1
|
Zuckermann FA, Grinkova YV, Husmann RJ, Pires-Alves M, Storms S, Chen WY, Sligar SG. An effective vaccine against influenza A virus based on the matrix protein 2 (M2). Vet Microbiol 2024; 298:110245. [PMID: 39293153 DOI: 10.1016/j.vetmic.2024.110245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/14/2024] [Accepted: 08/30/2024] [Indexed: 09/20/2024]
Abstract
The ever-increasing antigenic diversity of the hemagglutinin (HA) of influenza A virus (IAV) poses a significant challenge for effective vaccine development. Notably, the matrix protein 2 (M2) is a highly conserved 97 amino acid long transmembrane tetrameric protein present in the envelope of IAV. More than 99 % of IAV strains circulating in American swine herds share the identical pandemic (pdm) isoform of M2, making it an ideal target antigen for a vaccine that could elicit broadly protective immunity. Here, using soluble nanoscale membrane assemblies termed nanodiscs (NDs), we designed this membrane mimetic nanostructures displaying full-length M2 in its natural transmembrane configuration (M2ND). Intramuscular (IM) immunization of swine with M2ND mixed with conventional emulsion adjuvant elicited M2-specific IgG antibodies in the serum that recognized influenza virions and M2-specific interferon-γ secreting cells present in the blood. Intranasal (IN) immunization with M2ND adjuvanted with a mycobacterial extract elicited M2-specific IgA in mucosal secretions that also recognized IAV. Immunization with an influenza whole inactivated virus (WIV) vaccine supplemented with a concurrent IM injection of M2ND mixed with an emulsion adjuvant increased the level of protective immunity afforded by the former against a challenge with an antigenically distinct H3N2 IAV, as exhibited by an enhanced elimination of virus from the lung. The lone IM administration of the M2ND vaccine mixed with an emulsion adjuvant provided measurable protection as evidenced by a >10-fold reduction or complete elimination of the challenge virus from the lung, but it did not diminish the viral load in nasal secretions nor the extent of pneumonia that ensued after the virus challenge. In contrast, an improved formulation of the M2ND vaccine that incorporated synthetic CpG oligodeoxynucleotides (CpG-ODN) in the nanostructures administered alone, via the IN and IM routes combined, provided a significant level of protective immunity against IAV as evidenced by a decreased viral load in both the upper and lower respiratory tracts and fully eliminated the occurrence of pneumonia in 89 % of the pigs immunized with this biologic. Notably, to be effective, the M2 protein must be displayed in the ND assemblies, as shown by the observation that simply mixing M2 with empty NDs incorporating CpG-ODN (eND-CpG-ODN) did not provide protective immunity. This novel M2-based vaccine offers great promise to help increase the breadth of protection afforded by conventional WIV vaccines against the diversity of IAV in circulation and, plausibly, as a broadly protective stand-alone biologic.
Collapse
Affiliation(s)
- Federico A Zuckermann
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA.
| | - Yelena V Grinkova
- Department of Biochemistry, 505 South Goodwin Avenue, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Robert J Husmann
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Melissa Pires-Alves
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Suzanna Storms
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Wei-Yu Chen
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Stephen G Sligar
- Department of Biochemistry, 505 South Goodwin Avenue, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Gu W, Madrid DMDC, Clements S, Touchard L, Bivins N, Zane G, Zhou M, Lee K, Driver JP. Single-Cell Antigen Receptor Sequencing in Pigs with Influenza. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.617920. [PMID: 39464079 PMCID: PMC11507742 DOI: 10.1101/2024.10.13.617920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Understanding the pulmonary adaptive immune system of pigs is important as respiratory pathogens present a major challenge for swine producers and pigs are increasingly used to model human pulmonary diseases. Single-cell RNA sequencing (scRNAseq) has accelerated the characterization of cellular phenotypes in the pig respiratory tract under both healthy and diseased conditions. However, combining scRNAseq with recovery of paired T cell receptor (TCR) α and β chains as well as B cell receptor (BCR) heavy and light chains to interrogate their repertoires has not to our knowledge been demonstrated for pigs. Here, we developed primers to enrich porcine TCR α and β chains along with BCR κ and λ light chains and IgM, IgA, and IgG heavy chains that are compatible with the 10x Genomics VDJ sequencing protocol. Using these pig-specific assays, we sequenced the T and B cell receptors of cryopreserved lung cells from CD1D-expressing and -deficient pigs after one or two infections with influenza A virus (IAV) to examine whether natural killer T (NKT) cells alter pulmonary TCR and BCR repertoire selection. We also performed paired single-cell RNA and receptor sequencing of FACS-sorted T cells longitudinally sampled from the lungs of IAV-vaccinated and -infected pigs to track clonal expansion in response to IAV exposure. All pigs presented highly diverse repertoires. Pigs re-exposed to influenza antigens from either vaccination or infection exhibited higher numbers of expanded CD4 and CD8 T cell clonotypes with activated phenotypes, suggesting potential IAV reactive T cell populations. Our results demonstrate the utility of high throughput single-cell TCR and BCR sequencing in pigs.
