1
|
de Oliveira JR, Pereira ABM, de Souza HI, Dos Santos WM, de Assunção TSF, de Vito FB, de Souza HM, da Silva PR, da Silva MV, Junior VR, Rogerio AP. Anti-inflammatory actions of aspirin-triggered resolvin D1 (AT-RvD1) in bronchial epithelial cells stimulated by cigarette smoke extract. Prostaglandins Other Lipid Mediat 2024; 172:106833. [PMID: 38460760 DOI: 10.1016/j.prostaglandins.2024.106833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Smoking causes several diseases such as chronic obstructive pulmonary disease (COPD). Aspirin-triggered-resolvin D1 (AT-RvD1) is a lipid mediator produced during the resolution of inflammation and demonstrates anti-inflammatory and pro-resolution effects in several inflammatory experimental models including in the airways. Here we evaluated the role of AT-RvD1 (100 nM) in bronchial epithelial cells (BEAS-2B) stimulated by cigarette smoke extract (CSE; 1%; 1 cigarette) for 24 h. CSE induced the productions of IL-1β, TNF-α, IL-10, IL-4 and IFN-γ as well as the activations of NF-κB and STAT3 and the expression of ALX/FPR2 receptor. AT-RvD1 reduced the IL-1β and TNF-α production and increased the production of IFN-γ. These effects were reversed BOC2, an antagonist of ALX/FPR2 receptor for AT-RvD1. The production of IL-4 and IL-10 were not altered by AT-RvD1. In addition, AT-RvD1 reduced the phosphorylation of NF-κB and STAT3 when compared to CSE-stimulated BEAS-2B cells. No alteration of ALX/FPR2 expression was observed by AT-RvD1 when compared to CSE group. In the human monocytic leukemia cell line, the relative number of copies of IL-1β and IL-4 was significantly higher in CSE + AT-RvD1 group compared CSE group, however, the expression of M1 cytokine was more pronounced than M2 profile. AT-RvD1 could be an important target for the reduction of inflammation in the airways associated with smoking.
Collapse
Affiliation(s)
- Jhony Robson de Oliveira
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triângulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Aline Beatriz Mahler Pereira
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triângulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Henrique Ismarsi de Souza
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triângulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Wanessa Maria Dos Santos
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triângulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Thaís Sorares Farnesi de Assunção
- Laboratory of Immunology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Fernanda Bernadelli de Vito
- Institute of Biological and Natural Sciences, Department of Genetics, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil
| | - Helio Moraes de Souza
- Laboratory of Immunology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Paulo Roberto da Silva
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triângulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Marcos Vinicius da Silva
- Laboratory of Parasitology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues Junior
- Laboratory of Immunology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Alexandre Paula Rogerio
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triângulo Mineiro, Uberaba, MG 38025-350, Brazil.
| |
Collapse
|
2
|
Costa VV, Resende F, Melo EM, Teixeira MM. Resolution pharmacology and the treatment of infectious diseases. Br J Pharmacol 2024; 181:917-937. [PMID: 38355144 DOI: 10.1111/bph.16323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 02/16/2024] Open
Abstract
Inflammation is elicited by the host in response to microbes, and is believed to be essential for protection against infection. However, we have previously hypothesized that excessive or misplaced inflammation may be a major contributor to tissue dysfunction and death associated with viral and bacterial infections. The resolutive phase of inflammation is a necessary condition to achieve homeostasis after acute inflammation. It is possible that targeting inflammation resolution may be beneficial for the host during infection. In this review, we summarize the evidence demonstrating the expression, roles and effects of the best described pro-resolving molecules in the context of bacterial and viral infections. Pro-resolving molecules play a pivotal role in modulating a spectrum of pathways associated with tissue inflammation and damage during both viral and bacterial infections. These molecules offer a blend of anti-inflammatory, pro-resolving and sometimes anti-infective benefits, all the while circumventing the undesired and immune-suppressive unwanted effects associated with glucocorticoids. Whether these beneficial effects will translate into benefits to patients clearly deserve further investigation.
