1
|
Hayden MR, Tyagi N. Sodium Thiosulfate: An Innovative Multi-Target Repurposed Treatment Strategy for Late-Onset Alzheimer's Disease. Pharmaceuticals (Basel) 2024; 17:1741. [PMID: 39770582 PMCID: PMC11676759 DOI: 10.3390/ph17121741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Late-onset Alzheimer's disease (LOAD) is a chronic, multifactorial, and progressive neurodegenerative disease that associates with aging and is highly prevalent in our older population (≥65 years of age). This hypothesis generating this narrative review will examine the important role for the use of sodium thiosulfate (STS) as a possible multi-targeting treatment option for LOAD. Sulfur is widely available in our environment and is responsible for forming organosulfur compounds that are known to be associated with a wide range of biological activities in the brain. STS is known to have (i) antioxidant and (ii) anti-inflammatory properties; (iii) chelation properties for calcium and the pro-oxidative cation metals such as iron and copper; (iv) donor properties for hydrogen sulfide production; (v) possible restorative properties for brain endothelial-cell-derived bioavailable nitric oxide. Thus, it becomes apparent that STS has the potential for neuroprotection and neuromodulation and may allow for an attenuation of the progressive nature of neurodegeneration and impaired cognition in LOAD. STS has been successfully used to prevent cisplatin oxidative-stress-induced ototoxicity in the treatment of head and neck and solid cancers, cyanide and arsenic poisoning, and fungal skin diseases. Most recently, intravenous STS has become part of the treatment plan for calciphylaxis globally due to vascular calcification and ischemia-induced skin necrosis and ulceration. Side effects have been minimal with reports of metabolic acidosis and increased anion gap; as with any drug treatment, there is also the possibility of allergic reactions, possible long-term osteoporosis from animal studies to date, and minor side-effects of nausea, headache, and rhinorrhea if infused too rapidly. While STS poorly penetrates the intact blood-brain barrier(s) (BBBs), it could readily penetrate BBBs that are dysfunctional and disrupted to deliver its neuroprotective and neuromodulating effects in addition to its ability to penetrate the blood-cerebrospinal fluid barrier of the choroid plexus. Novel strategies such as the future use of nano-technology may be helpful in allowing an increased entry of STS into the brain.
Collapse
Affiliation(s)
- Melvin R. Hayden
- Department of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65211, USA
| | - Neetu Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| |
Collapse
|
2
|
Kumar G, Srivastava A, Kumar P, Srikrishna S, Singh VP. A chromogenic diarylethene-based probe for the detection of Cu 2+ in aqueous medium in Drosophila for early diagnosis of Alzheimer. Heliyon 2024; 10:e24074. [PMID: 38230249 PMCID: PMC10789622 DOI: 10.1016/j.heliyon.2024.e24074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/16/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
A diarylethene-based probe (Z)-N'-((2-amino-5-chlorophenyl)(phenyl)methylene)-2-hydroxy benzohydrazide (KBH) has been proficiently developed and its structure has been confirmed by single crystal X-ray diffraction technique. It displays a selective and sensitive colorimetric sensing of Cu2+ ions in aqueous medium with a naked eye colour change from colourless to yellow. It exhibits a significantly low limit of detection as 1.5 nM. A plausible binding mechanism has been proposed using Job's plot, FT-IR, 1H NMR titration, HRMS and DFT studies. The chemosensor is effectively reversible and reusable with EDTA. Test strip kit and real water sample analysis have been shown to establish its practical applicability. Further, the potential of KBH for the early diagnosis of Cu2+ ion-induced amyloid toxicity has been investigated in eye imaginal disc of Alzheimer's disease model of Drosophila 3rd instar larvae. The in-vivo interaction of KBH with Cu2+ in gut tissues of Drosophila larvae establishes its sensing capability in biological system. Interestingly, the in-vivo detection of Cu2+ has been done using bright field imaging which eliminates the necessity of a fluorescent label, hence making the method highly economical.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prabhat Kumar
- Department of Bio Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - S. Srikrishna
- Department of Bio Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vinod P. Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Puentes-Díaz N, Chaparro D, Morales-Morales D, Flores-Gaspar A, Alí-Torres J. Role of Metal Cations of Copper, Iron, and Aluminum and Multifunctional Ligands in Alzheimer's Disease: Experimental and Computational Insights. ACS OMEGA 2023; 8:4508-4526. [PMID: 36777601 PMCID: PMC9909689 DOI: 10.1021/acsomega.2c06939] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/30/2022] [Indexed: 05/15/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, affecting millions of people around the world. Even though the causes of AD are not completely understood due to its multifactorial nature, some neuropathological hallmarks of its development have been related to the high concentration of some metal cations. These roles include the participation of these metal cations in the production of reactive oxygen species, which have been involved in neuronal damage. In order to avoid the increment in the oxidative stress, multifunctional ligands used to coordinate these metal cations have been proposed as a possible treatment to AD. In this review, we present the recent advances in experimental and computational works aiming to understand the role of two redox active and essential transition-metal cations (Cu and Fe) and one nonbiological metal (Al) and the recent proposals on the development of multifunctional ligands to stop or revert the damaging effects promoted by these metal cations.