Collapse
Affiliation(s)
- Weihong Gu
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Darling Melany de Carvahlo Madrid
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Sadie Clements
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Laurie Touchard
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Nathan Bivins
- Genomics Technology Core, University of Missouri, Columbia, MO, USA
| | - Grant Zane
- Genomics Technology Core, University of Missouri, Columbia, MO, USA
| | - Mingyi Zhou
- Genomics Technology Core, University of Missouri, Columbia, MO, USA
| | - Kiho Lee
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - John P. Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Pittman Ratterree DC, Dass SC, Ndeffo-Mbah ML. Mechanistic Models of Influenza Transmission in Commercial Swine Populations: A Systematic Review. Pathogens 2024; 13:746. [PMID: 39338936 PMCID: PMC11434764 DOI: 10.3390/pathogens13090746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Influenza in commercial swine populations leads to reduced gain in fattening pigs and reproductive issues in sows. This literature review aims to analyze the contributions of mathematical modeling in understanding influenza transmission and control among domestic swine. Twenty-two full-text research articles from seven databases were reviewed, categorized into swine-only (n = 13), swine-avian (n = 3), and swine-human models (n = 6). Strains of influenza models were limited to H1N1 (n = 7) and H3N2 (n = 1), with many studies generalizing the disease as influenza A. Half of the studies (n = 14) considered at least one control strategy, with vaccination being the primary investigated strategy. Vaccination was shown to reduce disease prevalence in single animal cohorts. With a continuous flow of new susceptible animals, such as in farrow-to-finish farms, it was shown that influenza became endemic despite vaccination strategies such as mass or batch-to-batch vaccination. Human vaccination was shown to be effective at mitigating human-to-human influenza transmission and to reduce spillover events from pigs. Current control strategies cannot stop influenza in livestock or prevent viral reassortment in swine, so mechanistic models are crucial for developing and testing new biosecurity measures to prevent future swine pandemics.
Collapse
Affiliation(s)
- Dana C. Pittman Ratterree
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Sapna Chitlapilly Dass
- Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Martial L. Ndeffo-Mbah
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
4
|
Bettin L, Darbellay J, van Kessel J, Dhar N, Gerdts V. Porcine γδ T cells express cytotoxic cell-associated markers and display killing activity but are not selectively cytotoxic against PRRSV- or swIAV-infected macrophages. Front Immunol 2024; 15:1434011. [PMID: 39144143 PMCID: PMC11321972 DOI: 10.3389/fimmu.2024.1434011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Background Gamma-delta (γδ) T cells are a major immune cell subset in pigs. Approximately 50% of circulating T cells are γδ T cells in young pigs and up to 30% in adult sows. Despite this abundance, the functions of porcine γδ T cells are mostly unidentified. In humans and mice, activated γδ T cells exhibit broad innate cytotoxic activity against a wide variety of stressed, infected, and cancerous cells through death receptor/ligand-dependent and perforin/granzyme-dependent pathways. However, so far, it is unknown whether porcine γδ T cells have the ability to perform cytotoxic functions. Methods In this study, we conducted a comprehensive phenotypic characterization of porcine γδ T cells isolated from blood, lung, and nasal mucosa. To further analyze the cytolytic potential of γδ T cells, in vitro cytotoxicity assays were performed using purified γδ T cells as effector cells and virus-exposed or mock-treated primary porcine alveolar macrophages as target cells. Results Our results show that only CD2+ γδ T cells express cytotoxic markers (CD16, NKp46, perforin) with higher perforin and NKp46 expression in γδ T cells isolated from lung and nasal mucosa. Moreover, we found that γδ T cells can exhibit cytotoxic functions in a cell-cell contact and degranulation-dependent manner. However, porcine γδ T cells did not seem to specifically target Porcine Reproductive and Respiratory Syndrome Virus or swine Influenza A Virus-infected macrophages, which may be due to viral escape mechanisms. Conclusion Porcine γδ T cells express cytotoxic markers and can exhibit cytotoxic activity in vitro. The specific mechanisms by which porcine γδ T cells recognize target cells are not fully understood but may involve the detection of cellular stress signals.
