1
|
He X, Jiang X, Guo J, Sun H, Yang J. PANoptosis in Bacterial Infections: A Double-Edged Sword Balancing Host Immunity and Pathogenesis. Pathogens 2025; 14:43. [PMID: 39861004 PMCID: PMC11768250 DOI: 10.3390/pathogens14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
PANoptosis is a newly identified programmed cell death pathway that integrates characteristics of apoptosis, pyroptosis, and necroptosis. It plays a dual role in the host immune response to bacterial infections. On one hand, PANoptosis acts as a protective mechanism by inducing the death of infected cells to eliminate pathogens and releasing pro-inflammatory cytokines to amplify the immune response. On the other hand, bacteria can exploit PANoptosis to evade host immune defenses. This dual nature underscores the potential of PANoptosis as a target for developing novel therapies against bacterial infections. This review summarizes the molecular mechanisms of PANoptosis, along with the crosstalk and integration of different cell death pathways in response to various bacterial pathogens. We also discuss the dual roles of PANoptosis in bacterial infectious diseases, including sepsis, pulmonary infections, and intestinal infections. Elucidating the molecular mechanisms underlying PANoptosis and how bacteria manipulate this pathway offers critical insights into host-pathogen interactions. These insights provide a foundation for designing targeted antibacterial strategies, modulating inflammation, and advancing precision medicine to improve clinical outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Jing Yang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (X.H.); (X.J.); (J.G.); (H.S.)
| |
Collapse
|
2
|
Seldeslachts L, Staels F, Gkountzinopoulou M, Jacobs C, Tielemans B, Vanhoffelen E, Reséndiz-Sharpe A, De Herdt L, Haughton J, Prezzemolo T, Burton O, Feys S, van de Veerdonk FL, Carvalho A, Naesens L, Matthys P, Lagrou K, Verbeken E, Chamilos G, Wauters J, Humblet-Baron S, Vande Velde G. Damping excessive viral-induced IFN-γ rescues the impaired anti-Aspergillus host immune response in influenza-associated pulmonary aspergillosis. EBioMedicine 2024; 108:105347. [PMID: 39353282 PMCID: PMC11472711 DOI: 10.1016/j.ebiom.2024.105347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Influenza-associated pulmonary aspergillosis (IAPA) is a severe fungal superinfection in critically ill influenza patients that is of incompletely understood pathogenesis. Despite the use of contemporary therapies with antifungal and antivirals, mortality rates remain unacceptably high. We aimed to unravel the IAPA immunopathogenesis as a means to develop adjunctive immunomodulatory therapies. METHODS We used a murine model of IAPA to investigate how influenza predisposes to the development of invasive pulmonary aspergillosis. Immunocompetent mice were challenged with an intranasal instillation of influenza on day 0 followed by an orotracheal inoculation with Aspergillus 4 days later. Mice were monitored daily for overall health status, lung pathology with micro-computed tomography (μCT) and fungal burden with bioluminescence imaging (BLI). At endpoint, high parameter immunophenotyping, spatial transcriptomics, histopathology, dynamic phagosome biogenesis assays with live imaging, immunofluorescence staining, specialized functional phagocytosis and killing assays were performed. FINDINGS We uncovered an early exuberant influenza-induced interferon-gamma (IFN-γ) production as the major driver of immunopathology in IAPA and delineated the molecular mechanisms. Specifically, excessive IFN-γ production resulted in a defective Th17-immune response, depletion of macrophages, and impaired killing of Aspergillus conidia by macrophages due to the inhibition of NADPH oxidase-dependent activation of LC3-associated phagocytosis (LAP). Markedly, mice with partial or complete genetic ablation of IFN-γ had a restored Th17-immune response, LAP-dependent mechanism of killing and were fully protected from invasive fungal infection. INTERPRETATION Together, these results identify exuberant viral induced IFN-γ production as a major driver of immune dysfunction in IAPA, paving the way to explore the use of excessive viral-induced IFN-γ as a biomarker and new immunotherapeutic target in IAPA. FUNDING This research was funded by the Research Foundation Flanders (FWO), project funding under Grant G053121N to JW, SHB and GVV; G057721N, G0G4820N to GVV; 1506114 N to KL and GVV; KU Leuven internal funds (C24/17/061) to GVV, clinical research funding to JW, Research Foundation Flanders (FWO) aspirant mandate under Grant 1186121N/1186123 N to LS, 11B5520N to FS, 1SF2222N to EV and 11M6922N/11M6924N to SF, travel grants V428023N, K103723N, K217722N to LS. FLvdV was supported by a Vidi grant of the Netherlands Association for Scientific Research. FLvdV, JW, AC and GC were supported by the Europeans Union's Horizon 2020 research and innovation program under grant agreement no 847507 HDM-FUN. AC was also supported by the Fundação para a Ciência e a Tecnologia (FCT), with the references UIDB/50026/2020, UIDP/50026/2020, PTDC/MED-OUT/1112/2021 (https://doi.org/10.54499/PTDC/MED-OUT/1112/2021), and 2022.06674.PTDC (http://doi.org/10.54499/2022.06674.PTDC); and the "la Caixa" Foundation under the agreement LCF/PR/HR22/52420003 (MICROFUN).