Collapse
Affiliation(s)
- Vivian Vasconcelos Costa
- Centro de Pesquisa e Desenvolvimento de Fármacos, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Filipe Resende
- Centro de Pesquisa e Desenvolvimento de Fármacos, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eliza Mathias Melo
- Centro de Pesquisa e Desenvolvimento de Fármacos, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
3
|
Pitchai A, Buhman K, Shannahan JH. Lipid mediators of inhalation exposure-induced pulmonary toxicity and inflammation. Inhal Toxicol 2024; 36:57-74. [PMID: 38422051 PMCID: PMC11022128 DOI: 10.1080/08958378.2024.2318389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Many inhalation exposures induce pulmonary inflammation contributing to disease progression. Inflammatory processes are actively regulated via mediators including bioactive lipids. Bioactive lipids are potent signaling molecules involved in both pro-inflammatory and resolution processes through receptor interactions. The formation and clearance of lipid signaling mediators are controlled by multiple metabolic enzymes. An imbalance of these lipids can result in exacerbated and sustained inflammatory processes which may result in pulmonary damage and disease. Dysregulation of pulmonary bioactive lipids contribute to inflammation and pulmonary toxicity following exposures. For example, inhalation of cigarette smoke induces activation of pro-inflammatory bioactive lipids such as sphingolipids, and ceramides contributing to chronic obstructive pulmonary disease. Additionally, exposure to silver nanoparticles causes dysregulation of inflammatory resolution lipids. As inflammation is a common consequence resulting from inhaled exposures and a component of numerous diseases it represents a broadly applicable target for therapeutic intervention. With new appreciation for bioactive lipids, technological advances to reliably identify and quantify lipids have occurred. In this review, we will summarize, integrate, and discuss findings from recent studies investigating the impact of inhaled exposures on pro-inflammatory and resolution lipids within the lung and their contribution to disease. Throughout the review current knowledge gaps in our understanding of bioactive lipids and their contribution to pulmonary effects of inhaled exposures will be presented. New methods being employed to detect and quantify disruption of pulmonary lipid levels following inhalation exposures will be highlighted. Lastly, we will describe how lipid dysregulation could potentially be addressed by therapeutic strategies to address inflammation.
Collapse
Affiliation(s)
- Arjun Pitchai
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Kimberly Buhman
- Department of Nutrition, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Jonathan H. Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
4
|
Bhat TA, Kalathil SG, Goniewicz ML, Hutson A, Thanavala Y. Not all vaping is the same: differential pulmonary effects of vaping cannabidiol versus nicotine. Thorax 2023; 78:922-932. [PMID: 36823163 PMCID: PMC10447384 DOI: 10.1136/thorax-2022-218743] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/24/2023] [Indexed: 02/25/2023]
Abstract
RATIONALE Vaping has become a popular method of inhaling various psychoactive substances. While evaluating respiratory effects of vaping have primarily focused on nicotine-containing products, cannabidiol (CBD)-vaping is increasingly becoming popular. It currently remains unknown whether the health effects of vaping nicotine and cannabinoids are similar. OBJECTIVES This study compares side by side the pulmonary effects of acute inhalation of vaporised CBD versus nicotine. METHODS In vivo inhalation study in mice and in vitro cytotoxicity experiments with human cells were performed to assess the pulmonary damage-inducing effects of CBD or nicotine aerosols emitted from vaping devices. MEASUREMENTS AND MAIN RESULTS Pulmonary inflammation in mice was scored by histology, flow cytometry, and quantifying levels of proinflammatory cytokines and chemokines. Lung damage was assessed by histology, measurement of myeloperoxidase activity and neutrophil elastase levels in the bronchoalveolar lavage fluid and lung tissue. Lung epithelial/endothelial integrity was assessed by quantifying BAL protein levels, albumin leak and pulmonary FITC-dextran leak. Oxidative stress was determined by measuring the antioxidant potential in the BAL and lungs. The cytotoxic effects of CBD and nicotine aerosols on human neutrophils and human small airway epithelial cells were evaluated using in vitro air-liquid interface system. Inhalation of CBD aerosol resulted in greater inflammatory changes, more severe lung damage and higher oxidative stress compared with nicotine. CBD aerosol also showed higher toxicity to human cells compared with nicotine. CONCLUSIONS Vaping of CBD induces a potent inflammatory response and leads to more pathological changes associated with lung injury than vaping of nicotine.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Suresh G Kalathil
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Alan Hutson
- Department of Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
5
|
Thatcher TH, Freeberg MAT, Myo YPA, Sime PJ. Is there a role for specialized pro-resolving mediators in pulmonary fibrosis? Pharmacol Ther 2023; 247:108460. [PMID: 37244406 PMCID: PMC10335230 DOI: 10.1016/j.pharmthera.2023.108460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Pulmonary fibrotic diseases are characterized by proliferation of lung fibroblasts and myofibroblasts and excessive deposition of extracellular matrix proteins. Depending on the specific form of lung fibrosis, there can be progressive scarring of the lung, leading in some cases to respiratory failure and/or death. Recent and ongoing research has demonstrated that resolution of inflammation is an active process regulated by families of small bioactive lipid mediators termed "specialized pro-resolving mediators." While there are many reports of beneficial effects of SPMs in animal and cell culture models of acute and chronic inflammatory and immune diseases, there have been fewer reports investigating SPMs and fibrosis, especially pulmonary fibrosis. Here, we will review evidence that resolution pathways are impaired in interstitial lung disease, and that SPMs and other similar bioactive lipid mediators can inhibit fibroblast proliferation, myofibroblast differentiation, and accumulation of excess extracellular matrix in cell culture and animal models of pulmonary fibrosis, and we will consider future therapeutic implications of SPMs in fibrosis.
