1
|
Wang Y, Heymann F, Peiseler M. Intravital imaging: dynamic insights into liver immunity in health and disease. Gut 2024; 73:1364-1375. [PMID: 38777574 DOI: 10.1136/gutjnl-2023-331739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Inflammation is a critical component of most acute and chronic liver diseases. The liver is a unique immunological organ with a dense vascular network, leading to intense crosstalk between tissue-resident immune cells, passenger leucocytes and parenchymal cells. During acute and chronic liver diseases, the multifaceted immune response is involved in disease promoting and repair mechanisms, while upholding core liver immune functions. In recent years, single-cell technologies have unravelled a previously unknown heterogeneity of immune cells, reshaping the complexity of the hepatic immune response. However, inflammation is a dynamic biological process, encompassing various immune cells, orchestrated in temporal and spatial dimensions, and driven by multiorgan signals. Intravital microscopy (IVM) has emerged as a powerful tool to investigate immunity by visualising the dynamic interplay between different immune cells and their surroundings within a near-natural environment. In this review, we summarise the experimental considerations to perform IVM and highlight recent technological developments. Furthermore, we outline the unique contributions of IVM to our understanding of liver immunity. Through the lens of liver disease, we discuss novel immune-mediated disease mechanisms uncovered by imaging-based studies.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Heymann
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Peiseler
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité, Berlin, Germany
| |
Collapse
|
2
|
Jin C, Sengupta A. Microbes in porous environments: from active interactions to emergent feedback. Biophys Rev 2024; 16:173-188. [PMID: 38737203 PMCID: PMC11078916 DOI: 10.1007/s12551-024-01185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/27/2024] [Indexed: 05/14/2024] Open
Abstract
Microbes thrive in diverse porous environments-from soil and riverbeds to human lungs and cancer tissues-spanning multiple scales and conditions. Short- to long-term fluctuations in local factors induce spatio-temporal heterogeneities, often leading to physiologically stressful settings. How microbes respond and adapt to such biophysical constraints is an active field of research where considerable insight has been gained over the last decades. With a focus on bacteria, here we review recent advances in self-organization and dispersal in inorganic and organic porous settings, highlighting the role of active interactions and feedback that mediates microbial survival and fitness. We discuss open questions and opportunities for using integrative approaches to advance our understanding of the biophysical strategies which microbes employ at various scales to make porous settings habitable.
Collapse
Affiliation(s)
- Chenyu Jin
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, 162 A, Avenue de la Faïencerie, Luxembourg City, L-1511 Luxembourg
| | - Anupam Sengupta
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, 162 A, Avenue de la Faïencerie, Luxembourg City, L-1511 Luxembourg
- Institute for Advanced Studies, University of Luxembourg, 2 Avenue de l’Université, Esch-sur-Alzette, L-4365 Luxembourg
| |
Collapse
|
3
|
Bera S, Amino R, Cockburn IA, Ganusov VV. Heterogeneity in killing efficacy of individual effector CD8 + T cells against Plasmodium liver stages. Proc Biol Sci 2023; 290:20232280. [PMID: 38018100 PMCID: PMC10685130 DOI: 10.1098/rspb.2023.2280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
Vaccination strategies in mice inducing high numbers of memory CD8+ T cells specific to a single epitope are able to provide sterilizing protection against infection with Plasmodium sporozoites. We have recently found that Plasmodium-specific CD8+ T cells cluster around sporozoite-infected hepatocytes but whether such clusters are important in elimination of the parasite remains incompletely understood. Here, we used our previously generated data in which we employed intravital microscopy to longitudinally image 32 green fluorescent protein (GFP)-expressing Plasmodium yoelii parasites in livers of mice that had received activated Plasmodium-specific CD8+ T cells after sporozoite infection. We found significant heterogeneity in the dynamics of the normalized GFP signal from the parasites (termed 'vitality index' or VI) that was weakly correlated with the number of T cells near the parasite. We also found that a simple model assuming mass-action, additive killing by T cells well describes the VI dynamics for most parasites and predicts a highly variable killing efficacy by individual T cells. Given our estimated median per capita kill rate of k = 0.031/h we predict that a single T cell is typically incapable of killing a parasite within the 48 h lifespan of the liver stage in mice. Stochastic simulations of T cell clustering and killing of the liver stage also suggested that: (i) three or more T cells per infected hepatocyte are required to ensure sterilizing protection; (ii) both variability in killing efficacy of individual T cells and resistance to killing by individual parasites may contribute to the observed variability in VI decline, and (iii) the stable VI of some clustered parasites cannot be explained by measurement noise. Taken together, our analysis for the first time provides estimates of efficiency at which individual CD8+ T cells eliminate intracellular parasitic infection in vivo.
