1
|
Capilla-López MD, Deprada A, Andrade-Talavera Y, Martínez-Gallego I, Coatl-Cuaya H, Sotillo P, Rodríguez-Alvarez J, Rodríguez-Moreno A, Parra-Damas A, Saura CA. Synaptic vulnerability to amyloid-β and tau pathologies differentially disrupts emotional and memory neural circuits. Mol Psychiatry 2025:10.1038/s41380-025-02901-9. [PMID: 39885298 DOI: 10.1038/s41380-025-02901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/22/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Alzheimer's disease (AD) is characterized by memory loss and neuropsychiatric symptoms associated with cerebral amyloid-β (Aβ) and tau pathologies, but whether and how these factors differentially disrupt neural circuits remains unclear. Here, we investigated the vulnerability of memory and emotional circuits to Aβ and tau pathologies in mice expressing mutant human amyloid precursor protein (APP), Tau or both APP/Tau in excitatory neurons. APP/Tau mice develop age- and sex-dependent Aβ and phosphorylated tau pathologies, the latter exacerbated at early stages, in vulnerable brain regions. Early memory deficits were associated with hippocampal tau pathology in Tau and APP/Tau mice, whereas anxiety and fear appeared linked to intracellular Aβ in the basolateral amygdala (BLA) of APP and APP/Tau mice. Transcriptome hippocampal profiling revealed gene changes affecting myelination and RNA processing in Tau mice, and inflammation and synaptic-related pathways in APP/Tau mice at 6 months. At 9 months, we detected common and region-specific changes in astrocytic, microglia and 63 AD-associated genes in the hippocampus and BLA of APP/Tau mice. Spatial learning deficits were associated with synaptic tau accumulation and synapse disruption in the hippocampus of Tau and APP/Tau mice, whereas emotional disturbances were linked to Aβ pathology but not synaptic tau in the BLA. Interestingly, Aβ and tau exhibited synergistic detrimental effects in long-term potentiation (LTP) in the hippocampus but they counteract with each other to mitigate LTP impairments in the amygdala. These findings indicate that Aβ and tau pathologies cause region-specific effects and synergize to induce synaptic dysfunction and immune responses, contributing to the differing vulnerability of memory and emotional neural circuits in AD.
Collapse
Affiliation(s)
- Maria Dolores Capilla-López
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Angel Deprada
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Irene Martínez-Gallego
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain
| | - Heriberto Coatl-Cuaya
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain
| | - Paula Sotillo
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José Rodríguez-Alvarez
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Rodríguez-Moreno
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain
| | - Arnaldo Parra-Damas
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Carlos A Saura
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
2
|
Muntsant A, Giménez-Llort L. Crosstalk of Alzheimer’s disease-phenotype, HPA axis, splenic oxidative stress and frailty in late-stages of dementia, with special concerns on the effects of social isolation: A translational neuroscience approach. Front Aging Neurosci 2022; 14:969381. [PMID: 36185472 PMCID: PMC9520301 DOI: 10.3389/fnagi.2022.969381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Coping with emotional stressors strongly impacts older people due to their age-related impaired neuroendocrine and immune systems. Elevated cortisol levels seem to be associated with an increased risk of cognitive decline and dementia. In Alzheimer’s disease (AD), alterations in the innate immune system result in crosstalk between immune mediators and neuronal and endocrine functions. Besides, neuropsychiatric symptoms such as depression, anxiety, or agitation are observed in most patients. Here, we studied the psychophysiological response to intrinsic (AD-phenotype) and extrinsic (anxiogenic tests) stress factors and their relation to liver, kidneys, heart, and spleen oxidative status in 18-months-old female gold-standard C57BL/6 mice and 3xTg-AD mice model for AD. The emotional, cognitive, and motor phenotypes were assessed under three different anxiogenic conditions. Survival, frailty index, and immunoendocrine status (corticosterone levels and oxidative stress of peripheral organs) were evaluated. Genotype differences in neuropsychiatric-like profiles and cognitive disfunction in 3xTg-AD females that survived beyond advanced stages of the disease persisted despite losing other behavioral and hypothalamic–pituitary–adrenal (HPA) physiological differences. A secondary analysis studied the impact of social isolation, naturally occurring in 3xTg-AD mice due to the death of cage mates. One month of isolation modified hyperactivity and neophobia patterns and disrupt the obsessive-compulsive disorder-like digging ethogram. Frailty index correlated with spleen organometrics in all groups, whereas two AD-specific salient functional correlations were identified: (1) Levels of corticosterone with worse performance in the T-maze, (2) and with a lower splenic GPx antioxidant enzymatic activity, which may suppose a potent risk of morbidity and mortality in AD.
Collapse
Affiliation(s)
- Aida Muntsant
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- *Correspondence: Lydia Giménez-Llort,
| |
Collapse
|
3
|
Castillo-Mariqueo L, Giménez-Llort L. Impact of Behavioral Assessment and Re-Test as Functional Trainings That Modify Survival, Anxiety and Functional Profile (Physical Endurance and Motor Learning) of Old Male and Female 3xTg-AD Mice and NTg Mice with Normal Aging. Biomedicines 2022; 10:973. [PMID: 35625710 PMCID: PMC9138863 DOI: 10.3390/biomedicines10050973] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Longitudinal approaches for disease-monitoring in old animals face survival and frailty limitations, but also assessment and re-test bias on genotype and sex effects. The present work investigated these effects on 56 variables for behavior, functional profile, and biological status of male and female 3xTg-AD mice and NTg counterparts using two designs: (1) a longitudinal design: naïve 12-month-old mice re-tested four months later; and (2) a cross-sectional design: naïve 16-month-old mice compared to those re-tested. The results confirmed the impact as (1) improvement of survival (NTg rested females), variability of gait (3xTg-AD 16-month-old re-tested and naïve females), physical endurance (3xTg-AD re-tested females), motor learning (3xTg-AD and NTg 16-month-old re-tested females), and geotaxis (3xTg-AD naïve 16-month-old males); but (2) worse anxiety (3xTg-AD 16-month-old re-tested males), HPA axis (3xTg-AD 16-month-old re-tested and naïve females) and sarcopenia (3xTg-AD 16-month-old naïve females). Males showed more functional correlations than females. The functional profile, biological status, and their correlation are discussed as relevant elements for AD-pathology. Therefore, repetition of behavioral batteries could be considered training by itself, with some variables sensitive to genotype, sex, and re-test. In the AD-genotype, females achieved the best performance in physical endurance and motor learning, while males showed a deterioration in most studied variables.
Collapse
Affiliation(s)
- Lidia Castillo-Mariqueo
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
4
|
Chronic IL-10 overproduction disrupts microglia-neuron dialogue similar to aging, resulting in impaired hippocampal neurogenesis and spatial memory. Brain Behav Immun 2022; 101:231-245. [PMID: 34990747 DOI: 10.1016/j.bbi.2021.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 11/21/2022] Open
Abstract
The subgranular zone of the dentate gyrus is an adult neurogenic niche where new neurons are continuously generated. A dramatic hippocampal neurogenesis decline occurs with increasing age, contributing to cognitive deficits. The process of neurogenesis is intimately regulated by the microenvironment, with inflammation being considered a strong negative factor for this process. Thus, we hypothesize that the reduction of new neurons in the aged brain could be attributed to the age-related microenvironmental changes towards a pro-inflammatory status. In this work, we evaluated whether an anti-inflammatory microenvironment could counteract the negative effect of age on promoting new hippocampal neurons. Surprisingly, our results show that transgenic animals chronically overexpressing IL-10 by astrocytes present a decreased hippocampal neurogenesis in adulthood. This results from an impairment in the survival of neural newborn cells without differences in cell proliferation. In parallel, hippocampal-dependent spatial learning and memory processes were affected by IL-10 overproduction as assessed by the Morris water maze test. Microglial cells, which are key players in the neurogenesis process, presented a different phenotype in transgenic animals characterized by high activation together with alterations in receptors involved in neuronal communication, such as CD200R and CX3CR1. Interestingly, the changes described in adult transgenic animals were similar to those observed by the effect of normal aging. Thus, our data suggest that chronic IL-10 overproduction mimics the physiological age-related disruption of the microglia-neuron dialogue, resulting in hippocampal neurogenesis decrease and spatial memory impairment.