Collapse
Affiliation(s)
- Thomas H Thatcher
- Division of Pulmonary Care and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Margaret A T Freeberg
- Division of Pulmonary Care and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yu Par Aung Myo
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Patricia J Sime
- Division of Pulmonary Care and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
6
|
Su CJ, Zhang JT, Zhao FL, Xu DL, Pan J, Liu T. Resolvin D1/N-formyl peptide receptor 2 ameliorates paclitaxel-induced neuropathic pain through the activation of IL-10/Nrf2/HO-1 pathway in mice. Front Immunol 2023; 14:1091753. [PMID: 36993950 PMCID: PMC10040838 DOI: 10.3389/fimmu.2023.1091753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionPaclitaxel is a chemotherapy drug that is commonly used to treat cancer, but it can cause paclitaxel-induced neuropathic pain (PINP) as a side effect. Resolvin D1 (RvD1) has been shown to be effective in promoting the resolution of inflammation and chronic pain. In this study, we evaluated the effects of RvD1 on PINP and its underlying mechanisms in mice.MethodsBehavioral analysis was used to assess the establishment of the PINP mouse model and to test the effects of RvD1 or other formulations on mouse pain behavior. Quantitative real-time polymerase chain reaction analysis was employed to detect the impact of RvD1 on 12/15 Lox, FPR2, and neuroinflammation in PTX-induced DRG neurons. Western blot analysis was used to examine the effects of RvD1 on FPR2, Nrf2, and HO-1 expression in DRG induced by PTX. TUNEL staining was used to detect the apoptosis of DRG neurons induced by BMDM conditioned medium. H2DCF-DA staining was used to detect the reactive oxygen species level of DRG neurons in the presence of PTX or RvD1+PTX treated BMDMs CM.ResultsExpression of 12/15-Lox was decreased in the sciatic nerve and DRG of mice with PINP, suggesting a potential involvement of RvD1 in the resolution of PINP. Intraperitoneal injection of RvD1 promoted pain resolution of PINP in mice. Intrathecal injection of PTX-treated BMDMs induced mechanical pain hypersensitivity in naïve mice, while pretreatment of RvD1 in BMDMs prevented it. Macrophage infiltration increased in the DRGs of PINP mice, but it was not affected by RvD1 treatment. RvD1 increased IL-10 expression in the DRGs and macrophages, while IL-10 neutralizing antibody abolished the analgesic effect of RvD1 on PINP. The effects of RvD1 in promoting IL-10 production were also inhibited by N-formyl peptide receptor 2 (FPR2) antagonist. The primary cultured DRG neurons apoptosis increased after stimulation with condition medium of PTX-treated BMDMs, but decreased after pretreatment with RvD1 in BMDMs. Finally, Nrf2-HO1 signaling was additionally activated in DRG neurons after stimulation with condition medium of RvD1+PTX-treated BMDMs, but these effects were abolished by FPR2 blocker or IL-10 neutralizing antibody.DiscussionIn conclusion, this study provides evidence that RvD1 may be a potential therapeutic strategy for the clinical treatment of PINP. RvD1/FPR2 upregulates IL-10 in macrophages under PINP condition, and then IL-10 activates the Nrf2- HO1 pathway in DRG neurons, relieve neuronal damage and PINP.