Collapse
Affiliation(s)
- Laura Seldeslachts
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, 3000, Leuven, Belgium
| | - Frederik Staels
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, 3000, Leuven, Belgium
| | - Marina Gkountzinopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71300, Heraklion, Crete, Greece; Department of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Greece
| | - Cato Jacobs
- Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, 3000, Leuven, Belgium
| | - Birger Tielemans
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, 3000, Leuven, Belgium
| | - Eliane Vanhoffelen
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, 3000, Leuven, Belgium
| | - Agustin Reséndiz-Sharpe
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, 3000, Leuven, Belgium
| | - Lander De Herdt
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, 3000, Leuven, Belgium
| | - Jeason Haughton
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, 3000, Leuven, Belgium
| | - Teresa Prezzemolo
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, 3000, Leuven, Belgium
| | - Oliver Burton
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, 3000, Leuven, Belgium
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, 3000, Leuven, Belgium
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, 6525, Nijmegen, Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Lieve Naesens
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, 3000, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Immunobiology, KU Leuven, 3000, Leuven, Belgium
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, KU Leuven, 3000, Leuven, Belgium; Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals, Leuven, Leuven, Belgium
| | - Erik Verbeken
- Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium
| | - Georgios Chamilos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71300, Heraklion, Crete, Greece; Department of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Greece
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, 3000, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, 3000, Leuven, Belgium.
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
3
|
Roe K. Are secondary bacterial pneumonia mortalities increased because of insufficient pro-resolving mediators? J Infect Chemother 2024; 30:959-970. [PMID: 38977072 DOI: 10.1016/j.jiac.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Respiratory viral infections, including respiratory syncytial virus (RSV), parainfluenza viruses and type A and B influenza viruses, can have severe outcomes. Bacterial infections frequently follow viral infections, and influenza or other viral epidemics periodically have higher mortalities from secondary bacterial pneumonias. Most secondary bacterial infections can cause lung immunosuppression by fatty acid mediators which activate cellular receptors to manipulate neutrophils, macrophages, natural killer cells, dendritic cells and other lung immune cells. Bacterial infections induce synthesis of inflammatory mediators including prostaglandins and leukotrienes, then eventually also special pro-resolving mediators, including lipoxins, resolvins, protectins and maresins, which normally resolve inflammation and immunosuppression. Concurrent viral and secondary bacterial infections are more dangerous, because viral infections can cause inflammation and immunosuppression before the secondary bacterial infections worsen inflammation and immunosuppression. Plausibly, the higher mortalities of secondary bacterial pneumonias are caused by the overwhelming inflammation and immunosuppression, which the special pro-resolving mediators might not resolve.