Collapse
Affiliation(s)
- Soumen Bera
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Rogerio Amino
- Unit of Malaria Infection and Immunity, Institut Pasteur, 75015 Paris, France
| | - Ian A. Cockburn
- Division of Immunology, Inflammation and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia
| | - Vitaly V. Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
- Host-Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX 78258, USA
| |
Collapse
|
4
|
Torres DJ, Mrass P, Byrum J, Gonzales A, Martinez DN, Juarez E, Thompson E, Vezys V, Moses ME, Cannon JL. Quantitative analyses of T cell motion in tissue reveals factors driving T cell search in tissues. eLife 2023; 12:e84916. [PMID: 37870221 PMCID: PMC10672806 DOI: 10.7554/elife.84916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/22/2023] [Indexed: 10/24/2023] Open
Abstract
T cells are required to clear infection, and T cell motion plays a role in how quickly a T cell finds its target, from initial naive T cell activation by a dendritic cell to interaction with target cells in infected tissue. To better understand how different tissue environments affect T cell motility, we compared multiple features of T cell motion including speed, persistence, turning angle, directionality, and confinement of T cells moving in multiple murine tissues using microscopy. We quantitatively analyzed naive T cell motility within the lymph node and compared motility parameters with activated CD8 T cells moving within the villi of small intestine and lung under different activation conditions. Our motility analysis found that while the speeds and the overall displacement of T cells vary within all tissues analyzed, T cells in all tissues tended to persist at the same speed. Interestingly, we found that T cells in the lung show a marked population of T cells turning at close to 180o, while T cells in lymph nodes and villi do not exhibit this "reversing" movement. T cells in the lung also showed significantly decreased meandering ratios and increased confinement compared to T cells in lymph nodes and villi. These differences in motility patterns led to a decrease in the total volume scanned by T cells in lung compared to T cells in lymph node and villi. These results suggest that the tissue environment in which T cells move can impact the type of motility and ultimately, the efficiency of T cell search for target cells within specialized tissues such as the lung.
Collapse
Affiliation(s)
| | - Paulus Mrass
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Janie Byrum
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | | | | | | | - Emily Thompson
- Department of Microbiology and Immunology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Vaiva Vezys
- Department of Microbiology and Immunology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Melanie E Moses
- Department of Computer Science, University of New MexicoAlbuquerqueUnited States
| | - Judy L Cannon
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
| |
Collapse
|
5
|
Paganetti H. A review on lymphocyte radiosensitivity and its impact on radiotherapy. Front Oncol 2023; 13:1201500. [PMID: 37601664 PMCID: PMC10435323 DOI: 10.3389/fonc.2023.1201500] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
It is well known that radiation therapy causes lymphopenia in patients and that this is correlated with a negative outcome. The mechanism is not well understood because radiation can have both immunostimulatory and immunosuppressive effects. How tumor dose conformation, dose fractionation, and selective lymph node irradiation in radiation therapy does affect lymphopenia and immune response is an active area of research. In addition, understanding the impact of radiation on the immune system is important for the design and interpretation of clinical trials combining radiation with immune checkpoint inhibitors, both in terms of radiation dose and treatment schedules. Although only a few percent of the total lymphocyte population are circulating, it has been speculated that their increased radiosensitivity may contribute to, or even be the primary cause of, lymphopenia. This review summarizes published data on lymphocyte radiosensitivity based on human, small animal, and in vitro studies. The data indicate differences in radiosensitivity among lymphocyte subpopulations that affect their relative contribution and thus the dynamics of the immune response. In general, B cells appear to be more radiosensitive than T cells and NK cells appear to be the most resistant. However, the reported dose-response data suggest that in the context of lymphopenia in patients, aspects other than cell death must also be considered. Not only absolute lymphocyte counts, but also lymphocyte diversity and activity are likely to be affected by radiation. Taken together, the reviewed data suggest that it is unlikely that radiation-induced cell death in lymphocytes is the sole factor in radiation-induced lymphopenia.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston MA, United States
- Harvard Medical School, Boston MA, United States
| |
Collapse
|
6
|