Collapse
|
5
|
Fagan SG, Bechet S, Dev KK. Fingolimod Rescues Memory and Improves Pathological Hallmarks in the 3xTg-AD Model of Alzheimer's Disease. Mol Neurobiol 2022; 59:1882-1895. [PMID: 35031916 PMCID: PMC8882098 DOI: 10.1007/s12035-021-02613-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/19/2021] [Indexed: 10/26/2022]
Abstract
Therapeutic strategies for Alzheimer's disease (AD) have largely focused on the regulation of amyloid pathology while those targeting tau pathology, and inflammatory mechanisms are less explored. In this regard, drugs with multimodal and concurrent targeting of Aβ, tau, and inflammatory processes may offer advantages. Here, we investigate one such candidate drug in the triple transgenic 3xTg-AD mouse model of AD, namely the disease-modifying oral neuroimmunomodulatory therapeutic used in patients with multiple sclerosis, called fingolimod. In this study, administration of fingolimod was initiated after behavioral symptoms are known to emerge, at 6 months of age. Treatment continued to 12 months when behavioral tests were performed and thereafter histological and biochemical analysis was conducted on postmortem tissue. The results demonstrate that fingolimod reverses deficits in spatial working memory at 8 and 12 months of age as measured by novel object location and Morris water maze tests. Inflammation in the brain is alleviated as demonstrated by reduced Iba1-positive and CD3-positive cell number, less ramified microglial morphology, and improved cytokine profile. Finally, treatment with fingolimod was shown to reduce phosphorylated tau and APP levels in the hippocampus and cortex. These results highlight the potential of fingolimod as a multimodal therapeutic for the treatment of AD.
Collapse
Affiliation(s)
- Steven G Fagan
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| | - Sibylle Bechet
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Kumlesh K Dev
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Mu L, Cai J, Gu B, Yu L, Li C, Liu QS, Zhao L. Treadmill Exercise Prevents Decline in Spatial Learning and Memory in 3×Tg-AD Mice through Enhancement of Structural Synaptic Plasticity of the Hippocampus and Prefrontal Cortex. Cells 2022; 11:cells11020244. [PMID: 35053360 PMCID: PMC8774241 DOI: 10.3390/cells11020244] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 01/08/2022] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) is characterized by deficits in learning and memory. A pathological feature of AD is the alterations in the number and size of synapses, axon length, dendritic complexity, and dendritic spine numbers in the hippocampus and prefrontal cortex. Treadmill exercise can enhance synaptic plasticity in mouse or rat models of stroke, ischemia, and dementia. The aim of this study was to examine the effects of treadmill exercise on learning and memory, and structural synaptic plasticity in 3×Tg-AD mice, a mouse model of AD. Here, we show that 12 weeks treadmill exercise beginning in three-month-old mice improves spatial working memory in six-month-old 3×Tg-AD mice, while non-exercise six-month-old 3×Tg-AD mice exhibited impaired spatial working memory. To investigate potential mechanisms for the treadmill exercise-induced improvement of spatial learning and memory, we examined structural synaptic plasticity in the hippocampus and prefrontal cortex of six-month-old 3×Tg-AD mice that had undergone 12 weeks of treadmill exercise. We found that treadmill exercise led to increases in synapse numbers, synaptic structural parameters, the expression of synaptophysin (Syn, a presynaptic marker), the axon length, dendritic complexity, and the number of dendritic spines in 3×Tg-AD mice and restored these parameters to similar levels of non-Tg control mice without treadmill exercise. In addition, treadmill exercise also improved these parameters in non-Tg control mice. Strengthening structural synaptic plasticity may represent a potential mechanism by which treadmill exercise prevents decline in spatial learning and memory and synapse loss in 3×Tg-AD mice.
Collapse
Affiliation(s)
- Lianwei Mu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Jiajia Cai
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
| | - Boya Gu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
| | - Laikang Yu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
| | - Cui Li
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
- School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou 450001, China
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Li Zhao
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
- Correspondence: ; Tel.: +86-158-1043-5675
| |
Collapse
|
7
|
Oghagbon EK, Prieto-Pino J, Dogoh F, Ogiator M, Giménez-Llort L. Diabetes/Dementia in Sub-saharian Africa and Nigerian Women in the Eye of Storm. Curr Alzheimer Res 2021; 19:161-170. [PMID: 34784865 DOI: 10.2174/1567205018666211116093747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/01/2021] [Accepted: 08/22/2021] [Indexed: 11/22/2022]
Abstract
In the next few years, the prevalence of diabetes mellitus (DM) is projected to dramatically increase globally, but most of the cases will occur in low-to-middle-income countries. Some of the major risk factors for diabetes accelerate the development of dementia in African-Americans, thus leading to a higher prevalence of dementia than Caucasians. Sub-Saharan Africa women have a disproportionately two-to-eight fold increased prevalence of dementia. In the eye of this storm, Nigeria holds the highest number of diabetics on the African continent, and its prevalence is rising in parallel to obesity, hypertension, and the population's aging. The socio-economic impact of the rising prevalence of DM and dementia will be huge and unsustainable for the healthcare system in Nigeria, as has been recognized in developed economies. Here, we analyze the current situation of women's health in Nigeria and explore future perspectives and directions. The complex interplay of factors involved in diabetes and dementia in Nigerian women include key biological agents (metabolic syndrome, vascular damage, inflammation, oxidative stress, insulin resistance), nutritional habits, lifestyle, and anemia, that worsen with comorbidities. In addition, restricted resources, lack of visibility, and poor management result in a painful chain that increases the risk and burden of disease in Nigerian women from youth to elderly ages. Heath policies to increase the ra- tio of mental health professionals per number of patients, mostly in rural areas, foment of proactive primary care centers, and interventions targeting adolescents and adult women and other specific mothers-children pairs are strongly required for a sustainable development goal.
Collapse
Affiliation(s)
- Efosa K Oghagbon
- Department of Chemical Pathology, Faculty of Basic & Allied Medical Sciences, College of Health Sciences, Benue State University, Makurdi. Nigeria
| | - José Prieto-Pino
- Department of Psychiatry and Forensic Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona. Spain
| | - Faeren Dogoh
- Department of Chemical Pathology, Benue State University Teaching Hospital, Makurdi. Nigeria
| | - Monday Ogiator
- Department of Internal Medicine, Benue State University Teaching Hospital, Makurdi. Nigeria
| | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona. Spain
| |
Collapse
|
8
|
Castillo-Mariqueo L, Giménez-Llort L. Kyphosis and bizarre patterns impair spontaneous gait performance in end-of-life mice with Alzheimer's disease pathology while gait is preserved in normal aging. Neurosci Lett 2021; 767:136280. [PMID: 34601039 DOI: 10.1016/j.neulet.2021.136280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
The shorter life spans of mice provide an exceptional experimental gerontology scenario. We previously described increased bizarre (disruptive) behaviors in the 6-month-old 3xTg-AD mice model for Alzheimer's disease (AD), compared to C57BL/6J wildtype (NTg), when confronting new environments. In the present work, we evaluated spontaneous gait and exploratory activity at old age, using 16-month-old mice. Male sex was chosen since sex-dependent psychomotor effects of aging are stronger in NTg males than females and, at this age, male 3 × Tg-AD mice are close to an end-of-life status due to increased mortality rates. Mice's behavior was evaluated in a transparent test box during the neophobia response. Stretching, jumping, backward movements and bizarre circling were identified during the gait and exploratory activity. The results corroborate that in the face of novelty and recognition of places, old 3xTg-AD mice exhibit increased bizarre behaviors than mice with normal aging. Furthermore, bizarre circling and backward movements delayed the elicitation of locomotion and exploration, in an already frail scenario, as shown by highly prevalent kyphosis in both groups. Thus, the translational study of co-occurrence of psychomotor impairments and anxiety-like behaviors can be helpful for understanding and managing the progressive functional deterioration shown in aging, especially in AD.
Collapse
Affiliation(s)
- Lidia Castillo-Mariqueo
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
9
|
Cañete T, Giménez-Llort L. Preserved Thermal Pain in 3xTg-AD Mice With Increased Sensory-Discriminative Pain Sensitivity in Females but Affective-Emotional Dimension in Males as Early Sex-Specific AD-Phenotype Biomarkers. Front Aging Neurosci 2021; 13:683412. [PMID: 34354580 PMCID: PMC8329418 DOI: 10.3389/fnagi.2021.683412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022] Open
Abstract
The increase of the aging population, where quite chronic comorbid conditions are associated with pain, draws growing interest across its investigation and the underlying nociceptive mechanisms. Burn injuries associated problems might be of relevance in the older adult’s daily life, but in people with dementia, exposure to high temperatures and heat sources poses a significantly increased risk of burns. In this brief report, the hind paws and tail pain withdrawal reflexes and the emotional responses to thermal nociception in 3xTg-AD mice were characterized for the first time in the plantar test and compared to their non-transgenic (NTg) counterparts. We studied a cohort of male and female 3xTg-AD mice at asymptomatic (2 months), early (6 months), middle (9 months), and advanced (12 and 15 months) stages of the disease and as compared to sex- and age-matched NTg control mice with normal aging. At 20 and 40W intensities, the sensorial-discriminative thresholds eliciting the withdrawal responses were preserved from asymptomatic to advanced stages of the disease compared to NTg counterparts. Moreover, 3xTg-AD females consistently showed a greater sensory-discriminative sensitivity already at premorbid ages, whereas increased emotionality was shown in males. False-negative results were found in “blind to sex and age” analysis, warning about the need to study sexes independently. The current results and previous report in cold thermal stimulation provide two paradigms unveiling sex-specific early AD-phenotype nociceptive biomarkers to study the mechanistic underpinnings of sex-, age- and AD-disease-dependent thermal pain sensitivity.