Collapse
MESH Headings
- Animals
- Swine
- Porcine respiratory and reproductive syndrome virus/immunology
- Porcine respiratory and reproductive syndrome virus/physiology
- Cytotoxicity, Immunologic
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/virology
- Porcine Reproductive and Respiratory Syndrome/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Biomarkers
- Orthomyxoviridae Infections/immunology
- Perforin/metabolism
- Perforin/immunology
- Intraepithelial Lymphocytes/immunology
- Cells, Cultured
Collapse
Affiliation(s)
- Leonie Bettin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joseph Darbellay
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Jill van Kessel
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Neeraj Dhar
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Muzykina L, Barrado-Gil L, Gonzalez-Bulnes A, Crespo-Piazuelo D, Cerón JJ, Alonso C, Montoya M. Overview of Modern Commercial Kits for Laboratory Diagnosis of African Swine Fever and Swine Influenza A Viruses. Viruses 2024; 16:505. [PMID: 38675848 PMCID: PMC11054272 DOI: 10.3390/v16040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Rapid and early detection of infectious diseases in pigs is important, especially for the implementation of control measures in suspected cases of African swine fever (ASF), as an effective and safe vaccine is not yet available in most of the affected countries. Additionally, analysis for swine influenza is of significance due to its high morbidity rate (up to 100%) despite a lower mortality rate compared to ASF. The wide distribution of swine influenza A virus (SwIAV) across various countries, the emergence of constantly new recombinant strains, and the danger of human infection underscore the need for rapid and accurate diagnosis. Several diagnostic approaches and commercial methods should be applied depending on the scenario, type of sample and the objective of the studies being implemented. At the early diagnosis of an outbreak, virus genome detection using a variety of PCR assays proves to be the most sensitive and specific technique. As the disease evolves, serology gains diagnostic value, as specific antibodies appear later in the course of the disease (after 7-10 days post-infection (DPI) for ASF and between 10-21 DPI for SwIAV). The ongoing development of commercial kits with enhanced sensitivity and specificity is evident. This review aims to analyse recent advances and current commercial kits utilised for the diagnosis of ASF and SwIAV.
Collapse
Affiliation(s)
- Larysa Muzykina
- Molecular Biomedicine Department, The Margarita Salas Centre for Biological Research (CIB) of the Spanish National Research Council (CSIC), C. Ramiro de Maeztu, 9, 28040 Madrid, Spain;
| | - Lucía Barrado-Gil
- Department of Biotechnology, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (L.B.-G.); (C.A.)
| | - Antonio Gonzalez-Bulnes
- R&D Department, Cuarte S.L., Grupo Jorge, Ctra. de Logroño km 9.2, Monzalbarba, 50120 Zaragoza, Spain; (A.G.-B.); (D.C.-P.)
| | - Daniel Crespo-Piazuelo
- R&D Department, Cuarte S.L., Grupo Jorge, Ctra. de Logroño km 9.2, Monzalbarba, 50120 Zaragoza, Spain; (A.G.-B.); (D.C.-P.)
| | - Jose Joaquin Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), University of Murcia, 30100 Murcia, Spain;
| | - Covadonga Alonso
- Department of Biotechnology, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (L.B.-G.); (C.A.)
| | - María Montoya
- Molecular Biomedicine Department, The Margarita Salas Centre for Biological Research (CIB) of the Spanish National Research Council (CSIC), C. Ramiro de Maeztu, 9, 28040 Madrid, Spain;
| |
Collapse
|
6
|
Loving CL. Immunology of Zoonotic Diseases and Relevant Animal Models. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1169-1170. [PMID: 37782852 DOI: 10.4049/jimmunol.2300533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
|