Collapse
Affiliation(s)
- Nicolás Puentes-Díaz
- Departamento
de Química, Universidad Nacional
de Colombia−Sede Bogotá, Bogotá 11301, Colombia
| | - Diego Chaparro
- Departamento
de Química, Universidad Nacional
de Colombia−Sede Bogotá, Bogotá 11301, Colombia
- Departamento
de Química, Universidad Militar Nueva
Granada, Cajicá 250240, Colombia
| | - David Morales-Morales
- Instituto
de Química, Universidad Nacional Autónoma de México,
Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Areli Flores-Gaspar
- Departamento
de Química, Universidad Militar Nueva
Granada, Cajicá 250240, Colombia
- Areli Flores-Gaspar − Departamento de Química,
Universidad Militar Nueva
Granada, Cajicá, 250247, Colombia.
| | - Jorge Alí-Torres
- Departamento
de Química, Universidad Nacional
de Colombia−Sede Bogotá, Bogotá 11301, Colombia
- Jorge Alí-Torres − Departamento de Química, Universidad Nacional de
Colombia, Sede Bogotá,11301, Bogotá, Colombia.
| |
Collapse
|
4
|
Chin-Chan M, Montes S, Blanco-Álvarez VM, Aguirre-Alarcón HA, Hernández-Rodríguez I, Bautista E. Relevance of biometals during neuronal differentiation and myelination: in vitro and in vivo studies. Biometals 2022; 35:395-427. [DOI: 10.1007/s10534-022-00380-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/27/2022] [Indexed: 12/20/2022]
|
5
|
Metaxas A. Imbalances in Copper or Zinc Concentrations Trigger Further Trace Metal Dyshomeostasis in Amyloid-Beta Producing Caenorhabditis elegans. Front Neurosci 2021; 15:755475. [PMID: 34707479 PMCID: PMC8542683 DOI: 10.3389/fnins.2021.755475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's Disease (AD), a progressive neurodegenerative disease characterized by the buildup of amyloid-beta (Aβ) plaques, is believed to be a disease of trace metal dyshomeostasis. Amyloid-beta is known to bind with high affinity to trace metals copper and zinc. This binding is believed to cause a conformational change in Aβ, transforming Aβ into a configuration more amenable to forming aggregations. Currently, the impact of Aβ-trace metal binding on trace metal homeostasis and the role of trace metals copper and zinc as deleterious or beneficial in AD remain elusive. Given that Alzheimer's Disease is the sixth leading cause of adult death in the U.S., elucidating the molecular interactions that characterize Alzheimer's Disease pathogenesis will allow for better treatment options. To that end, the model organism C. elegans is used in this study. C. elegans, a transparent nematode whose connectome has been fully established, is an amenable model to study AD phenomena using a multi-layered, interconnected approach. Aβ-producing and non-Aβ-producing C. elegans were individually supplemented with copper and zinc. On day 6 and day 9 after synchronization, the percent of worms paralyzed, concentration of copper, and concentration of zinc were measured in both groups of worms. This study demonstrates that dyshomeostasis of trace metals copper or zinc triggers further trace metal dyshomeostasis in Aβ-producing worms, while dyshomeostasis of copper or zinc triggers a return to equilibrium in non-Aβ-producing worms. This supports the characterization of Alzheimer's Disease as a disease of trace metal dyshomeostasis.
Collapse
Affiliation(s)
- Ada Metaxas
- Princeton High School, Princeton, NJ, United States
| |
Collapse
|
6
|
Nerve Growth Factor Peptides Bind Copper(II) with High Affinity: A Thermodynamic Approach to Unveil Overlooked Neurotrophin Roles. Int J Mol Sci 2021; 22:ijms22105085. [PMID: 34064906 PMCID: PMC8150721 DOI: 10.3390/ijms22105085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Nerve growth factor (NGF) is a protein essential to neurons survival, which interacts with its receptor as a non-covalent dimer. Peptides belonging to NGF N-terminal domain are able to mimic the activity of the whole protein. Such activity is affected by the presence of copper ions. The metal is released in the synaptic cleft where proteins, not yet identified, may bind and transfer to human copper transporter 1 (hCtr1), for copper uptake in neurons. The measurements of the stability constants of copper complexes formed by amyloid beta and hCtr1 peptide fragments suggest that beta-amyloid (Aβ) can perform this task. In this work, the stability constant values of copper complex species formed with the dimeric form of N-terminal domain, sequence 1–15 of the protein, were determined by means of potentiometric measurements. At physiological pH, NGF peptides bind one equivalent of copper ion with higher affinity of Aβ and lower than hCtr1 peptide fragments. Therefore, in the synaptic cleft, NGF may act as a potential copper chelating molecule, ionophore or chaperone for hCtr1 for metal uptake. Copper dyshomeostasis and mild acidic environment may modify the balance between metal, NGF, and Aβ, with consequences on the metal cellular uptake and therefore be among causes of the Alzheimer’s disease onset.