Collapse
Affiliation(s)
- Kevin Roe
- Retired United States Patent and Trademark Office, San Jose, CA, USA.
| |
Collapse
|
4
|
Lim PN, Cervantes MM, Pham LK, Doherty S, Tufts A, Dubey D, Mai D, Aderem A, Diercks AH, Rothchild AC. Absence of c-Maf and IL-10 enables Type I IFN enhancement of innate responses to low-dose LPS in alveolar macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.594428. [PMID: 38826239 PMCID: PMC11142172 DOI: 10.1101/2024.05.22.594428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Alveolar macrophages (AMs) are lower-airway resident myeloid cells and are among the first to respond to inhaled pathogens. Here, we interrogate AM innate sensing to Pathogen Associated Molecular Patterns (PAMPs) and determine AMs have decreased responses to low-dose LPS compared to other macrophages, as measured by TNF, IL-6, Ifnb, and Ifit3. We find the reduced response to low-dose LPS correlates with minimal TLR4 and CD14 surface expression, despite sufficient internal expression of TLR4. Additionally, we find that AMs do not produce IL-10 in response to a variety of PAMPs due to low expression of transcription factor c-Maf and that lack of IL-10 production contributes to an enhancement of pro-inflammatory responses by Type I IFN. Our findings demonstrate that AMs have cell-intrinsic dampened responses to LPS, which is enhanced by type I IFN exposure. These data implicate conditions where AMs may have reduced or enhanced sentinel responses to bacterial infections.
Collapse
Affiliation(s)
- Pamelia N. Lim
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Maritza M. Cervantes
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| | - Linh K. Pham
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
- Graduate Program in Animal Biotechnology & Biomedical Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| | - Sydney Doherty
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| | - Ankita Tufts
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| | - Divya Dubey
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Dat Mai
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98019
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98019
| | - Alan H. Diercks
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98019
| | - Alissa C. Rothchild
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
5
|
Majumder S, Li P, Das S, Nafiz TN, Kumar S, Bai G, Dellario H, Sui H, Guan Z, Curtiss R, Furuya Y, Sun W. A bacterial vesicle-based pneumococcal vaccine against influenza-mediated secondary Streptococcus pneumoniae pulmonary infection. Mucosal Immunol 2024; 17:169-181. [PMID: 38215909 PMCID: PMC11033695 DOI: 10.1016/j.mucimm.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Streptococcus pneumoniae (Spn) is a common pathogen causing a secondary bacterial infection following influenza, which leads to severe morbidity and mortality during seasonal and pandemic influenza. Therefore, there is an urgent need to develop bacterial vaccines that prevent severe post-influenza bacterial pneumonia. Here, an improved Yersinia pseudotuberculosis strain (designated as YptbS46) possessing an Asd+ plasmid pSMV92 could synthesize high amounts of the Spn pneumococcal surface protein A (PspA) antigen and monophosphoryl lipid A as an adjuvant. The recombinant strain produced outer membrane vesicles (OMVs) enclosing a high amount of PspA protein (designated as OMV-PspA). A prime-boost intramuscular immunization with OMV-PspA induced both memory adaptive and innate immune responses in vaccinated mice, reduced the viral and bacterial burden, and provided complete protection against influenza-mediated secondary Spn infection. Also, the OMV-PspA immunization afforded significant cross-protection against the secondary Spn A66.1 infection and long-term protection against the secondary Spn D39 challenge. Our study implies that an OMV vaccine delivering Spn antigens can be a new promising pneumococcal vaccine candidate.
Collapse
Affiliation(s)
- Saugata Majumder
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Peng Li
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Shreya Das
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Tanvir Noor Nafiz
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Sudeep Kumar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Guangchun Bai
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Hazel Dellario
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Haixin Sui
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Yoichi Furuya
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA.
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA.