Collapse
Affiliation(s)
- Toni Cañete
- Department of Psychiatry and Forensic Medicine, Autonomous University of Barcelona, Barcelona, Spain.,Institut de Neurociències, Autonomous University of Barcelona, Barcelona, Spain
| | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, Autonomous University of Barcelona, Barcelona, Spain.,Institut de Neurociències, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Genotype Load Modulates Amyloid Burden and Anxiety-Like Patterns in Male 3xTg-AD Survivors despite Similar Neuro-Immunoendocrine, Synaptic and Cognitive Impairments. Biomedicines 2021; 9:biomedicines9070715. [PMID: 34201608 PMCID: PMC8301351 DOI: 10.3390/biomedicines9070715] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 01/08/2023] Open
Abstract
The wide heterogeneity and complexity of Alzheimer’s disease (AD) patients’ clinical profiles and increased mortality highlight the relevance of personalized-based interventions and the need for end-of-life/survival predictors. At the translational level, studying genetic and age interactions in a context of different levels of expression of AD-genetic-load can help to understand this heterogeneity better. In the present report, a singular cohort of long-lived (19-month-old survivors) heterozygous and homozygous male 3xTg-AD mice were studied to determine whether their AD-genotype load can modulate the brain and peripheral pathological burden, behavioral phenotypes, and neuro-immunoendocrine status, compared to age-matched non-transgenic controls. The results indicated increased amyloid precursor protein (APP) levels in a genetic-load-dependent manner but convergent synaptophysin and choline acetyltransferase brain levels. Cognitive impairment and HPA-axis hyperactivation were salient traits in both 3xTg-AD survivor groups. In contrast, genetic load elicited different anxiety-like profiles, with hypoactive homozygous, while heterozygous resembled controls in some traits and risk assessment. Complex neuro-immunoendocrine crosstalk was also observed. Bodyweight loss and splenic, renal, and hepatic histopathological injury scores provided evidence of the systemic features of AD, despite similar peripheral organs’ oxidative stress. The present study provides an interesting translational scenario to study further genetic-load and age-dependent vulnerability/compensatory mechanisms in Alzheimer’s disease.
Collapse
|
11
|
Giménez-Llort L, Marin-Pardo D, Marazuela P, Hernández-Guillamón M. Survival Bias and Crosstalk between Chronological and Behavioral Age: Age- and Genotype-Sensitivity Tests Define Behavioral Signatures in Middle-Aged, Old, and Long-Lived Mice with Normal and AD-Associated Aging. Biomedicines 2021; 9:biomedicines9060636. [PMID: 34199476 PMCID: PMC8228433 DOI: 10.3390/biomedicines9060636] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
New evidence refers to a high degree of heterogeneity in normal but also Alzheimer's disease (AD) clinical and temporal patterns, increased mortality, and the need to find specific end-of-life prognosticators. This heterogeneity is scarcely explored in very old male AD mice models due to their reduced survival. In the present work, using 915 (432 APP23 and 483 C57BL/6 littermates) mice, we confirmed the better survival curves in male than female APP23 mice and respective wildtypes, providing the chance to characterize behavioral signatures in middle-aged, old, and long-lived male animals. The sensitivity of a battery of seven paradigms for comprehensive screening of motor (activity and gait analysis), neuropsychiatric and cognitive symptoms was analyzed using a cohort of 56 animals, composed of 12-, 18- and 24-month-old male APP23 mice and wildtype littermates. Most variables analyzed detected age-related differences. However, variables related to coping with stress, thigmotaxis, frailty, gait, and poor cognition better discriminated the behavioral phenotype of male APP23 mice through the three old ages compared with controls. Most importantly, non-linear age- and genotype-dependent behavioral signatures were found in long-lived animals, suggesting crosstalk between chronological and biological/behavioral ages useful to study underlying mechanisms and distinct compensations through physiological and AD-associated aging.
Collapse
Affiliation(s)
- Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-581-23-78
| | - Daniela Marin-Pardo
- Institut de Neurociències, Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain
| | - Paula Marazuela
- Vall d’Hebron Research Institute (VHIR), E-08035 Barcelona, Spain; (P.M.); (M.H.-G.)
| | | |
Collapse
|
12
|
Dennison JL, Ricciardi NR, Lohse I, Volmar CH, Wahlestedt C. Sexual Dimorphism in the 3xTg-AD Mouse Model and Its Impact on Pre-Clinical Research. J Alzheimers Dis 2021; 80:41-52. [PMID: 33459720 PMCID: PMC8075398 DOI: 10.3233/jad-201014] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Female sex is a leading risk factor for developing Alzheimer’s disease (AD). Sexual dimorphism in AD is gaining attention as clinical data show that women are not only more likely to develop AD but also to experience worse pathology and faster cognitive decline. Pre-clinical AD research in animal models often neglects to address sexual dimorphism in evaluation of behavioral or molecular characteristics and outcomes. This can compromise its translation to a clinical setting. The triple-transgenic AD mouse model (3xTg-AD) is a commonly used but unique AD model because it exhibits both amyloid and tau pathology, essential features of the human AD phenotype. Mounting evidence has revealed important sexually dimorphic characteristics of this animal model that have yet to be reviewed and thus, are often overlooked in studies using the 3xTg-AD model. In this review we conduct a thorough analysis of reports of sexual dimorphism in the 3xTg-AD model including findings of molecular, behavioral, and longevity-related sex differences in original research articles through August 2020. Importantly, we find results to be inconsistent, and that strain source and differing methodologies are major contributors to lack of consensus regarding traits of each sex. We first touch on the nature of sexual dimorphism in clinical AD, followed by a brief summary of sexual dimorphism in other major AD murine models before discussing the 3xTg-AD model in depth. We conclude by offering four suggestions to help unify pre-clinical mouse model AD research inspired by the NIH expectations for considering sex as a biological variable.
Collapse
Affiliation(s)
- Jessica L Dennison
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Natalie R Ricciardi
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ines Lohse
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Claude-Henry Volmar
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Claes Wahlestedt
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
13
|
Sex-Dependent End-of-Life Mental and Vascular Scenarios for Compensatory Mechanisms in Mice with Normal and AD-Neurodegenerative Aging. Biomedicines 2021; 9:biomedicines9020111. [PMID: 33498895 PMCID: PMC7911097 DOI: 10.3390/biomedicines9020111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Life expectancy decreases with aging, with cardiovascular, mental health, and neurodegenerative disorders strongly contributing to the total disability-adjusted life years. Interestingly, the morbidity/mortality paradox points to females having a worse healthy life expectancy. Since bidirectional interactions between cardiovascular and Alzheimer’s diseases (AD) have been reported, the study of this emerging field is promising. In the present work, we further explored the cardiovascular–brain interactions in mice survivors of two cohorts of non-transgenic and 3xTg-AD mice, including both sexes, to investigate the frailty/survival through their life span. Survival, monitored from birth, showed exceptionally worse mortality rates in females than males, independently of the genotype. This mortality selection provided a “survivors” cohort that could unveil brain–cardiovascular interaction mechanisms relevant for normal and neurodegenerative aging processes restricted to long-lived animals. The results show sex-dependent distinct physical (worse in 3xTg-AD males), neuropsychiatric-like and cognitive phenotypes (worse in 3xTg-AD females), and hypothalamic–pituitary–adrenal (HPA) axis activation (higher in females), with higher cerebral blood flow and improved cardiovascular phenotype in 3xTg-AD female mice survivors. The present study provides an experimental scenario to study the suggested potential compensatory hemodynamic mechanisms in end-of-life dementia, which is sex-dependent and can be a target for pharmacological and non-pharmacological interventions.