Collapse
|
7
|
Gromadzka G, Tarnacka B, Flaga A, Adamczyk A. Copper Dyshomeostasis in Neurodegenerative Diseases-Therapeutic Implications. Int J Mol Sci 2020; 21:E9259. [PMID: 33291628 PMCID: PMC7730516 DOI: 10.3390/ijms21239259] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
Copper is one of the most abundant basic transition metals in the human body. It takes part in oxygen metabolism, collagen synthesis, and skin pigmentation, maintaining the integrity of blood vessels, as well as in iron homeostasis, antioxidant defense, and neurotransmitter synthesis. It may also be involved in cell signaling and may participate in modulation of membrane receptor-ligand interactions, control of kinase and related phosphatase functions, as well as many cellular pathways. Its role is also important in controlling gene expression in the nucleus. In the nervous system in particular, copper is involved in myelination, and by modulating synaptic activity as well as excitotoxic cell death and signaling cascades induced by neurotrophic factors, copper is important for various neuronal functions. Current data suggest that both excess copper levels and copper deficiency can be harmful, and careful homeostatic control is important. This knowledge opens up an important new area for potential therapeutic interventions based on copper supplementation or removal in neurodegenerative diseases including Wilson's disease (WD), Menkes disease (MD), Alzheimer's disease (AD), Parkinson's disease (PD), and others. However, much remains to be discovered, in particular, how to regulate copper homeostasis to prevent neurodegeneration, when to chelate copper, and when to supplement it.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Collegium Medicum, Faculty of Medicine, Cardinal Stefan Wyszynski University, Wóycickiego 1/3 Street, 01-938 Warsaw, Poland;
| | - Beata Tarnacka
- Department of Rehabilitation, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Rehabilitation Clinic, Medical University of Warsaw, Spartańska 1 Street, 02-637 Warsaw, Poland;
| | - Anna Flaga
- Collegium Medicum, Faculty of Medicine, Cardinal Stefan Wyszynski University, Wóycickiego 1/3 Street, 01-938 Warsaw, Poland;
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland;
| |
Collapse
|
8
|
Ejaz HW, Wang W, Lang M. Copper Toxicity Links to Pathogenesis of Alzheimer's Disease and Therapeutics Approaches. Int J Mol Sci 2020; 21:E7660. [PMID: 33081348 PMCID: PMC7589751 DOI: 10.3390/ijms21207660] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible, age-related progressive neurological disorder, and the most common type of dementia in aged people. Neuropathological lesions of AD are neurofibrillary tangles (NFTs), and senile plaques comprise the accumulated amyloid-beta (Aβ), loaded with metal ions including Cu, Fe, or Zn. Some reports have identified metal dyshomeostasis as a neurotoxic factor of AD, among which Cu ions seem to be a central cationic metal in the formation of plaque and soluble oligomers, and have an essential role in the AD pathology. Cu-Aβ complex catalyzes the generation of reactive oxygen species (ROS) and results in oxidative damage. Several studies have indicated that oxidative stress plays a crucial role in the pathogenesis of AD. The connection of copper levels in AD is still ambiguous, as some researches indicate a Cu deficiency, while others show its higher content in AD, and therefore there is a need to increase and decrease its levels in animal models, respectively, to study which one is the cause. For more than twenty years, many in vitro studies have been devoted to identifying metals' roles in Aβ accumulation, oxidative damage, and neurotoxicity. Towards the end, a short review of the modern therapeutic approach in chelation therapy, with the main focus on Cu ions, is discussed. Despite the lack of strong proofs of clinical advantage so far, the conjecture that using a therapeutic metal chelator is an effective strategy for AD remains popular. However, some recent reports of genetic-regulating copper transporters in AD models have shed light on treating this refractory disease. This review aims to succinctly present a better understanding of Cu ions' current status in several AD features, and some conflicting reports are present herein.
Collapse
Affiliation(s)
- Hafza Wajeeha Ejaz
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth WA6027, Australia;
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
9
|
Exposure to CuO Nanoparticles Mediates NFκB Activation and Enhances Amyloid Precursor Protein Expression. Biomedicines 2020; 8:biomedicines8030045. [PMID: 32120908 PMCID: PMC7175332 DOI: 10.3390/biomedicines8030045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Amyloid precursor protein (APP) is directly related to Aβ amyloidosis—a hallmark of Alzheimer’s disease (AD). However, the impact of environmental factors upon APP biology and Aβ amyloid pathology have not been well studied. The increased use of nanoparticles (NPs) or engineered nanomaterials (ENMs) has led to a growing body of evidence suggesting that exposure to metal/metal oxide NPs, such as Fe2O3, CuO, and ZnO, may contribute to the pathophysiology of neurodegenerative diseases such as AD through neuroinflammation. Our previous studies indicated that exposure to CuO nanoparticles (CuONPs) induce potent in vitro neurotoxicity. Herein, we investigated the effects on APP expression in neuronal cells exposed to different metal oxide NPs. We found a low dose of CuONPs effectively activated the NFκB signaling pathway and increased APP expression. Moreover, the inhibition of p65 expression using siRNA abolished CuONP-mediated APP expression, suggesting that NFκB-regulated APP expression in response to CuONP exposure may be associated with AD pathology.
Collapse
|
10
|
Taylor AA, Tsuji JS, Garry MR, McArdle ME, Goodfellow WL, Adams WJ, Menzie CA. Critical Review of Exposure and Effects: Implications for Setting Regulatory Health Criteria for Ingested Copper. ENVIRONMENTAL MANAGEMENT 2020; 65:131-159. [PMID: 31832729 PMCID: PMC6960211 DOI: 10.1007/s00267-019-01234-y] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/23/2019] [Indexed: 05/18/2023]
Abstract
Decades of study indicate that copper oral exposures are typically not a human health concern. Ingesting high levels of soluble copper salts can cause acute gastrointestinal symptoms and, in uncommon cases, liver toxicity in susceptible individuals with repeated exposure. This focused toxicological review evaluated the current literature since the last comprehensive reviews (2007-2010). Our review identified limitations in the existing United States and international guidance for determining an oral reference dose (RfD) for essential metals like copper. Instead, an alternative method using categorical regression analysis to develop an optimal dose that considers deficiency, toxicity, and integrates information from human and animal studies was reviewed for interpreting an oral RfD for copper. We also considered subchronic or chronic toxicity from genetic susceptibility to copper dysregulation leading to rare occurrences of liver and other organ toxicity with elevated copper exposure. Based on this approach, an oral RfD of 0.04 mg Cu/kg/day would be protective of acute or chronic toxicity in adults and children. This RfD is also protective for possible genetic susceptibility to elevated copper exposure and allows for background dietary exposures. This dose is not intended to be protective of patients with rare genetic disorders for copper sensitivity within typical nutritional intake ranges, nor is it protective for those with excessive supplement intake. Less soluble mineral forms of copper in soil have reduced bioavailability as compared with more soluble copper in water and diet, which should be considered in using this RfD for risk assessments of copper.