Ganusov VV, Zenkov VS, Majumder B. Correlation between speed and turning naturally arises for sparsely sampled cell movements. Phys Biol 2023; 20:10.1088/1478-3975/acb18c. [PMID: 36623315 PMCID: PMC9918869 DOI: 10.1088/1478-3975/acb18c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Mechanisms regulating cell movement are not fully understood. One feature of cell movement that determines how far cells displace from an initial position is persistence, the ability to perform movements in a direction similar to the previous movement direction. Persistence is thus determined by turning angles (TA) between two sequential displacements and can be characterized by an average TA or persistence time. Recent studies documenting T cell movement in zebrafish found that a cell's average speed and average TA are negatively correlated, suggesting a fundamental cell-intrinsic program whereby cells with a lower TA (and larger persistence time) are intrinsically faster (or faster cells turn less). In this paper we confirm the existence of the correlation between turning and speed for six different datasets on 3D movement of CD8 T cells in murine lymph nodes or liver. Interestingly, the negative correlation between TA and speed was observed in experiments in which liver-localized CD8 T cells rapidly displace due to floating with the blood flow, suggesting that other mechanisms besides cell-intrinsic program may be at play. By simulating correlated random walks using two different frameworks (one based on the von Mises-Fisher (vMF) distribution and another based on the Ornstein-Uhlenbeck (OU) process) we show that the negative correlation between speed and turning naturally arises when cell trajectories are sub-sampled, i.e. when the frequency of sampling is lower than frequency at which cells typically make movements. This effect is strongest when the sampling frequency is of the order of magnitude of the inverse of persistence time of cells and when cells vary in persistence time. The effect arises in part due to the sensitivity of estimated cell speeds to the frequency of imaging whereby less frequent imaging results in slower speeds. Interestingly, by using estimated persistence times for cells in two of our datasets and simulating cell movements using the OU process, we could partially reproduce the experimentally observed correlation between TA and speed without a cell-intrinsic program linking the two processes. Our results thus suggest that sub-sampling may contribute to (and perhaps fully explains) the observed correlation between speed and turning at least for some cell trajectory data and emphasize the role of sampling frequency in the inference of critical cellular parameters of cell motility such as speeds.
Collapse
Affiliation(s)
- Vitaly V. Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
| | - Viktor S. Zenkov
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Barun Majumder
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
7
|
O'Connor JH, McNamara HA, Cai Y, Coupland LA, Gardiner EE, Parish CR, McMorran BJ, Ganusov VV, Cockburn IA. Interactions with Asialo-Glycoprotein Receptors and Platelets Are Dispensable for CD8 + T Cell Localization in the Murine Liver. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2738-2748. [PMID: 35649630 PMCID: PMC9308657 DOI: 10.4049/jimmunol.2101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Liver-resident CD8+ T cells can play critical roles in the control of pathogens, including Plasmodium and hepatitis B virus. Paradoxically, it has also been proposed that the liver may act as the main place for the elimination of CD8+ T cells at the resolution of immune responses. We hypothesized that different adhesion processes may drive residence versus elimination of T cells in the liver. Specifically, we investigated whether the expression of asialo-glycoproteins (ASGPs) drives the localization and elimination of effector CD8+ T cells in the liver, while interactions with platelets facilitate liver residence and protective function. Using murine CD8+ T cells activated in vitro, or in vivo by immunization with Plasmodium berghei sporozoites, we found that, unexpectedly, inhibition of ASGP receptors did not inhibit the accumulation of effector cells in the liver, but instead prevented these cells from accumulating in the spleen. In addition, enforced expression of ASGP on effector CD8+ T cells using St3GalI-deficient cells lead to their loss from the spleen. We also found, using different mouse models of thrombocytopenia, that severe reduction in platelet concentration in circulation did not strongly influence the residence and protective function of CD8+ T cells in the liver. These data suggest that platelets play a marginal role in CD8+ T cell function in the liver. Furthermore, ASGP-expressing effector CD8+ T cells accumulate in the spleen, not the liver, prior to their destruction.
Collapse
Affiliation(s)
- James H O'Connor
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Australian National University Medical School, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Hayley A McNamara
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yeping Cai
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lucy A Coupland
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia; and
| | - Elizabeth E Gardiner
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia; and
| | - Christopher R Parish
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia; and
| | - Brendan J McMorran
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Vitaly V Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN
| | - Ian A Cockburn
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia;
| |
Collapse
|