Collapse
|
14
|
Differential effects of chronic immunosuppression on behavioral, epigenetic, and Alzheimer's disease-associated markers in 3xTg-AD mice. ALZHEIMERS RESEARCH & THERAPY 2021; 13:30. [PMID: 33472690 PMCID: PMC7818784 DOI: 10.1186/s13195-020-00745-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Circulating autoantibodies and sex-dependent discrepancy in prevalence are unexplained phenomena of Alzheimer's disease (AD). Using the 3xTg-AD mouse model, we reported that adult males show early manifestations of systemic autoimmunity, increased emotional reactivity, enhanced expression of the histone variant macroH2A1 in the cerebral cortex, and loss of plaque/tangle pathology. Conversely, adult females display less severe autoimmunity and retain their AD-like phenotype. This study examines the link between immunity and other traits of the current 3xTg-AD model. METHODS Young 3xTg-AD and wild-type mice drank a sucrose-laced 0.4 mg/ml solution of the immunosuppressant cyclophosphamide on weekends for 5 months. After behavioral phenotyping at 2 and 6 months of age, we assessed organ mass, serologic markers of autoimmunity, molecular markers of early AD pathology, and expression of genes associated with neurodegeneration. RESULTS Chronic immunosuppression prevented hematocrit drop and reduced soluble Aβ in 3xTg-AD males while normalizing the expression of histone variant macroH2A1 in 3xTg-AD females. This treatment also reduced hepatosplenomegaly, lowered autoantibody levels, and increased the effector T cell population while decreasing the proportion of regulatory T cells in both sexes. Exposure to cyclophosphamide, however, neither prevented reduced brain mass and BDNF expression nor normalized increased tau and anxiety-related behaviors. CONCLUSION The results suggest that systemic autoimmunity increases soluble Aβ production and affects transcriptional regulation of macroH2A1 in a sex-related manner. Despite the complexity of multisystem interactions, 3xTg-AD mice can be a useful in vivo model for exploring the regulatory role of autoimmunity in the etiology of AD-like neurodegenerative disorders.
Collapse
|
15
|
Broderick TL, Rasool S, Li R, Zhang Y, Anderson M, Al-Nakkash L, Plochocki JH, Geetha T, Babu JR. Neuroprotective Effects of Chronic Resveratrol Treatment and Exercise Training in the 3xTg-AD Mouse Model of Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21197337. [PMID: 33020412 PMCID: PMC7582460 DOI: 10.3390/ijms21197337] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
To date, there is no cure or effective treatment for Alzheimer’s disease (AD), a chronic neurodegenerative condition that affects memory, language, and behavior. AD is characterized by neuroinflammation, accumulation of brain amyloid-beta (Aβ) oligomers and neurofibrillary tangles, increased neuronal apoptosis, and loss of synaptic function. Promoting regular exercise and a diet containing polyphenols are effective non-pharmacological approaches that prevent the progression of neurodegenerative diseases. In this study, we measured various conformational toxic species of Aβ and markers of inflammation, apoptosis, endolysosomal degradation, and neuroprotection after 5 months of exercise training (ET), resveratrol (Resv) treatment, or combination treatment in the 3xTg-AD mouse model of AD. Our main results indicate that Resv decreased neuroinflammation and accumulation of Aβ oligomers, increased levels of neurotrophins, synaptic markers, silent information regulator, and decreased markers of apoptosis, autophagy, endolysosomal degradation and ubiquitination in the brains of 3xTg-AD mice. ET improved some markers related to neuroprotection, but when combined with Resv treatment, the benefits achieved were as effective as Resv treatment alone. Our results show that the neuroprotective effects of Resv, ET or Resv and ET are associated with reduced toxicity of Aβ oligomers, suppression of neuronal autophagy, decreased apoptosis, and upregulation of key growth-related proteins.
Collapse
Affiliation(s)
- Tom L. Broderick
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
- Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
- Correspondence: (T.L.B.); (J.R.B.)
| | - Suhail Rasool
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (S.R.); (R.L.); (Y.Z.); (T.G.)
| | - Rongzi Li
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (S.R.); (R.L.); (Y.Z.); (T.G.)
| | - Yuxian Zhang
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (S.R.); (R.L.); (Y.Z.); (T.G.)
| | - Miranda Anderson
- Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
| | - Layla Al-Nakkash
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
| | - Jeffrey H. Plochocki
- Department of Medical Education, University of Central Florida, College of Medicine, 6850 Lake Nona Blvd, Orlando, FL 32827, USA;
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (S.R.); (R.L.); (Y.Z.); (T.G.)
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (S.R.); (R.L.); (Y.Z.); (T.G.)
- Correspondence: (T.L.B.); (J.R.B.)
| |
Collapse
|
16
|
Sexual hormones regulate the redox status and mitochondrial function in the brain. Pathological implications. Redox Biol 2020; 31:101505. [PMID: 32201220 PMCID: PMC7212485 DOI: 10.1016/j.redox.2020.101505] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/11/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Compared to other organs, the brain is especially exposed to oxidative stress. In general, brains from young females tend to present lower oxidative damage in comparison to their male counterparts. This has been attributed to higher antioxidant defenses and a better mitochondrial function in females, which has been linked to neuroprotection in this group. However, these differences usually disappear with aging, and the incidence of brain pathologies increases in aged females. Sexual hormones, which suffer a decrease with normal aging, have been proposed as the key factors involved in these gender differences. Here, we provide an overview of redox status and mitochondrial function regulation by sexual hormones and their influence in normal brain aging. Furthermore, we discuss how sexual hormones, as well as phytoestrogens, may play an important role in the development and progression of several brain pathologies, including neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, stroke or brain cancer. Sex hormones are reduced with aging, especially in females, affecting redox balance. Normal aging is associated to a worse redox homeostasis in the brain. Young females show better mitochondrial function and higher antioxidant defenses. Development of brain pathologies is influenced by sex hormones and phytoestrogens.
Collapse
|
17
|
Thomas R, Zimmerman SD, Yuede KM, Cirrito JR, Tai LM, Timson BF, Yuede CM. Exercise Training Results in Lower Amyloid Plaque Load and Greater Cognitive Function in an Intensity Dependent Manner in the Tg2576 Mouse Model of Alzheimer's Disease. Brain Sci 2020; 10:brainsci10020088. [PMID: 32046299 PMCID: PMC7071605 DOI: 10.3390/brainsci10020088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/27/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Three months of exercise training (ET) decreases soluble Aβ40 and Aβ42 levels in an intensity dependent manner early in life in Tg2576 mice (Moore et al., 2016). Here, we examined the effects of 12 months of low- and high- intensity exercise training on cognitive function and amyloid plaque load in the cortex and hippocampus of 15-month-old Tg2576 mice. Low- (LOW) and high- (HI) intensity ET animals ran at speeds of 15 m/min on a level treadmill and 32 m/min at a 10% grade, respectively, for 60 min/day, five days/week, from 3 to 15 months of age. Sedentary mice (SED) were placed on a level, non-moving, treadmill for the same duration. ET mice demonstrated a significantly lower amyloid plaque load in the cortex and hippocampus that was intensity dependent. Improvement in cognitive function, assessed by Morris Water Maze and Novel Object Recognition tests, was greater in the HI group compared to the LOW and SED groups. LOW mice performed better in the initial latency to the platform location during the probe trial of the Morris Water Maze (MWM) test than SED, but not in any other aspect of MWM or the Novel Object Recognition test. The results of this study indicate that exercise training decreases amyloid plaque load in an intensity dependent manner and that high-intensity exercise training improves cognitive function relative to SED mice, but the intensity of the LOW group was below the threshold to demonstrate robust improvement in cognitive function in Tg2576 mice.
Collapse
Affiliation(s)
- Riya Thomas
- Department of Biomedical Sciences, Missouri State University, Springfield, MO 65897, USA; (R.T.); (S.D.Z.); (B.F.T.)
| | - Scott D. Zimmerman
- Department of Biomedical Sciences, Missouri State University, Springfield, MO 65897, USA; (R.T.); (S.D.Z.); (B.F.T.)
| | - Kayla M. Yuede
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; (K.M.Y.); (J.R.C.)
| | - John R. Cirrito
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; (K.M.Y.); (J.R.C.)
- Hope Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Leon M. Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Benjamin F. Timson
- Department of Biomedical Sciences, Missouri State University, Springfield, MO 65897, USA; (R.T.); (S.D.Z.); (B.F.T.)
| | - Carla M. Yuede
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; (K.M.Y.); (J.R.C.)