Collapse
Affiliation(s)
- Alicia A Taylor
- Exponent, Inc., 475 14th Street, Suite 400, Oakland, CA, 94612, USA
| | - Joyce S Tsuji
- Exponent, Inc., 15375 SE 30th Place, Suite 250, Bellevue, WA, 98027, USA
| | - Michael R Garry
- Exponent, Inc., 15375 SE 30th Place, Suite 250, Bellevue, WA, 98027, USA
| | - Margaret E McArdle
- Exponent, Inc., One Mill and Main Place, Suite 150, Maynard, MA, 01754, USA
| | | | - William J Adams
- Red Cap Consulting, 7760 North Boulder Drive, Lake Point, UT, 84074, USA
| | - Charles A Menzie
- Exponent, Inc., 1800 Diagonal Road, Suite 500, Alexandria, VA, 22314, USA
| |
Collapse
|
11
|
Rutjes AWS, Denton DA, Di Nisio M, Chong L, Abraham RP, Al‐Assaf AS, Anderson JL, Malik MA, Vernooij RWM, Martínez G, Tabet N, McCleery J. Vitamin and mineral supplementation for maintaining cognitive function in cognitively healthy people in mid and late life. Cochrane Database Syst Rev 2018; 12:CD011906. [PMID: 30556597 PMCID: PMC6353240 DOI: 10.1002/14651858.cd011906.pub2] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Vitamins and minerals play multiple functions within the central nervous system which may help to maintain brain health and optimal cognitive functioning. Supplementation of the diet with various vitamins and minerals has been suggested as a means of maintaining cognitive function, or even of preventing dementia, in later life. OBJECTIVES To evaluate the effects of vitamin and mineral supplementation on cognitive function in cognitively healthy people aged 40 years or more. SEARCH METHODS We searched ALOIS, the Cochrane Dementia and Cognitive Improvement Group's (CDCIG) specialised register, as well as MEDLINE, Embase, PsycINFO, CINAHL, ClinicalTrials.gov and the WHO Portal/ICTRP from inception to 26th January 2018. SELECTION CRITERIA We included randomised controlled trials that evaluated the cognitive effects on people aged 40 years or more of any vitamin or mineral supplements taken by mouth for at least three months. DATA COLLECTION AND ANALYSIS Study selection, data extraction, and quality assessments were done in duplicate. Vitamins were considered broadly in the categories of B vitamins, antioxidant vitamins, and combinations of both. Minerals were considered separately, where possible. If interventions and outcomes were considered sufficiently similar, then data were pooled. In order to separate short-term cognitive effects from possible longer-term effects on the trajectory of cognitive decline, data were pooled for various treatment durations from 3 months to 12 months and up to 10 years or more. MAIN RESULTS In total, we included 28 studies with more than 83,000 participants. There were some general limitations of the evidence. Most participants were enrolled in studies which were not designed primarily to assess cognition. These studies often had no baseline cognitive assessment and used only brief cognitive assessments at follow-up. Very few studies assessed the incidence of dementia. Most study reports did not mention adverse events or made only very general statements about them. Only 10 studies had a mean follow-up > 5 years. Only two studies had participants whose mean age was < 60 years at baseline. The risk of bias in the included studies was generally low, other than a risk of attrition bias for longer-term outcomes. We considered the certainty of the evidence behind almost all results to be moderate or low.We included 14 studies with 27,882 participants which compared folic acid, vitamin B12, vitamin B6, or a combination of these to placebo. The majority of participants were aged over 60 years and had a history of cardio- or cerebrovascular disease. We found that giving B vitamin supplements to cognitively healthy adults, mainly in their 60s and 70s, probably has little or no effect on global cognitive function at any time point up to 5 years (SMD values from -0.03 to 0.06) and may also have no effect at 5-10 years (SMD -0.01). There were very sparse data on adverse effects or on incidence of cognitive impairment or dementia.We included 8 studies with 47,840 participants in which the active intervention was one or more of the antioxidant vitamins: ß-carotene, vitamin C or vitamin E. Results were mixed. For overall cognitive function, there was low-certainty evidence of benefit associated with ß-carotene after a mean of 18 years of treatment (MD 0.18 TICS points, 95% CI 0.01 to 0.35) and of vitamin C after 5 years to 10 years (MD 0.46 TICS points, 95% CI 0.14 to 0.78), but not at earlier time points. From two studies which reported on dementia incidence, there was low-certainty evidence of no effect of an antioxidant vitamin combination or of vitamin E, either alone or combined with selenium. One of the included studies had been designed to look for effects on the incidence of prostate cancer; it found a statistically significant increase in prostate cancer diagnoses among men taking vitamin E.One trial with 4143 participants compared vitamin D3 (400 IU/day) and calcium supplements to placebo. We found low- to moderate-certainty evidence of no effect of vitamin D3 and calcium supplements at any time-point up to 10 years on overall cognitive function (MD after a mean of 7.8 years -0.1 MMSE points, 95% CI -0.81 to 0.61) or the incidence of dementia (HR 0.94, 95% CI 0.72 to 1.24). A pilot study with 60 participants used a higher dose of vitamin D3 (4000 IU on alternate days) and found preliminary evidence that this dose probably has no effect on cognitive function over six months.We included data from one trial of zinc and copper supplementation with 1072 participants. There was moderate-certainty evidence of little or no effect on overall cognitive function (MD 0.6 MMSE points, 95% CI -0.19 to 1.39) or on the incidence of cognitive impairment after 5 years to 10 years. A second smaller trial