med 2024; 221:e20231244. [PMID: 38668758 PMCID: PMC11046849 DOI: 10.1084/jem.20231244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Regulatory T (Treg) cells are classically known for their critical immunosuppressive functions that support peripheral tolerance. More recent work has demonstrated that Treg cells produce pro-repair mediators independent of their immunosuppressive function, a process that is critical to repair and regeneration in response to numerous tissue insults. These factors act on resident parenchymal and structural cells to initiate repair in a tissue-specific context. This review examines interactions between Treg cells and tissue-resident non-immune cells-in the context of tissue repair, fibrosis, and cancer-and discusses areas for future exploration.
Collapse
Affiliation(s)
- Lucas F. Loffredo
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Thomas M. Savage
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Olivia R. Ringham
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Nicholas Arpaia
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Mensink M, Verleng LJ, Schrama E, Janssen GM, Tjokrodirijo RT, van Veelen PA, Jiang Q, Pascutti MF, van der Hoorn ML, Eikmans M, de Kivit S, Borst J. Tregs from human blood differentiate into nonlymphoid tissue-resident effector cells upon TNFR2 costimulation. JCI Insight 2024; 9:e172942. [PMID: 38341270 PMCID: PMC10972588 DOI: 10.1172/jci.insight.172942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Tregs can facilitate transplant tolerance and attenuate autoimmune and inflammatory diseases. Therefore, it is clinically relevant to stimulate Treg expansion and function in vivo and to create therapeutic Treg products in vitro. We report that TNF receptor 2 (TNFR2) is a unique costimulus for naive, thymus-derived Tregs (tTregs) from human blood that promotes their differentiation into nonlymphoid tissue-resident (NLT-resident) effector Tregs, without Th-like polarization. In contrast, CD28 costimulation maintains a lymphoid tissue-resident (LT-resident) Treg phenotype. We base this conclusion on transcriptome and proteome analysis of TNFR2- and CD28-costimulated CD4+ tTregs and conventional T cells (Tconvs), followed by bioinformatic comparison with published transcriptomic Treg signatures from NLT and LT in health and disease, including autoimmunity and cancer. These analyses illuminate that TNFR2 costimulation promoted tTreg capacity for survival, migration, immunosuppression, and tissue regeneration. Functional studies confirmed improved migratory ability of TNFR2-costimulated tTregs. Flow cytometry validated the presence of the TNFR2-driven tTreg signature in effector/memory Tregs from the human placenta, as opposed to blood. Thus, TNFR2 can be exploited as a driver of NLT-resident tTreg differentiation for adoptive cell therapy or antibody-based immunomodulation in human disease.
Collapse
|
4
|
Georgiev P, Benamar M, Han S, Haigis MC, Sharpe AH, Chatila TA. Regulatory T cells in dominant immunologic tolerance. J Allergy Clin Immunol 2024; 153:28-41. [PMID: 37778472 PMCID: PMC10842646 DOI: 10.1016/j.jaci.2023.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Regulatory T cells expressing the transcription factor forkhead box protein 3 mediate peripheral immune tolerance both to self-antigens and to the commensal flora. Their defective function due to inborn errors of immunity or acquired insults is associated with a broad range of autoimmune and immune dysregulatory diseases. Although their function in suppressing autoimmunity and enforcing commensalism is established, a broader role for regulatory T cells in tissue repair and metabolic regulation has emerged, enabled by unique programs of tissue adaptability and specialization. In this review, we focus on the myriad roles played by regulatory T cells in immunologic tolerance and host homeostasis and the potential to harness these cells in novel therapeutic approaches to human diseases.