- Hope Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Correspondence: ; Tel.: +1-314-362-9001
| |
Collapse
|
18
|
Muntsant A, Giménez-Llort L. Impact of Social Isolation on the Behavioral, Functional Profiles, and Hippocampal Atrophy Asymmetry in Dementia in Times of Coronavirus Pandemic (COVID-19): A Translational Neuroscience Approach. Front Psychiatry 2020; 11:572583. [PMID: 33329110 PMCID: PMC7732415 DOI: 10.3389/fpsyt.2020.572583] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/28/2020] [Indexed: 01/10/2023] Open
Abstract
The impact of COVID-19 on the elderly is devastating, and nursing homes are struggling to provide the best care to the most fragile. The urgency and severity of the pandemic forces the use of segregation in restricted areas and confinement in individual rooms as desperate strategies to avoid the spread of disease and the worst-case scenario of becoming a deadly trap. The conceptualization of the post-COVID-19 era implies strong efforts to redesign all living conditions, care/rehabilitation interventions, and management of loneliness forced by social distance measures. Recently, a study of gender differences in COVID-19 found that men are more likely to suffer more severe effects of the disease and are over twice as likely to die. It is well-known that dementia is associated with increased mortality, and males have worse survival and deranged neuro-immuno-endocrine systems than females. The present study examines the impact of long-term isolation in male 3xTg-AD mice modeling advanced stages of Alzheimer's disease (AD) and as compared to age-matched counterparts with normal aging. We used a battery of ethological and unconditioned tests resembling several areas in nursing homes. The main findings refer to an exacerbated (two-fold increase) hyperactivity and emergence of bizarre behaviors in isolated 3xTg-AD mice, worrisome results since agitation is a challenge in the clinical management of dementia and an important cause of caregiver burden. This increase was consistently shown in gross (activity in most of the tests) and fine (thermoregulatory nesting) motor functions. Isolated animals also exhibited re-structured anxiety-like patterns and coping-with-stress strategies. Bodyweight and kidney weight loss were found in AD-phenotypes and increased by isolation. Spleen weight loss was isolation dependent. Hippocampal tau pathology was not modified, but asymmetric atrophy of the hippocampus, recently described in human patients with dementia and modeled here for the first time in an animal model of AD, was found to increase with isolation. Overall, the results show awareness of the impact of isolation in elderly patients with dementia, offering some guidance from translational neuroscience in these times of coronavirus and post-COVID-19 pandemic. They also highlight the relevance of personalized-based interventions tailored to the heterogeneous and complex clinical profile of the individuals with dementia and to consider the implications on caregiver burden.
Collapse
Affiliation(s)
- Aida Muntsant
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Wang JC, Zhu K, Zhang HY, Wang GQ, Liu HY, Cao YP. Early active immunization with Aβ 3-10-KLH vaccine reduces tau phosphorylation in the hippocampus and protects cognition of mice. Neural Regen Res 2020; 15:519-527. [PMID: 31571664 PMCID: PMC6921334 DOI: 10.4103/1673-5374.266061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Active and passive anti-Aβ immunotherapies have successfully been used for the prevention and treatment of Alzheimer’s disease animal models. However, clinical use of these immunotherapies is not effective, because the vaccination is administered too late. At 1 month of age, 100 μL of Aβ3–10-KLH peptide (vaccine, 2 μg/μL) was subcutaneously injected into the neck of an amyloid precursor protein/presenilin-1/tau transgenic (3×Tg-AD) mouse model. Aβ3–10-KLH peptide was re-injected at 1.5, 2.5, 3.5, 4.5, 5.5, and 6.5 months of age. Serum levels of Aβ antibody were detected by enzyme-linked immunosorbent assay, while spatial learning and memory ability were evaluated by Morris water maze. Immunohistochemistry was used to detect total tau with HT7 and phosphorylated tau with AT8 (phosphorylation sites Ser202 and Thr205) and AT180 (phosphorylation site Thr231) antibodies in the hippocampus. In addition, western blot analysis was used to quantify AT8 and AT180 expression in the hippocampus. The results showed that after vaccine injection, mice produced high levels of Aβ antibody, cognitive function was significantly improved, and total tau and phosphorylated tau levels were significantly reduced. These findings suggest that early active immunization with Aβ3–10-KLH vaccine can greatly reduce tau phosphorylation, thereby mitigating the cognitive decline of 3×Tg-AD mice. This study was approved by the Animal Ethics Committee of China Medical University, China (approval No. 103-316) on April 2, 2016.
Collapse
Affiliation(s)
- Jin-Chun Wang
- Department of Neurology, the Fifth People's Hospital of Shenyang, Shenyang, Liaoning Province, China
| | - Kun Zhu
- Department of Neurology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hui-Yi Zhang
- Department of Neurology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Guo-Qing Wang
- Department of Neurology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hui-Ying Liu
- Department of Neurology, the Fifth People's Hospital of Shenyang, Shenyang, Liaoning Province, China
| | - Yun-Peng Cao
- Department of Neurology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
20
|
Torres-Lista V, López-Pousa S, Giménez-Llort L. Impact of Chronic Risperidone Use on Behavior and Survival of 3xTg-AD Mice Model of Alzheimer's Disease and Mice With Normal Aging. Front Pharmacol 2019; 10:1061. [PMID: 31607916 PMCID: PMC6771277 DOI: 10.3389/fphar.2019.01061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/20/2019] [Indexed: 01/22/2023] Open
Abstract
Psychosis and/or aggression are common problems in dementia, and when severe or persistent, cause considerable patient distress and disability, caregiver stress, and early institutionalization. In 2005, the Food and Drug Administration (FDA) determined that atypical antipsychotics were associated with a significantly greater mortality risk compared to placebo, which prompted the addition of an FDA black-box warning. The American College of Neuropsychopharmacology (ACNP) White Paper, 2008, reviewed this issue and made clinical and research recommendations regarding the use of antipsychotics in dementia patients with psychosis and/or agitation. Increased mortality risk has also been described in cerebrovascular adverse events in elderly users of antipsychotics. In the present work, at the translational level, we used male 3xTg-AD mice (PS1M146V, APPSwe, tauP301L) at advanced stages of the disease reported to have worse survival than females, to study the behavioral effects of a low chronic dose of risperidone (0.1 mg/kg, s.c., 90 days, from 13 to 16 months of age) and its impact on long-term survival, as compared to mice with normal aging. Animals were behaviorally assessed for cognitive and BPSD (behavioral and psychological symptoms of dementia)-like symptoms in naturalistic and experimental conditions (open-field test, T-maze, social interaction, Morris water maze, and marble test) before and after treatment. Weight, basal glucose levels, and IPGTT (i.p. glucose tolerance test) were also recorded. Neophobia in the corner test was used for behavioral monitoring. Survival curves were recorded throughout the experiment until natural death. The benefits of risperidone were limited, both at cognitive and BPSD-like level, and mostly restricted to burying, agitation/vibrating tail, and other social behaviors. However, the work warns about a clear early mortality risk window during the treatment and long-lasting impact on survival. Reduced life expectancy and life span were observed in the 3xTg-AD mice, but total lifespan (36 months) recorded in C57BL/6 × 129Sv counterparts with normal aging was also truncated to 28 months in those with treatment. Sarcopenia at time of death was found in all groups, but was more severe in wild-type animals treated with risperidone. Therefore, the 3xTg-AD mice and their non-transgenic counterparts can be useful to delimitate critical time windows and for studying the physio-pathogenic factors and underlying causal events involved in this topic of considerable public health significance.
Collapse
Affiliation(s)
- Virginia Torres-Lista
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Secundí López-Pousa
- Research Unit and UVaMiD (Memory and Dementia Assessment Unit), Institut d'Assistència Sanitaria, Salt, Spain
| | - Lydia Giménez-Llort
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
21
|
Baeta-Corral R, Castro-Fuentes R, Giménez-Llort L. Sexual Dimorphism in the Behavioral Responses and the Immunoendocrine Status in d-Galactose-Induced Aging. J Gerontol A Biol Sci Med Sci 2019; 73:1147-1157. [PMID: 29471511 PMCID: PMC6093367 DOI: 10.1093/gerona/gly031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 02/16/2018] [Indexed: 01/05/2023] Open
Abstract
For almost 20 years, chronic systemic d-galactose, a monosaccharide abundantly present in milk products, fruits, and vegetables, has been used as a tool to achieve models of accelerated aging. Its neurotoxicity, induced by abnormal accumulation of reactive oxygen species and advanced glycation end products, has been widely reported. However, behavioral outcomes are still controversial and little is known about sex-dependent vulnerability. We performed a comprehensive behavioral and multifunctional screening of the chronic effects of low (50 mg/kg) and high (100 mg/kg) doses of d-galactose in 6-month-old male and female gold-standard C57BL/6 mice. Twelve classical tests with convergent validity analyzed sensorimotor, emotional and cognitive domains, indicating the existence of thresholds of response. Distinct vulnerability patterns were found in a selective sex- and dose-dependent manner. In males, d-galactose induced sensorimotor impairment and immunoendocrine senescence, but the low dose resulted in improved learning and memory. Oppositely, d-galactose-treated females exhibited a dose-dependent worse motor and spatial learning, but improved memory. Behavioral outcome items point at distinct neuronal substrates underlying the functional capacity of d-galactose-treated animals to meet task-dependent performance demands. They support that males and females can be regarded as two exceptional natural scenarios to study the functional interplay in the cross talk of homeostatic networks in aging.