provided no usable data, but reported no cognitive effects of six months of supplementation with zinc gluconate.From one study with 3711 participants, there was low-certainty evidence of no effect of approximately five years of selenium supplementation on the incidence of dementia (HR 0.83, 95% CI 0.61 to 1.13).Finally, we included three trials of complex supplements (combinations of B vitamins, antioxidant vitamins, and minerals) with 6306 participants. From the one trial which assessed overall cognitive function, there was low-certainty evidence of little or no effect on the TICS (MD after a mean of 8.5 years 0.12, 95% CI -0.14 to 0.38). AUTHORS' CONCLUSIONS We did not find evidence that any vitamin or mineral supplementation strategy for cognitively healthy adults in mid or late life has a meaningful effect on cognitive decline or dementia, although the evidence does not permit definitive conclusions. There were very few data on supplementation starting in midlife (< 60 years); studies designed to assess cognitive outcomes tended to be too short to assess maintenance of cognitive function; longer studies often had other primary outcomes and used cognitive measures which may have lacked sensitivity. The only positive signals of effect came from studies of long-term supplementation with antioxidant vitamins. These may be the most promising for further research.
Collapse
Affiliation(s)
- Anne WS Rutjes
- University of BernInstitute of Social and Preventive Medicine (ISPM)Mittelstrasse 43BernBernSwitzerland3012
- University of BernInstitute of Primary Health Care (BIHAM)Mittelstrasse 43BernBernSwitzerland3012
| | - David A Denton
- Sussex Partnership NHS Foundation TrustSpecialist Older People's ServicesUckfield Community HosptialFramfield RoadUckfieldUKTN22 5AW
| | - Marcello Di Nisio
- University "G. D'Annunzio" of Chieti‐PescaraDepartment of Medicine and Ageing SciencesVia dei Vestini 31Chieti ScaloItaly66013
| | | | - Rajesh P Abraham
- Surrey and Borders Partnership NHS Foundation TrustCommunity Mental Health Team for Older People:Waverley11‐13 Ockford RoadGuildfordUKGU7 1QU
| | - Aalya S Al‐Assaf
- Newcastle UniversityNIHR Innovation ObservatorySuite A, 4th Floor, Time CentralGallowgateNewcastle Upon TyneUKNE1 4BF
| | - John L Anderson
- Brighton and Sussex Medical School, University of BrightonDepartment of Medical EducationWatson BuildingFalmerUKBN1 9PH
| | - Muzaffar A Malik
- Brighton and Sussex Medical School, University of BrightonDepartment of Medical Education (Postgraduate)Room 341, Mayfield HouseFalmerUKBN1 9PH
| | - Robin WM Vernooij
- Iberoamerican Cochrane CentreC/ Sant Antoni Maria Claret 167BarcelonaBarcelonaSpain08025
| | - Gabriel Martínez
- Universidad de AntofagastaFaculty of Medicine and DentistryAvenida Argentina 2000AntofagastaChile127001
| | - Naji Tabet
- Brighton and Sussex Medical SchoolCentre for Dementia StudiesMayfield House, University of BrightonFalmerBrightonUKBN1 9PH
| | - Jenny McCleery
- Oxford Health NHS Foundation TrustElms CentreOxford RoadBanburyOxfordshireUKOX16 9AL
| | | |
Collapse
|
12
|
McCleery J, Abraham RP, Denton DA, Rutjes AWS, Chong L, Al‐Assaf AS, Griffith DJ, Rafeeq S, Yaman H, Malik MA, Di Nisio M, Martínez G, Vernooij RWM, Tabet N. Vitamin and mineral supplementation for preventing dementia or delaying cognitive decline in people with mild cognitive impairment. Cochrane Database Syst Rev 2018; 11:CD011905. [PMID: 30383288 PMCID: PMC6378925 DOI: 10.1002/14651858.cd011905.pub2] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Vitamins and minerals have many functions in the nervous system which are important for brain health. It has been suggested that various different vitamin and mineral supplements might be useful in maintaining cognitive function and delaying the onset of dementia. In this review, we sought to examine the evidence for this in people who already had mild cognitive impairment (MCI). OBJECTIVES To evaluate the effects of vitamin and mineral supplementation on cognitive function and the incidence of dementia in people with mild cognitive impairment. SEARCH METHODS We searched ALOIS, the Cochrane Dementia and Cognitive Improvement Group's (CDCIG) specialised register, as well as MEDLINE, Embase, PsycINFO, CENTRAL, CINAHL, LILACs, Web of Science Core Collection, ClinicalTrials.gov, and the WHO Portal/ICTRP, from inception to 25 January 2018. SELECTION CRITERIA We included randomised or quasi-randomised, placebo-controlled trials which evaluated orally administered vitamin or mineral supplements in participants with a diagnosis of mild cognitive impairment and which assessed the incidence of dementia or cognitive outcomes, or both. We were interested in studies applicable to the general population of older people and therefore excluded studies in which participants had severe vitamin or mineral deficiencies. DATA COLLECTION AND ANALYSIS We sought data on our primary outcomes of dementia incidence and overall cognitive function and on secondary outcomes of episodic memory, executive function, speed of processing, quality of life, functional performance, clinical global impression, adverse events, and mortality. We conducted data collection and analysis according to standard Cochrane systematic review methods. We assessed the risk of bias of included studies using the Cochrane 'Risk of bias' assessment tool. We grouped vitamins and minerals according to their putative mechanism of action and, where we considered it to be clinically appropriate, we pooled data using random-effects methods. We used GRADE methods to assess the overall quality of evidence for each comparison and outcome. MAIN RESULTS We included five trials with 879 participants which investigated B vitamin supplements. In four trials, the intervention was a combination of vitamins B6, B12, and folic acid; in one, it