Collapse
Affiliation(s)
- Cun-Jin Su
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Tong Liu, ; Cun-Jin Su,
| | - Jiang-Tao Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Feng-Lun Zhao
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - De-Lai Xu
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Pan
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
- College of Life Sciences, Yanan University, Yanan, China
- Suzhou Key Laboratory of Intelligent Medicine and Equipment, Suzhou Medical College of Soochow University, Suzhou, China
- *Correspondence: Tong Liu, ; Cun-Jin Su,
| |
Collapse
|
7
|
McCarthy CE, Duffney PF, Nogales A, Post CM, Lawrence BP, Martinez-Sobrido L, Thatcher TH, Phipps RP, Sime PJ. Dung biomass smoke exposure impairs resolution of inflammatory responses to influenza infection. Toxicol Appl Pharmacol 2022; 450:116160. [PMID: 35817128 PMCID: PMC10211473 DOI: 10.1016/j.taap.2022.116160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 01/26/2023]
Abstract
Epidemiological studies associate biomass smoke with an increased risk for respiratory infections in children and adults in the developing world, with 500,000 premature deaths each year attributed to biomass smoke-related acute respiratory infections including infections caused by respiratory viruses. Animal dung is a biomass fuel of particular concern because it generates more toxic compounds per amount burned than wood, and is a fuel of last resort for the poorest households. Currently, there is little biological evidence on the effects of dung biomass smoke exposure on immune responses to respiratory viral infections. Here, we investigated the impact of dung biomass exposure on respiratory infection using a mouse model of dung biomass smoke and cultured primary human small airway epithelial cells (SAECs). Mice infected with influenza A virus (IAV) after dung biomass smoke exposure had increased mortality, lung inflammation and virus mRNA levels, and suppressed expression of innate anti-viral mediators compared to air exposed mice. Importantly, there was still significant tissue inflammation 14 days after infection in dung biomass smoke-exposed mice even after inflammation had resolved in air-exposed mice. Dung biomass smoke exposure also suppressed the production of anti-viral cytokines and interferons in cultured SAECs treated with poly(I:C) or IAV. This study shows that dung biomass smoke exposure impairs the immune response to respiratory viruses and contributes to biomass smoke-related susceptibility to respiratory viral infections, likely due to a failure to resolve the inflammatory effects of biomass smoke exposure.
Collapse
Affiliation(s)
| | - Parker F Duffney
- United States Environmental Protection Agency, Integrated Health Assessment Branch, Research Triangle Park, NC, USA
| | - Aitor Nogales
- Centro de Investigación en Sanidad Animal (CISA), INIA-CSIC, Madrid, Spain
| | - Christina M Post
- Department of Environmental Medicine, University of Rochester, Rochester NY, New York, United States
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester, Rochester NY, New York, United States
| | | | - Thomas H Thatcher
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Patricia J Sime
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
8
|
Wang H, Zhao Y, Zhang Y, Yang T, Zhao S, Sun N, Tan H, Zhang H, Wang C, Fan H. Effect of Chlorogenic Acid via Upregulating Resolvin D1 Inhibiting the NF-κB Pathway on Chronic Restraint Stress-Induced Liver Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10532-10542. [PMID: 35975781 DOI: 10.1021/acs.jafc.2c04593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chronic stress can cause chronic inflammatory injury to the liver. Chlorogenic acid (CGA) is known to have a wide range of biological activities and anti-inflammatory effects. Resolvin D1 (RvD1) is a polyunsaturated fatty acid derivative that has inhibitory effects on a variety of inflammatory diseases. However, whether CGA can inhibit liver inflammation in chronic stress through RvD1 remains unclear. In this work, male rats were subjected to restraint stress for 6 h every day and built a chronic stress model for 21 days. CGA (100 mg/kg) was administered intragastrically 1 h before restraint, with intraperitoneal injection of RvD1 inhibitor WRW4 (antagonist of FPR2, 0.1 mg/kg) or WRW4 solution every 2 days for 30 min before CGA administration. CGA reduced hepatic hemorrhage and inflammatory cell infiltration, alleviated hepatic injury, decreased the activation of the NF-κB pathway and the expression of interleukin 1β, interleukin 6, and tumor necrosis factor α in the liver, and increased RvD1 in the serum and liver. The therapeutic effect of CGA was blocked after WRW4 intervention. These results suggest that the protective effects of CGA mediate the NF-κB pathway by upregulating the generation of RvD1. Above all, this research demonstrates the liver protective effect of CGA and provides a potential treatment strategy for chronic inflammatory disease.