Collapse
Affiliation(s)
- Raquel Baeta-Corral
- Translational Behavioral Neuroscience Group, Institute of Neuroscience, Barcelona, Spain.,Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rafael Castro-Fuentes
- Department of Basic Medical Sciences, School of Health Sciences, Section Medicine, University of La Laguna, Tenerife, Spain
| | - Lydia Giménez-Llort
- Translational Behavioral Neuroscience Group, Institute of Neuroscience, Barcelona, Spain.,Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Ruszkiewicz JA, Miranda-Vizuete A, Tinkov AA, Skalnaya MG, Skalny AV, Tsatsakis A, Aschner M. Sex-Specific Differences in Redox Homeostasis in Brain Norm and Disease. J Mol Neurosci 2019; 67:312-342. [DOI: 10.1007/s12031-018-1241-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
|
23
|
Shepherd A, Zhang TD, Zeleznikow-Johnston AM, Hannan AJ, Burrows EL. Transgenic Mouse Models as Tools for Understanding How Increased Cognitive and Physical Stimulation Can Improve Cognition in Alzheimer's Disease. Brain Plast 2018; 4:127-150. [PMID: 30564551 PMCID: PMC6296266 DOI: 10.3233/bpl-180076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cognitive decline appears as a core feature of dementia, of which the most prevalent form, Alzheimer's disease (AD) affects more than 45 million people worldwide. There is no cure, and therapeutic options remain limited. A number of modifiable lifestyle factors have been identified that contribute to cognitive decline in dementia. Sedentary lifestyle has emerged as a major modifier and accordingly, boosting mental and physical activity may represent a method to prevent decline in dementia. Beneficial effects of increased physical activity on cognition have been reported in healthy adults, showing potential to harness exercise and cognitive stimulation as a therapy in dementia. 'Brain training' (cognitive stimulation) has also been investigated as an intervention protecting against cognitive decline with normal aging. Consequently, the utility of exercise regimes and/or cognitive stimulation to improve cognition in dementia in clinical populations has been a major area of study. However, these therapies are in their infancy and efficacy is unclear. Investigations utilising animal models, where dose and timing of treatment can be tightly controlled, have provided many mechanistic insights. Genetically engineered mouse models are powerful tools to investigate mechanisms underlying cognitive decline, and also how environmental manipulations can alter both cognitive outcomes and pathology. A myriad of effects following physical activity and housing in enriched environments have been reported in transgenic mice expressing Alzheimer's disease-associated mutations. In this review, we comprehensively evaluate all studies applying environmental enrichment and/or increased physical exercise to transgenic mouse models of Alzheimer's disease. It is unclear whether interventions must be applied before first onset of cognitive deficits to be effective. In order to determine the importance of timing of interventions, we specifically scrutinised studies exposing transgenic mice to exercise and environmental enrichment before and after first report of cognitive impairment. We discuss the strengths and weaknesses of these preclinical studies and suggest approaches for enhancing rigor and using mechanistic insights to inform future therapeutic interventions.
Collapse
Affiliation(s)
- Amy Shepherd
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Tracy D Zhang
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Ariel M Zeleznikow-Johnston
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Emma L Burrows
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
24
|
Sabbir MG. Loss of Ca 2+/Calmodulin Dependent Protein Kinase Kinase 2 Leads to Aberrant Transferrin Phosphorylation and Trafficking: A Potential Biomarker for Alzheimer's Disease. Front Mol Biosci 2018; 5:99. [PMID: 30525042 PMCID: PMC6256988 DOI: 10.3389/fmolb.2018.00099] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 01/19/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a serine/threonine kinase that is activated following an increase in the intracellular Ca2+ concentration and activates multiple signaling cascades that control physiologically important neuronal processes. CaMKK2 has been implicated in schizophrenia, bipolar disease, neurodegeneration, and cancer. Using isoelectric focusing (IEF) and mass spectrometry-based proteomic analysis, it was found that knockdown (KD) of CaMKK2 in cultured adult primary dorsal root ganglion (DRG) neurons resulted in the reduction of transferrin (TF) phosphorylation at multiple functionally relevant residues which corresponded to loss of an acidic fraction (pH~3-4) of TF. In vitro studies using CRISPR/Cas9 based CaMKK2 knockout (KO) HEK293 and HepG2 cells lines validated previous findings and revealed that loss of CaMKK2 interfered with TF trafficking and turnover. TF is an iron transporter glycoprotein. Abnormal accumulation of iron and/or deregulated Ca2+ homeostasis leads to neurodegeneration in Alzheimer's disease (AD). Therefore, it was hypothesized that aberrant CaMKK2 in AD may lead to aberrant phosphorylated transferrin (P-TF: pH~3-4 fraction) which may serve as a hallmark biomarker for AD. A significant reduction of P-TF in the brain and serum of CaMKK2 KO mice and a triple-transgenic mouse model of AD (3xTg-AD) supported this hypothesis. In addition, analysis of early (< 65 years) and late-stage (>65 years) postmortem human AD cerebrospinal fluid (CSF) and serum samples revealed that aberrant P-TF (pH~3-4 fraction) profile was associated with both early and late-stage AD compared to age-matched controls. This indicates P-TF (pH~3-4 fraction) profile may be useful as a minimally invasive biomarker for AD. In addition, this study provides a link between aberrant CaMKK2 with TF trafficking and turnover which provides a novel insight into the neurodegeneration process.
Collapse
Affiliation(s)
- Mohammad Golam Sabbir
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| |
Collapse
|
25
|
Yuede CM, Timson BF, Hettinger JC, Yuede KM, Edwards HM, Lawson JE, Zimmerman SD, Cirrito JR. Interactions between stress and physical activity on Alzheimer's disease pathology. Neurobiol Stress 2018; 8:158-171. [PMID: 29888311 PMCID: PMC5991353 DOI: 10.1016/j.ynstr.2018.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/20/2018] [Indexed: 12/14/2022] Open
Abstract
Physical activity and stress are both environmental modifiers of Alzheimer's disease (AD) risk. Animal studies of physical activity in AD models have largely reported positive results, however benefits are not always observed in either cognitive or pathological outcomes and inconsistencies among findings remain. Studies using forced exercise may increase stress and mitigate some of the benefit of physical activity in AD models, while voluntary exercise regimens may not achieve optimal intensity to provide robust benefit. We evaluated the findings of studies of voluntary and forced exercise regimens in AD mouse models to determine the influence of stress, or the intensity of exercise needed to outweigh the negative effects of stress on AD measures. In addition, we show that chronic physical activity in a mouse model of AD can prevent the effects of acute restraint stress on Aβ levels in the hippocampus. Stress and physical activity have many overlapping and divergent effects on the body and some of the possible mechanisms through which physical activity may protect against stress-induced risk factors for AD are discussed. While the physiological effects of acute stress and acute exercise overlap, chronic effects of physical activity appear to directly oppose the effects of chronic stress on risk factors for AD. Further study is needed to identify optimal parameters for intensity, duration and frequency of physical activity to counterbalance effects of stress on the development and progression of AD.
Collapse
Affiliation(s)
- Carla M Yuede
- Department of Neurology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.,Department of Psychiatry, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Benjamin F Timson
- Biomedical Science Department, Missouri State University, Springfield, MO, USA
| | - Jane C Hettinger
- Department of Neurology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Kayla M Yuede
- Department of Neurology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Hannah M Edwards
- Department of Neurology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Justin E Lawson
- Biomedical Science Department, Missouri State University, Springfield, MO, USA
| | - Scott D Zimmerman
- Biomedical Science Department, Missouri State University, Springfield, MO, USA
| | - John R Cirrito
- Department of Neurology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| |
Collapse
|
26
|
Baeta-Corral R, Johansson B, Giménez-Llort L. Long-term Treatment with Low-Dose Caffeine Worsens BPSD-Like Profile in 3xTg-AD Mice Model of Alzheimer's Disease and Affects Mice with Normal Aging. Front Pharmacol 2018; 9:79. [PMID: 29497377 PMCID: PMC5818407 DOI: 10.3389/fphar.2018.00079] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/24/2018] [Indexed: 12/26/2022] Open
Abstract
Coffee or caffeine has recently been suggested as prophylaxis for dementia. Although memory problems are hallmarks of Alzheimer's disease, this dementia is also characterized by neuropsychiatric symptoms called Behavioral and Psychological Symptoms of Dementia (BPSD). The impact of preventive/therapeutic strategies on both cognitive and non-cognitive symptoms can be addressed in the 3xTg-AD mice, since they exhibit cognitive but also BPSD-like profiles. Here, we studied the long-term effects of a low dose of caffeine in male 3xTg-AD mice and as compared to age-matched non-transgenic (NTg) counterparts with normal aging. Animals were treated (water or caffeine in drinking water) from adulthood (6 months of age) until middle-aged (13 months of age), that in 3xTg-AD mice correspond to onset of cognitive impairment and advanced stages, respectively. The low caffeine dosing used (0.3 mg/ml) was previously found to give a plasma concentration profile in mice roughly equivalent to that of a human coffee drinker. There were significant effects of caffeine on most behavioral variables, especially those related to neophobia and other anxiety-like behaviors, emotionality, and cognitive flexibility. The 3xTg-AD and NTg mice were differently influenced by caffeine. Overall, the increase of neophobia and other anxiety-related behaviors resulted in an exacerbation of BPSD-like profile in 3xTg-AD mice. Learning and memory, strongly influenced by anxiety in 3xTg-AD mice, got little benefit from caffeine, only shown after a detailed analysis of navigation strategies. The worsened pattern in NTg mice and the use of search strategies in 3xTg-AD mice make both groups more similar. Circadian motor activity showed genotype differences, which were found to be enhanced by caffeine. Selective effects of caffeine on NTg were found in the modulation of behaviors related to emotional profile and risk assessment. Caffeine normalized splenomegaly of 3xTg-AD mice, a physical indicator of their impaired peripheral immune system, and trended to increase their corticosterone levels. Our observations of adverse caffeine effects in an Alzheimer's disease model together with previous clinical observations suggest that an exacerbation of BPSD-like symptoms may partly interfere with the beneficial cognitive effects of caffeine. These results are relevant when coffee-derived new potential treatments for dementia are to be devised and tested.