was folic acid only. Doses varied. We considered there to be some risks of performance and attrition bias and of selective outcome reporting among these trials. Our primary efficacy outcomes were the incidence of dementia and scores on measures of overall cognitive function. None of the trials reported the incidence of dementia and the evidence on overall cognitive function was of very low-quality. There was probably little or no effect of B vitamins taken for six to 24 months on episodic memory, executive function, speed of processing, or quality of life. The evidence on our other secondary clinical outcomes, including harms, was very sparse or very low-quality. There was evidence from one study that there may be a slower rate of brain atrophy over two years in participants taking B vitamins. The same study reported subgroup analyses based on the level of serum homocysteine (tHcy) at baseline and found evidence that B vitamins may improve episodic memory in those with tHcy above the median at baseline.We included one trial (n = 516) of vitamin E supplementation. Vitamin E was given as 1000 IU of alpha-tocopherol twice daily. We considered this trial to be at risk of attrition and selective reporting bias. There was probably no effect of vitamin E on the probability of progression from MCI to Alzheimer's dementia over three years (HR 1.02; 95% CI 0.74 to 1.41; n = 516; 1 study, moderate-quality evidence). There was also no evidence of an effect at intermediate time points. The available data did not allow us to conduct analyses, but the authors reported no significant effect of three years of supplementation with vitamin E on overall cognitive function, episodic memory, speed of processing, clinical global impression, functional performance, adverse events, or mortality (five deaths in each group). We considered this to be low-quality evidence.We included one trial (n = 256) of combined vitamin E and vitamin C supplementation and one trial (n = 26) of supplementation with chromium picolinate. In both cases, there was a single eligible cognitive outcome, but we considered the evidence to be very low-quality and so could not be sure of any effects. AUTHORS' CONCLUSIONS The evidence on vitamin and mineral supplements as treatments for MCI is very limited. Three years of treatment with high-dose vitamin E probably does not reduce the risk of progression to dementia, but we have no data on this outcome for other supplements. Only B vitamins have been assessed in more than one RCT. There is no evidence for beneficial effects on cognition of supplementation with B vitamins for six to 24 months. Evidence from a single study of a reduced rate of brain atrophy in participants taking vitamin B and a beneficial effect of vitamin B on episodic memory in those with higher tHcy at baseline warrants attempted replication.
Collapse
Affiliation(s)
- Jenny McCleery
- Oxford Health NHS Foundation TrustElms CentreOxford RoadBanburyOxfordshireUKOX16 9AL
| | - Rajesh P Abraham
- Surrey and Borders Partnership NHS Foundation TrustCommunity Mental Health Team for Older People:Waverley11‐13 Ockford RoadGuildfordUKGU7 1QU
| | - David A Denton
- Sussex Partnership NHS Foundation TrustSpecialist Older People's ServicesUckfield Community HosptialFramfield RoadUckfieldUKTN22 5AW
| | - Anne WS Rutjes
- Fondazione "Università G. D'Annunzio"Centre for Systematic ReviewsVia dei Vestini 31ChietiChietiItaly66100
- University of BernInstitute of Social and Preventive Medicine (ISPM)Mittelstrasse 43BernBernSwitzerland3012
| | | | - Aalya S Al‐Assaf
- Newcastle UniversityNIHR Innovation ObservatorySuite A, 4th Floor, Time CentralGallowgateNewcastle Upon TyneUKNE1 4BF
| | - Daniel J Griffith
- Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation TrustDepartment of Nutrition and DieteticsMindelsohn WayEdgbastonBirminghamWest MidlandsUKB15 2GW
| | - Shireen Rafeeq
- Central Park Medical CollegeCommunity MedicineCentral Park Housing Scheme, Ferozepur Road, Kahna NauLahorePunjabPakistan53100
| | - Hakan Yaman
- Faculty of Medicine, Akdeniz UniversityDepartment of Family MedicineAntalyaTurkey07059
| | - Muzaffar A Malik
- Brighton and Sussex Medical School, University of BrightonDepartment of Medical Education (Postgraduate)Room 341, Mayfield HouseFalmerUKBN1 9PH
| | - Marcello Di Nisio
- University "G. D'Annunzio" of Chieti‐PescaraDepartment of Medicine and Ageing SciencesVia dei Vestini 31Chieti ScaloItaly66013
| | - Gabriel Martínez
- Universidad de AntofagastaFaculty of Medicine and DentistryAvenida Argentina 2000AntofagastaChile127001
- Iberoamerican Cochrane CentreSant Antoni Maria Claret 167BarcelonaSpain08025
| | - Robin WM Vernooij
- Iberoamerican Cochrane CentreSant Antoni Maria Claret 167BarcelonaSpain08025
| | - Naji Tabet
- Brighton and Sussex Medical SchoolCentre for Dementia StudiesMayfield House, University of BrightonFalmerBrightonUKBN1 9PH
| | | |
Collapse
|
13
|
Young TR, Pukala TL, Cappai R, Wedd AG, Xiao Z. The Human Amyloid Precursor Protein Binds Copper Ions Dominated by a Picomolar-Affinity Site in the Helix-Rich E2 Domain. Biochemistry 2018; 57:4165-4176. [DOI: 10.1021/acs.biochem.8b00572] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tessa R. Young
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tara L. Pukala
- Discipline of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Roberto Cappai
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anthony G. Wedd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhiguang Xiao
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
14
|
Werle M, Föger F. Peroral peptide delivery: Peptidase inhibition as a key concept for commercial drug products. Bioorg Med Chem 2018; 26:2906-2913. [DOI: 10.1016/j.bmc.2017.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/10/2017] [Indexed: 11/16/2022]
|
15
|