| |
Collapse
|
6
|
Roe K. Deadly interactions: Synergistic manipulations of concurrent pathogen infections potentially enabling future pandemics. Drug Discov Today 2023; 28:103762. [PMID: 37660981 DOI: 10.1016/j.drudis.2023.103762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Certain mono-infections of influenza viruses and novel coronaviruses, including severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) are significant threats to human health. Concurrent infections by influenza viruses and coronaviruses increases their danger. Influenza viruses have eight manipulations capable of assisting SARS-CoV-2 and other coronaviruses, and several of these manipulations, which are not specific to viruses, can also directly or indirectly boost dangerous secondary bacterial pneumonias. The influenza virus manipulations include: inhibiting transcription factors and cytokine expression; impairing defensive protein expression; increasing RNA viral replication; inhibiting defenses by manipulating cellular sensors and signaling pathways; inhibiting defenses by secreting exosomes; stimulating cholesterol production to increase synthesized virion infectivities; increasing cellular autophagy to assist viral replication; and stimulating glucocorticoid synthesis to suppress innate and adaptive immune defenses by inhibiting cytokine, chemokine, and adhesion molecule production. Teaser: Rapidly spreading multidrug-resistant respiratory bacteria, combined with influenza virus's far-reaching cellular defense manipulations benefiting evolving SARS-CoV-2 or other coronaviruses and/or respiratory bacteria, can enable more severe pandemics or co-pandemics.
Collapse
|
7
|
Xiao H, Zhao Q, Yuan J, Liang W, Wu R, Wen Y, Du S, Wang Y, Zhao S, Lang Y, Yan Q, Huang X, Cao S. IFN-γ promotes PANoptosis in Pasteurella multocida toxin-induced pneumonia in mice. Vet Microbiol 2023; 285:109848. [PMID: 37722207 DOI: 10.1016/j.vetmic.2023.109848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023]
Abstract
Interferon-γ (IFN-γ) is a pleiotropic cytokine that regulates diverse biological functions, including modulation of inflammatory response and innate and adaptive immunity. In our study, we found that IFN-γ plays an important role in the regulation of Pasteurella multocida toxin-associated pneumonia. In work described here, we demonstrated that rPMT induced a lethal pneumonia in WT mice and the severity of the pneumonia was substantially alleviated in IFN-γ-deficient mice, IFN-γ deficiency significantly elevated the survival rate and reduced the pathological lesions of the lungs after rPMT challenged. Notably, IFN-γ deficiency significantly decreased myeloperoxidase (MPO) expression abundance in the lung tissue, and the MPO was mainly expressed in the lung tissue injury region of WT mice. More importantly, IFN-γ deficiency impaired the activation of PANoptosis specific markers, including the caspase 3, GSDMD, and MLKL, and reduced the expression of IL-1β. Cumulatively, this study demonstrates that IFN-γ promotes PANoptosis in PMT induced pneumonia in mice, providing a basis for studying the pathogenic mechanism of PMT.
Collapse
Affiliation(s)
- Hang Xiao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Chengdu 611130, China
| | - Jianlin Yuan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Liang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Chengdu 611130, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Chengdu 611130, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Chengdu 611130, China
| | - Yiping Wang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Chengdu 611130, China
| | - Shan Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Chengdu 611130, China
| | - Yifei Lang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Chengdu 611130, China
| | - Qigui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Chengdu 611130, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Chengdu 611130, China
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Chengdu 611130, China.
| |
Collapse
|
8
|
Palani S, Uddin MB, McKelvey M, Shao S, Sun K. Immune predisposition drives susceptibility to pneumococcal pneumonia after mild influenza A virus infection in mice. Front Immunol 2023; 14:1272920. [PMID: 37771584 PMCID: PMC10525308 DOI: 10.3389/fimmu.2023.1272920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction A frequent sequela of influenza A virus (IAV) infection is secondary bacterial pneumonia. Therefore, it is clinically important to understand the genetic predisposition to IAV and bacterial coinfection. Methods BALB/c and C57BL/6 (B6) mice were infected with high or low-pathogenic IAV and Streptococcus pneumoniae (SPn). The contribution of cellular and molecular immune factors to the resistance/susceptibility of BALB/c and B6 mice were dissected in nonlethal and lethal IAV/SPn coinfection models. Results Low-virulent IAV X31 (H3N2) rendered B6 mice extremely susceptible to SPn superinfection, while BALB/c mice remained unaffected. X31 infection alone barely induces IFN-γresponse in two strains of mice; however, SPn superinfection significantly enhances IFN-γ production in the susceptible B6 mice. As a result, IFN-γ signaling inhibits neutrophil recruitment and bacterial clearance, leading to lethal X31/SPn coinfection in B6 mice. Conversely, the diminished IFN-γ and competent neutrophil responses enable BALB/c mice highly resistant to X31/SPn coinfection. Discussion The results establish that type 1 immune predisposition plays a key role in lethal susceptibility of B6 mice to pneumococcal pneumonia after mild IAV infection.