Collapse
Affiliation(s)
- Raquel Baeta-Corral
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Björn Johansson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
- Department of Geriatrics, Karolinska University Hospital, Solna, Sweden
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
Macklin L, Griffith CM, Cai Y, Rose GM, Yan XX, Patrylo PR. Glucose tolerance and insulin sensitivity are impaired in APP/PS1 transgenic mice prior to amyloid plaque pathogenesis and cognitive decline. Exp Gerontol 2017; 88:9-18. [DOI: 10.1016/j.exger.2016.12.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/14/2016] [Accepted: 12/20/2016] [Indexed: 10/20/2022]
|
28
|
Bernardo TC, Marques-Aleixo I, Beleza J, Oliveira PJ, Ascensão A, Magalhães J. Physical Exercise and Brain Mitochondrial Fitness: The Possible Role Against Alzheimer's Disease. Brain Pathol 2016; 26:648-63. [PMID: 27328058 PMCID: PMC8029062 DOI: 10.1111/bpa.12403] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/15/2016] [Indexed: 12/21/2022] Open
Abstract
Exercise is one of the most effective strategies to maintain a healthy body and mind, with particular beneficial effects of exercise on promoting brain plasticity, increasing cognition and reducing the risk of cognitive decline and dementia in later life. Moreover, the beneficial effects resulting from increased physical activity occur at different levels of cellular organization, mitochondria being preferential target organelles. The relevance of this review article relies on the need to integrate the current knowledge of proposed mechanisms, focus mitochondria, to explain the protective effects of exercise that might underlie neuroplasticity and seeks to synthesize these data in the context of exploring exercise as a feasible intervention to delay cognitive impairment associated with neurodegenerative conditions, particularly Alzheimer disease.
Collapse
Affiliation(s)
- T C Bernardo
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal.
| | - I Marques-Aleixo
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - J Beleza
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - P J Oliveira
- CNC-Centre for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Coimbra, Portugal
| | - A Ascensão
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - J Magalhães
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
29
|
Xiong JY, Li SC, Sun YX, Zhang XS, Dong ZZ, Zhong P, Sun XR. Long-term treadmill exercise improves spatial memory of male APPswe/PS1dE9 mice by regulation of BDNF expression and microglia activation. Biol Sport 2015; 32:295-300. [PMID: 26681831 PMCID: PMC4672160 DOI: 10.5604/20831862.1163692] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 01/30/2015] [Accepted: 05/22/2015] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence suggests that physical activity could delay or attenuate the symptoms of Alzheimer's disease (AD). But the underlying mechanisms are still not fully understood. To investigate the effect of long-term treadmill exercise on the spatial memory of AD mice and the possible role of β-amyloid, brain-derived neurotrophic factor (BDNF) and microglia in the effect, male APPswe/PS1dE9 AD mice aged 4 months were subjected to treadmill exercise for 5 months with 6 sessions per week and gradually increased load. A Morris water maze was used to evaluate the spatial memory. Expression levels of β-amyloid, BDNF and Iba-1 (a microglia marker) in brain tissue were detected by immunohistochemistry. Sedentary AD mice and wildtype C57BL/6J mice served as controls. The results showed that 5-month treadmill exercise significantly decreased the escape latencies (P < 0.01 on the 4th day) and improved the spatial memory of the AD mice in the water maze test. Meanwhile, treadmill exercise significantly increased the number of BDNF-positive cells and decreased the ratios of activated microglia in both the cerebral cortex and the hippocampus. However, treadmill exercise did not significantly alleviate the accumulation of β-amyloid in either the cerebral cortex or the hippocampus of the AD mice (P > 0.05). The study suggested that long-term treadmill exercise could improve the spatial memory of the male APPswe/PS1dE9 AD mice. The increase in BDNF-positive cells and decrease in activated microglia might underpin the beneficial effect.
Collapse
Affiliation(s)
- J Y Xiong
- School of Physical Education, Lingnan Normal University, Zhanjiang 524048, China ; Equal contribution
| | - S C Li
- School of Physical Education, Lingnan Normal University, Zhanjiang 524048, China ; Equal contribution
| | - Y X Sun
- Library of Mudanjiang Medical University, Mudanjiang 157011, China ; Equal contribution
| | - X S Zhang
- School of Physical Education, Lingnan Normal University, Zhanjiang 524048, China ; Equal contribution
| | - Z Z Dong
- The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
| | - P Zhong
- Laboratory of Physiological Science, Guangdong Medical University, Dongguan 523808, China
| | - X R Sun
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan 523808, China ; Institute of Aging Research, Dongguan Scientific Center, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
30
|
Reference and working memory deficits in the 3xTg-AD mouse between 2 and 15-months of age: a cross-sectional study. Behav Brain Res 2014; 278:496-505. [PMID: 25446812 DOI: 10.1016/j.bbr.2014.10.033] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 11/22/2022]
Abstract
Impairments in working memory (WM) can predict the shift from mild cognitive impairment (MCI) to Alzheimer's disease (AD) and the rate at which AD progresses with age. The 3xTg-AD mouse model develops both Aβ plaques and neurofibrillary tangles, the neuro-pathological hallmarks of AD, by 6 months of age, but no research has investigated the age-related changes in WM in these mice. Using a cross-sectional design, we tested male and female 3xTg-AD and wildtype control (B6129SF2/J) mice between 2 and 15 months of age for reference and working memory errors in the 8-arm radial maze. The 3xTg-AD mice had deficits in both working and reference memory across the ages tested, rather than showing the predicted age-related memory deficits. Male 3xTg-AD mice showed more working and reference memory errors than females, but there were no sex differences in wildtype control mice. These results indicate that the 3xTg-AD mouse replicates the impairments in WM found in patients with AD. However, these mice show memory deficits as early as two months of age, suggesting that the genes underlying reference and working memory in these mice cause deficits from an early age. The finding that males were affected more than females suggests that more attention should be paid to sex differences in transgenic AD mice.
Collapse
|
31
|
Physical exercise improves synaptic dysfunction and recovers the loss of survival factors in 3xTg-AD mouse brain. Neuropharmacology 2014; 81:55-63. [PMID: 24486380 DOI: 10.1016/j.neuropharm.2014.01.037] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/13/2014] [Accepted: 01/21/2014] [Indexed: 01/08/2023]
Abstract
Physical exercise has become a potentially beneficial therapy for reducing neurodegeneration symptoms in Alzheimer's disease. Previous studies have shown that cognitive deterioration, anxiety and the startle response observed in 7-month-old 3xTg-AD mice were ameliorated after 6 months of free access to a running wheel. Also, alterations in synaptic response to paired-pulse stimulation were improved. The present study further investigated some molecular mechanisms underlying the beneficial effects of 6 months of voluntary exercise on synaptic plasticity in 7-month-old 3xTg-AD mice. Changes in binding parameters of [(3)H]-flunitrazepam to GABAA receptor and of [(3)H]-MK-801 to NMDA receptor in cerebral cortex of 3xTgAD mice were restored by voluntary exercise. In addition, reduced expression levels of NMDA receptor NR2B subunit were reestablished. The synaptic proteins synaptophysin and PSD-95 and the neuroprotective proteins GDNF and SIRT1 were downregulated in 3xTgAD mice and were recovered by exercise treatment. Overall, in this paper we highlight the fact that different interrelated mechanisms are involved in the beneficial effects of exercise on synaptic plasticity alterations in the 3xTg-AD mouse model.