Bagheri S, Squitti R, Haertlé T, Siotto M, Saboury AA. Role of Copper in the Onset of Alzheimer's Disease Compared to Other Metals. Front Aging Neurosci 2018; 9:446. [PMID: 29472855 PMCID: PMC5810277 DOI: 10.3389/fnagi.2017.00446] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/28/2017] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by amyloid plaques in patients' brain tissue. The plaques are mainly made of β-amyloid peptides and trace elements including Zn2+, Cu2+, and Fe2+. Some studies have shown that AD can be considered a type of metal dyshomeostasis. Among metal ions involved in plaques, numerous studies have focused on copper ions, which seem to be one of the main cationic elements in plaque formation. The involvement of copper in AD is controversial, as some studies show a copper deficiency in AD, and consequently a need to enhance copper levels, while other data point to copper overload and therefore a need to reduce copper levels. In this paper, the role of copper ions in AD and some contradictory reports are reviewed and discussed.
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - Thomas Haertlé
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- UR 1268 Biopolymères Interactions Assemblages, Institut National de la Recherche Agronomique, Equipe Fonctions et Interactions des Protéines, Nantes, France
- Department of Animal Nutrition and Feed Management, Poznan University of Life Sciences, Poznań, Poland
| | | | - Ali A. Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
16
|
Gonzalez P, Pota K, Turan LS, da Costa VCP, Akkaraju G, Green KN. Synthesis, Characterization, and Activity of a Triazine Bridged Antioxidant Small Molecule. ACS Chem Neurosci 2017; 8:2414-2423. [PMID: 28768410 DOI: 10.1021/acschemneuro.7b00184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Metal-ion misregulation and oxidative stress continue to be components of the continually evolving hypothesis describing the molecular origins of Alzheimer's disease. Therefore, these features are viable targets for synthetic chemists to explore through hybridizations of metal-binding ligands and antioxidant units. To date, the metal-binding unit in potential therapeutic small molecules has largely been inspired by clioquinol with the exception of a handful of heterocyclic small molecules and open-chain systems. Heterocyclic small molecules such as cyclen (1,4,7,10-tetraazacyclododecane) have the advantage of straightforward N-based modifications, allowing the addition of functional groups. In this work, we report the synthesis of a triazine bridged system containing two cyclen metal-binding units and an antioxidant coumarin appendage inspired by nature. This new potential therapeutic molecule shows the ability to bind copper in a unique manner compared to other chelates proposed to treat Alzheimer's disease. DPPH and TEAC assays exploring the activity of N-(2-((4,6-di(1,4,7,10-tetraazacyclododecan-1-yl)-1,3,5-triazin-2-yl)amino)ethyl)-2-oxo-2H-chromene-3-carboxamide (molecule 1) show that the molecule is antioxidant. Cellular studies of molecule 1 indicate a low toxicity (EC50 = 80 μM) and the ability to protect HT-22 neuronal cells from cell death induced by Aβ + copper(II), thus demonstrating the potential for molecule 1 to serve as a multimodal therapeutic for Alzheimer's disease.
Collapse
Affiliation(s)
- Paulina Gonzalez
- Department of Chemistry
and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Kristof Pota
- Department of Chemistry
and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Lara Su Turan
- Department of Chemistry
and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Viviana C. P. da Costa
- Department of Chemistry
and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Giridhar Akkaraju
- Department of Biology, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Kayla N. Green
- Department of Chemistry
and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| |
Collapse
|
17
|
Schreurs BG, Sparks DL. Dietary high cholesterol and trace metals in the drinking water increase levels of ABCA1 in the rabbit hippocampus and temporal cortex. J Alzheimers Dis 2016; 49:201-9. [PMID: 26444796 DOI: 10.3233/jad-150601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cholesterol-fed rabbits have been documented to show increased amyloid-β (Aβ) deposits in the brain that can be exacerbated by the quality of drinking water especially if rabbits drink tap water or distilled water containing copper. One mechanism of cholesterol and Aβ clearance may be through the ATP-binding cassette transporter A1 (ABCA1). OBJECTIVE AND METHODS Using an ABCA1 antibody, we determined the number of ABCA1-immunopositive neurons in three areas of rabbit brain as a function of feeding 2% cholesterol and providing tap water, distilled water, or distilled water to which aluminum, copper, or zinc was added. RESULTS The number of neurons with ABCA1 immunoreactivity was increased significantly as a result of dietary cholesterol in the rabbit hippocampus and inferior and superior temporal cortex. The number of neurons with ABCA1 immunoreactivity was further increased in all three areas as a result of cholesterol-fed rabbits drinking tap water or distilled water with copper. Finally, cholesterol-fed rabbits that drank distilled water with aluminum also showed an increased number of ABCA1-immunopositive neurons in inferior and superior temporal cortex. CONCLUSIONS These data suggest that ABCA1 levels increase in parallel with previously documented increases in Aβ levels as a result of high dietary cholesterol and copper in the drinking water. Addition of aluminum to distilled water may have a similar effect in the temporal cortex. ABCA1 has been proposed as a means of clearing Aβ from the brain and manipulations that increase Aβ also result in an increase of clearance machinery.