Collapse
Affiliation(s)
- Peter Georgiev
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Mass; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - SeongJun Han
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Mass; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
5
|
Liu C, Wang Y, Zhang YH, Yuan Z, Zhang Z, Zeng X, Guan Z, Bahabayi A, Lu S. Elevated Layilin-Positive Monocyte Levels in the Peripheral Blood of Patients with Systemic Lupus Erythematosus Reflect Their Autoimmune Status. Immunol Invest 2023; 52:879-896. [PMID: 37642473 DOI: 10.1080/08820139.2023.2249531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
OBJECTIVE To investigate the expression of layilin (LAYN) in human circulating monocytes and lymphocytes and its clinical significance in systemic lupus erythematosus (SLE). METHODS Blood samples were collected from 51 SLE patients and 50 healthy controls. Flow cytometry was used to analyze LAYN in lymphocytes and monocyte subsets. Functionally characterized molecules including human HLA, CD74 and CD62L were studied in LAYN+ monocytes. A correlation analysis was conducted between LAYN-related subsets and clinical indicators of SLE such as anti-double-stranded DNA and complements levels. ROC curves were used to explore the potential clinical diagnostic value of LAYN in SLE. RESULTS LAYN was significantly higher in monocytes than in lymphocytes and higher in CD14+CD16+ monocytes than in CD14-CD16+ and CD14+CD16- monocytes. CD74 was upregulated and CD62L was downregulated in LAYN+ monocytes compared with LAYN- monocytes. The absolute number of LAYN+ monocytes was increased in SLE patients, and the median fluorescence intensity of HLA was decreased. LAYN+ monocytes were positively correlated with complement C4, while decreased CD62L+ percentages in LAYN+ monocytes were negatively correlated with C4. The ROC analysis revealed that the area under the curve (AUCs) for CD62L+ percentages in LAYN+ monocytes, LAYN+ lymphocyte numbers, and LAYN+ monocyte numbers to distinguish SLE from healthy individuals were 0.6245, 0.6196 and 0.6173, respectively. CONCLUSION LAYN is differentially expressed in monocytes and their subpopulations and has corresponding functional differences. Changes in LAYN expression on monocytes are associated with complement C4 levels in SLE patients. These suggest that LAYN may be involved in the pathogenesis of SLE. ABBREVIATION ANOVA: analysis of variance; anti-dsDNA: anti-double-stranded DNA; anti-ENA: anti-extractable nuclear antigen; anti-SSA: anti-Sjogren syndrome A; anti-SSB: anti-Sjogren syndrome B; anti-U1RNP: anti-U1 ribonucleoprotein; AUC: area under the ROC curve; CBC: complete blood count; CD62L: L-selectin; CD74/Ii: MHC class II invariant chain; CD44/HCAM: homing cell adhesion molecule; cMos: classical monocytes; CRP: C-reactive protein; CXCR2: C-X-C motif chemokine receptor 2; CXCR4: C-X-C motif chemokine receptor 4; ESR: erythrocyte sedimentation rate; HCs: healthy controls; HA: hyaluronan; HLA: human leukocyte antigen; Ig: immunoglobulin; iMos: intermediate monocytes; LAYN: layilin; MFI: median fluorescence intensity; MIF: migration inhibitory factor; ncMos: nonclassical monocytes; PBMCs: peripheral blood mononuclear cells; ROC: receiver operating characteristic curve; SLE: systemic lupus erythematosus; SLEDAI, SLE disease activity index; Treg: regulatory T cells; WBCs: white blood cells.
Collapse
Affiliation(s)
- Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yiying Wang
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ya-Hui Zhang
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zihang Yuan
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhao Guan
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Songsong Lu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
6
|
Zarin P, Shwartz Y, Ortiz-Lopez A, Hanna BS, Sassone-Corsi M, Hsu YC, Mathis D, Benoist C. Treg cells require Izumo1R to regulate γδT cell-driven inflammation in the skin. Proc Natl Acad Sci U S A 2023; 120:e2221255120. [PMID: 36972453 PMCID: PMC10083566 DOI: 10.1073/pnas.2221255120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Izumo1R is a pseudo-folate receptor with an essential role in mediating tight oocyte/spermatozoa contacts during fertilization. Intriguingly, it is also expressed in CD4+ T lymphocytes, in particular Treg cells under the control of Foxp3. To understand Izumo1R function in Treg cells, we analyzed mice with Treg-specific Izumo1r deficiency (Iz1rTrKO). Treg differentiation and homeostasis were largely normal, with no overt autoimmunity and only marginal increases in PD1+ and CD44hi Treg phenotypes. pTreg differentiation was also unaffected. Iz1rTrKO mice proved uniquely susceptible to imiquimod-induced, γδT cell-dependent, skin disease, contrasting with normal responses to several inflammatory or tumor challenges, including other models of skin inflammation. Analysis of Iz1rTrKO skin revealed a subclinical inflammation that presaged IMQ-induced changes, with an imbalance of Rorγ+ γδT cells. Immunostaining of normal mouse skin revealed the expression of Izumo1, the ligand for Izumo1R, electively in dermal γδT cells. We propose that Izumo1R on Tregs enables tight contacts with γδT cells, thereby controlling a particular path of skin inflammation.