Collapse
Affiliation(s)
- Sunil Palani
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Md Bashir Uddin
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Michael McKelvey
- Department of Experimental Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Shengjun Shao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Keer Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
9
|
Gaudino M, Lion A, Sagné E, Nagamine B, Oliva J, Terrier O, Errazuriz-Cerda E, Scribe A, Sikht FZ, Simon E, Foret-Lucas C, Gausserès B, Lion J, Moreno A, Dordet-Frisoni E, Baranowski E, Volmer R, Ducatez MF, Meyer G. The Activation of the RIG-I/MDA5 Signaling Pathway upon Influenza D Virus Infection Impairs the Pulmonary Proinflammatory Response Triggered by Mycoplasma bovis Superinfection. J Virol 2023; 97:e0142322. [PMID: 36692289 PMCID: PMC9972951 DOI: 10.1128/jvi.01423-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023] Open
Abstract
Concurrent infections with multiple pathogens are often described in cattle with respiratory illness. However, how the host-pathogen interactions influence the clinical outcome has been only partially explored in this species. Influenza D virus (IDV) was discovered in 2011. Since then, IDV has been detected worldwide in different hosts. A significant association between IDV and bacterial pathogens in sick cattle was shown in epidemiological studies, especially with Mycoplasma bovis. In an experimental challenge, IDV aggravated M. bovis-induced pneumonia. However, the mechanisms through which IDV drives an increased susceptibility to bacterial superinfections remain unknown. Here, we used the organotypic lung model precision-cut lung slices to study the interplay between IDV and M. bovis coinfection. Our results show that a primary IDV infection promotes M. bovis superinfection by increasing the bacterial replication and the ultrastructural damages in lung pneumocytes. In our model, IDV impaired the innate immune response triggered by M. bovis by decreasing the expression of several proinflammatory cytokines and chemokines that are important for immune cell recruitment and the bacterial clearance. Stimulations with agonists of cytosolic helicases and Toll-like receptors (TLRs) revealed that a primary activation of RIG-I/MDA5 desensitizes the TLR2 activation, similar to what was observed with IDV infection. The cross talk between these two pattern recognition receptors leads to a nonadditive response, which alters the TLR2-mediated cascade that controls the bacterial infection. These results highlight innate immune mechanisms that were not described for cattle so far and improve our understanding of the bovine host-microbe interactions and IDV pathogenesis. IMPORTANCE Since the spread of the respiratory influenza D virus (IDV) infection to the cattle population, the question about the impact of this virus on bovine respiratory disease (BRD) remains still unanswered. Animals affected by BRD are often coinfected with multiple pathogens, especially viruses and bacteria. In particular, viruses are suspected to enhance secondary bacterial superinfections. Here, we use an ex vivo model of lung tissue to study the effects of IDV infection on bacterial superinfections. Our results show that IDV increases the susceptibility to the respiratory pathogen Mycoplasma bovis. In particular, IDV seems to activate immune pathways that inhibit the innate immune response against the bacteria. This may allow M. bovis to increase its proliferation and to delay its clearance from lung tissue. These results suggest that IDV could have a negative impact on the respiratory pathology of cattle.
Collapse
Affiliation(s)
- Maria Gaudino
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Adrien Lion
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Eveline Sagné
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Justine Oliva
- Centre International de Recherche en Infectiologie – U1111 (Equipe VirPath) – Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, Lyon, France
- Centre National de la Recherche Scientifique – UMR5308, Lyon, France
| | - Olivier Terrier
- Centre International de Recherche en Infectiologie – U1111 (Equipe VirPath) – Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, Lyon, France
- Centre National de la Recherche Scientifique – UMR5308, Lyon, France
| | | | - Anaëlle Scribe
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Elisa Simon
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | | | - Julie Lion
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini,” Brescia, Italy
| | | | | | - Romain Volmer
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Gilles Meyer
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|