Collapse
|
32
|
Baeta-Corral R, Giménez-Llort L. Bizarre behaviors and risk assessment in 3xTg-AD mice at early stages of the disease. Behav Brain Res 2013; 258:97-105. [PMID: 24144550 DOI: 10.1016/j.bbr.2013.10.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 10/10/2013] [Indexed: 12/19/2022]
Abstract
Bizarre behaviors (stereotyped stretching, stereotyped rearing, backward movements and jumps) were conspicuously elicited in classical unconditioned tests with different levels of anxiogenic conditions. They were characterized for the first time as early-BPSD-like symptoms in 6 month-old male and female 3xTg-AD mice. The pattern of these behaviors differed from that exhibited by their age- and gender-matched NTg counterparts. Confrontation of an open and illuminated field was the best trigger of such behaviors as compared to mild neophobia in the corner test or the choice between two compartments in the dark-light box. Here we also report that increased freezing, delayed thigmotaxis and enhancement of emotional behaviors were early BPSD-like symptoms indicative of their response to low-stressful environments. Independently of the genotype, consistent gender effects pointed toward the relevance of female gender to study bizarre behaviors and risk assessment. The identification of items of behavior and its gender component were relevant to find out bidirectional and selective behavioral long-lasting effects of postnatal handling. This early life treatment reduced freezing and most of the bizarre behaviors whereas potentiated risk assessment and the horizontal locomotor activity. In contrast, vertical exploratory activity was not modified by the treatment. The results also talk in favor of the beneficence of early-life interventions on the behavioral outcome in adulthood in both healthy and disease conditions. As shown, the consideration of bizarre behaviors and risk assessment may become an additional tool for evaluating BPSD-like symptoms in relation to preventive and/or therapeutical strategies targeted at AD. It may also have a role in the evaluation of the potential risk factors for the disease.
Collapse
Affiliation(s)
- R Baeta-Corral
- Institute of Neuroscience, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | |
Collapse
|
33
|
Voss MW, Vivar C, Kramer AF, van Praag H. Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci 2013; 17:525-44. [PMID: 24029446 DOI: 10.1016/j.tics.2013.08.001] [Citation(s) in RCA: 657] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 12/20/2022]
Abstract
Significant progress has been made in understanding the neurobiological mechanisms through which exercise protects and restores the brain. In this feature review, we integrate animal and human research, examining physical activity effects across multiple levels of description (neurons up to inter-regional pathways). We evaluate the influence of exercise on hippocampal structure and function, addressing common themes such as spatial memory and pattern separation, brain structure and plasticity, neurotrophic factors, and vasculature. Areas of research focused more within species, such as hippocampal neurogenesis in rodents, also provide crucial insight into the protective role of physical activity. Overall, converging evidence suggests exercise benefits brain function and cognition across the mammalian lifespan, which may translate into reduced risk for Alzheimer's disease (AD) in humans.
Collapse
Affiliation(s)
- Michelle W Voss
- Department of Psychology, The University of Iowa, Iowa City, IA, USA; Aging Mind and Brain Initiative (AMBI), The University of Iowa, Iowa City, IA, USA.
| | | | | | | |
Collapse
|
34
|
Giménez-Llort L, Rivera-Hernández G, Marin-Argany M, Sánchez-Quesada JL, Villegas S. Early intervention in the 3xTg-AD mice with an amyloid β-antibody fragment ameliorates first hallmarks of Alzheimer disease. MAbs 2013; 5:665-77. [PMID: 23884018 DOI: 10.4161/mabs.25424] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The single-chain variable fragment, scFv-h3D6, has been shown to prevent in vitro toxicity induced by the amyloid β (Aβ) peptide in neuroblastoma cell cultures by withdrawing Aβ oligomers from the amyloid pathway. Present study examined the in vivo effects of scFv-h3D6 in the triple-transgenic 3xTg-AD mouse model of Alzheimer disease. Prior to the treatment, five-month-old female animals, corresponding to early stages of the disease, showed the first behavioral and psychological symptoms of dementia -like behaviors. Cognitive deficits included long- and short-term learning and memory deficits and high swimming navigation speed. After a single intraperitoneal dose of scFv-h3D6, the swimming speed was reversed to normal levels and the learning and memory deficits were ameliorated. Brain tissues of these animals revealed a global decrease of Aβ oligomers in the cortex and olfactory bulb after treatment, but this was not seen in the hippocampus and cerebellum. In the untreated 3xTg-AD animals, we observed an increase of both apoJ and apoE concentrations in the cortex, as well as an increase of apoE in the hippocampus. Treatment significantly recovered the non-pathological levels of these apolipoproteins. Our results suggest that the benefit of scFv-h3D6 occurs at both behavioral and molecular levels.
Collapse
Affiliation(s)
- Lydia Giménez-Llort
- Institut de Neurociències; Unitat de Biociències; Universitat Autònoma de Barcelona; Barcelona, Spain; Departament de Psiquiatria i Medicina Legal; Unitat de Biociències; Universitat Autònoma de Barcelona; Barcelona, Spain
| | | | | | | | | |
Collapse
|
35
|
Hebda-Bauer EK, Simmons TA, Sugg A, Ural E, Stewart JA, Beals JL, Wei Q, Watson SJ, Akil H. 3xTg-AD mice exhibit an activated central stress axis during early-stage pathology. J Alzheimers Dis 2013; 33:407-22. [PMID: 22976078 DOI: 10.3233/jad-2012-121438] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activation of the hypothalamic-pituitary-adrenal (HPA) axis occurs in response to the organism's innate need for homeostasis. The glucocorticoids (GCs) that are released into the circulation upon acute activation of the HPA axis perform stress-adaptive functions and provide negative feedback to turn off the HPA axis, but can be detrimental when in excess. Long-term activation of the HPA axis (such as with chronic stress) enhances susceptibility to neuronal dysfunction and death, and increases vulnerability to Alzheimer's disease (AD). However, little is known how components of the HPA axis, upstream of GCs, impact vulnerability to AD. This study examined basal gene expression of stress-related molecules in brains of 3xTg-AD mice during early-stage pathology. Basal GC levels and mRNA expression of the glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and corticotropic releasing hormone (CRH) in several stress- and emotionality-related brain regions were measured in 3-4-month-old 3xTg-AD mice. Despite normal GC levels, young 3xTg-AD mice exhibit an activated central HPA axis, with altered mRNA levels of MR and GR in the hippocampus, GR and CRH in the paraventricular nucleus of the hypothalamus, GR and CRH in the central nucleus of the amygdala, and CRH in the bed nucleus of the stria terminalis. This HPA axis activation is present during early-stage neuropathology when 3xTg-AD mice show mild behavioral changes, suggesting an ongoing neuroendocrine regulation that precedes the onset of severe AD-like pathology and behavioral deficits.
Collapse
Affiliation(s)
- Elaine K Hebda-Bauer
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dubal DB, Broestl L, Worden K. Sex and gonadal hormones in mouse models of Alzheimer's disease: what is relevant to the human condition? Biol Sex Differ 2012; 3:24. [PMID: 23126652 PMCID: PMC3524653 DOI: 10.1186/2042-6410-3-24] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 09/27/2012] [Indexed: 11/10/2022] Open
Abstract
Biologic sex and gonadal hormones matter in human aging and diseases of aging such as Alzheimer's - and the importance of studying their influences relates directly to human health. The goal of this article is to review the literature to date on sex and hormones in mouse models of Alzheimer's disease (AD) with an exclusive focus on interpreting the relevance of findings to the human condition. To this end, we highlight advances in AD and in sex and hormone biology, discuss what these advances mean for merging the two fields, review the current mouse model literature, raise major unresolved questions, and offer a research framework that incorporates human reproductive aging for future studies aimed at translational discoveries in this important area. Unraveling human relevant pathways in sex and hormone-based biology may ultimately pave the way to novel and urgently needed treatments for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Dena B Dubal
- Laboratory of Neuroscience and Aging Research, Department of Neurology, Sandler Neurosciences Center, Room 212B, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
37
|
Giménez-Llort L, Maté I, Manassra R, Vida C, De la Fuente M. Peripheral immune system and neuroimmune communication impairment in a mouse model of Alzheimer's disease. Ann N Y Acad Sci 2012; 1262:74-84. [PMID: 22823438 DOI: 10.1111/j.1749-6632.2012.06639.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD) can be understood in the context of the aging of neuroimmune communication. Although the contribution to AD of the immune cells present in the brain is accepted, the role of the peripheral immune system is less well known. The present review examines the behavior and the function and redox state of peripheral immune cells in a triple-transgenic mouse model (3×Tg-AD). These animals develop both beta-amyloid plaques and neurofibrillary tangles with a temporal- and regional-specific profile that closely mimics their development in the human AD brain. We have observed age and sex-related changes in several aspects of behavior and immune cell functions, which demonstrate premature aging. Lifestyle strategies such as physical exercise and environmental enrichment can improve these aspects. We propose that the analysis of the function and redox state of peripheral immune cells can be a useful tool for measuring the progression of AD.
Collapse
Affiliation(s)
- Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | |
Collapse
|