Collapse
Affiliation(s)
- Payam Zarin
- Department of Immunology, Harvard Medical School, Boston, MA02115
| | - Yulia Shwartz
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
| | | | - Bola S. Hanna
- Department of Immunology, Harvard Medical School, Boston, MA02115
| | | | - Ya-chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA02115
| | | |
Collapse
|
7
|
Dikiy S, Rudensky AY. Principles of regulatory T cell function. Immunity 2023; 56:240-255. [PMID: 36792571 DOI: 10.1016/j.immuni.2023.01.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/16/2023]
Abstract
Regulatory T (Treg) cells represent a distinct lineage of cells of the adaptive immune system indispensable for forestalling fatal autoimmune and inflammatory pathologies. The role of Treg cells as principal guardians of the immune system can be attributed to their ability to restrain all currently recognized major types of inflammatory responses through modulating the activity of a wide range of cells of the innate and adaptive immune system. This broad purview over immunity and inflammation is afforded by the multiple modes of action Treg cells exert upon their diverse molecular and cellular targets. Beyond the suppression of autoimmunity for which they were originally recognized, Treg cells have been implicated in tissue maintenance, repair, and regeneration under physiologic and pathologic conditions. Herein, we discuss the current and emerging understanding of Treg cell effector mechanisms in the context of the basic properties of Treg cells that endow them with such functional versatility.
Collapse
Affiliation(s)
- Stanislav Dikiy
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
8
|
Hajam EY, Panikulam P, Chu CC, Jayaprakash H, Majumdar A, Jamora C. The expanding impact of T-regs in the skin. Front Immunol 2022; 13:983700. [PMID: 36189219 PMCID: PMC9521603 DOI: 10.3389/fimmu.2022.983700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
As the interface between the body and the environment, the skin functions as the physical barrier against external pathogens and toxic agents. In addition, the skin is an immunologically active organ with a plethora of resident adaptive and innate immune cells, as well as effector molecules that provide another layer of protection in the form of an immune barrier. A major subpopulation of these immune cells are the Foxp3 expressing CD4 T cells or regulatory T cells (T-regs). The canonical function of T-regs is to keep other immune cells in check during homeostasis or to dissipate a robust inflammatory response following pathogen clearance or wound healing. Interestingly, recent data has uncovered unconventional roles that vary between different tissues and we will highlight the emerging non-lymphoid functions of cutaneous T-regs. In light of the novel functions of other immune cells that are routinely being discovered in the skin, their regulation by T-regs implies that T-regs have executive control over a broad swath of biological activities in both homeostasis and disease. The blossoming list of non-inflammatory functions, whether direct or indirect, suggests that the role of T-regs in a regenerative organ such as the skin will be a field ripe for discovery for decades to come.
Collapse
Affiliation(s)
- Edries Yousaf Hajam
- IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
- School of Chemical and Biotechnology, Shanmugha Arts, Science, Technology and Research Academy (SASTRA) University, Thanjavur, Tamil Nadu, India
| | - Patricia Panikulam
- IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | | | - Haarshadri Jayaprakash
- IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | | | - Colin Jamora
- IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| |
Collapse
|