Collapse
Affiliation(s)
- Hui Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Yuan Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Yuntong Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Tianyuan Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Shuping Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Ning Sun
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Haoyang Tan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Haiyang Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Chuqiao Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Persistent unresolved inflammation results in a number of pathologic respiratory diseases including asthma, cystic fibrosis, acute respiratory distress syndrome (ARDS) and coronavirus disease 2019 (COVID-19)-associated ARDS. Inflammation resolution is an active series of biologic processes orchestrated by a family of bioactive specialized pro-resolving mediators (SPMs) derived from essential omega-3 and omega-6 polyunsaturated fatty acids (PUFAs). In this review, we highlight recent findings on dysregulated inflammation resolution in common respiratory diseases and recent literature on SPM generation with PUFA dietary supplementation with relevance to diseases of respiratory inflammation. RECENT FINDINGS Human studies and preclinical models of diseases of lung inflammation have revealed disequilibrium in the levels of pro-inflammatory versus pro-resolving mediators. Recent studies identified actions for SPMs on regulating prophlogistic host responses and stimulating inflammation resolution pathways in inflammatory respiratory diseases. SUMMARY Dietary marine oils are enriched in PUFAs and contain parent omega-3 and omega-6 fatty acids and precursors for conversion to SPMs. Nutritional supplementation with fish oils can boost SPM levels and offer a therapeutic approach targeting inflammation resolution pathways for diseases of lung inflammation.
Collapse
Affiliation(s)
- R. Elaine Cagnina
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Melody G. Duvall
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julie Nijmeh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bruce D. Levy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Julliard WA, Myo YPA, Perelas A, Jackson PD, Thatcher TH, Sime PJ. Specialized pro-resolving mediators as modulators of immune responses. Semin Immunol 2022; 59:101605. [PMID: 35660338 PMCID: PMC9962762 DOI: 10.1016/j.smim.2022.101605] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 01/15/2023]
Abstract
Specialized pro-resolving mediators (SPMs) are endogenous small molecules produced mainly from dietary omega-3 polyunsaturated fatty acids by both structural cells and cells of the active and innate immune systems. Specialized pro-resolving mediators have been shown to both limit acute inflammation and promote resolution and return to homeostasis following infection or injury. There is growing evidence that chronic immune disorders are characterized by deficiencies in resolution and SPMs have significant potential as novel therapeutics to prevent and treat chronic inflammation and immune system disorders. This review focuses on important breakthroughs in understanding how SPMs are produced by, and act on, cells of the adaptive immune system, specifically macrophages, B cells and T cells. We also highlight recent evidence demonstrating the potential of SPMs as novel therapeutic agents in topics including immunization, autoimmune disease and transplantation.
Collapse
Affiliation(s)
- Walker A Julliard
- Department of Surgery, Virginia Commonwealth University, Richmond VA, USA
| | - Yu Par Aung Myo
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond VA, USA
| | - Apostolos Perelas
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond VA, USA
| | - Peter D. Jackson
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond VA, USA
| | - Thomas H. Thatcher
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond VA, USA
| | - Patricia J Sime
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
11
|
Molaei E, Molaei A, Hayes AW, Karimi G. Resolvin D1, therapeutic target in acute respiratory distress syndrome. Eur J Pharmacol 2021; 911:174527. [PMID: 34582846 PMCID: PMC8464084 DOI: 10.1016/j.ejphar.2021.174527] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022]
Abstract
Acute lung injury (ALI), or its more severe form, acute respiratory distress syndrome (ARDS), is a disease with high mortality and is a serious challenge facing the World Health Organization because there is no specific treatment. The excessive and prolonged immune response is the hallmark of this disorder, so modulating and regulating inflammation plays an important role in its prevention and treatment. Resolvin D1 (RvD1) as a specialized pro-resolving mediator has the potential to suppress the expression of inflammatory cytokines and to facilitate the production of antioxidant proteins by stimulating lipoxin A4 receptor/formyl peptide receptor 2 (ALX/FPR2). These changes limit the invasion of immune cells into the lung tissue, inhibit coagulation, and enhance cell protection against oxidative stress (OS). In particular, this biomolecule reduces the generation of reactive oxygen species (ROS) by blocking the activation of inflammatory transcription factors, especially nuclear factor-κB (NF-κB), and accelerating the synthesis of antioxidant compounds such as heme oxygenase 1 (HO-1) and superoxide dismutase (SOD). Therefore, the destruction and dysfunction of important cell components such as cytoplasmic membrane, mitochondria, Na+/k + adenosine triphosphatase (ATPase) and proteins involved in the phagocytic activity of scavenger macrophages are attenuated. Numerous studies on the effect of RvD1 over inflammation using animal models revealed that Rvs have both anti-inflammatory and pro-resolving capabilities and therefore, might have potential therapeutic value in treating ALI. Here, we review the current knowledge on the classification, biosynthesis, receptors, mechanisms of action, and role of Rvs in ALI/ARDS.
Collapse
Affiliation(s)
- Emad Molaei
- Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Molaei
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|