Collapse
Affiliation(s)
- Bernard G Schreurs
- West Virginia University and Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA
| | | |
Collapse
|
18
|
Al-Assaf AS, Denton DA, Abraham RP, Rutjes AWS, Chong LY, Anderson JL, Malik MA, Tabet N. Vitamin and mineral supplementation for maintaining cognitive function in cognitively healthy people in late life. Cochrane Database Syst Rev 2015. [DOI: 10.1002/14651858.cd011906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Aalya S Al-Assaf
- Brighton and Sussex Medical School, University of Brighton; Division of Medical Education; Mayfield House Falmer UK BN1 9PH
| | - David A Denton
- Sussex Partnership NHS Foundation Trust; Specialist Older People's Services; Uckfield Community Hosptial Framfield Road Uckfield UK TN22 5AW
| | - Rajesh P Abraham
- Cognitive Treatment and Research Unit, Sussex Partnership NHS Foundation Trust; Old Age Psychiatry; Grove House Southfield Road Crowborough UK TN6 1HB
| | - Anne WS Rutjes
- Fondazione "Università G. D'Annunzio"; Centre for Systematic Reviews; Via dei Vestini 31 Chieti Chieti Italy 66100
- University of Bern; Institute of Social and Preventive Medicine (ISPM); Finkenhubelweg 11 Bern Bern Switzerland 3012
| | | | - John L Anderson
- Brighton and Sussex Medical School, University of Brighton; Division of Medical Education; Mayfield House Falmer UK BN1 9PH
| | - Muzaffar A Malik
- Brighton and Sussex Medical School, University of Brighton; Department of Medical Education (Postgraduate); Room 341, Mayfield House Falmer UK BN1 9PH
| | - Naji Tabet
- Brighton and Sussex Medical School; Postgraduate Medicine; Mayfield House, University of Brighton Falmer Brighton UK BN1 9PH
| |
Collapse
|
19
|
Denton DA, Abraham RP, Al-Assaf AS, Rutjes AWS, Chong LY, Anderson JL, Malik MA, Tabet N. Vitamin and mineral supplementation for maintaining cognitive function in cognitively healthy people in mid life. Cochrane Database Syst Rev 2015. [DOI: 10.1002/14651858.cd011904] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- David A Denton
- Sussex Partnership NHS Foundation Trust; Specialist Older People's Services; Uckfield Community Hosptial Framfield Road Uckfield UK TN22 5AW
| | - Rajesh P Abraham
- Cognitive Treatment and Research Unit, Sussex Partnership NHS Foundation Trust; Old Age Psychiatry; Grove House Southfield Road Crowborough UK TN6 1HB
| | - Aalya S Al-Assaf
- Brighton and Sussex Medical School, University of Brighton; Division of Medical Education; Mayfield House Falmer UK BN1 9PH
| | - Anne WS Rutjes
- Fondazione "Università G. D'Annunzio"; Centre for Systematic Reviews; Via dei Vestini 31 Chieti Chieti Italy 66100
- University of Bern; Institute of Social and Preventive Medicine (ISPM); Finkenhubelweg 11 Bern Bern Switzerland 3012
| | | | - John L Anderson
- Brighton and Sussex Medical School, University of Brighton; Division of Medical Education; Mayfield House Falmer UK BN1 9PH
| | - Muzaffar A Malik
- Brighton and Sussex Medical School, University of Brighton; Department of Medical Education (Postgraduate); Room 341, Mayfield House Falmer UK BN1 9PH
| | - Naji Tabet
- Brighton and Sussex Medical School; Postgraduate Medicine; Mayfield House, University of Brighton Falmer Brighton UK BN1 9PH
| |
Collapse
|
20
|
Abraham RP, Denton DA, Al-Assaf AS, Rutjes AWS, Chong LY, Malik MA, Tabet N. Vitamin and mineral supplementation for prevention of dementia or delaying cognitive decline in people with mild cognitive impairment. Cochrane Database Syst Rev 2015. [DOI: 10.1002/14651858.cd011905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Rajesh P Abraham
- Cognitive Treatment and Research Unit, Sussex Partnership NHS Foundation Trust; Old Age Psychiatry; Grove House Southfield Road Crowborough UK TN6 1HB
| | - David A Denton
- Sussex Partnership NHS Foundation Trust; Specialist Older People's Services; Uckfield Community Hosptial Framfield Road Uckfield UK TN22 5AW
| | - Aalya S Al-Assaf
- Brighton and Sussex Medical School, University of Brighton; Division of Medical Education; Mayfield House Falmer UK BN1 9PH
| | - Anne WS Rutjes
- Fondazione "Università G. D'Annunzio"; Centre for Systematic Reviews; Via dei Vestini 31 Chieti Chieti Italy 66100
- University of Bern; Institute of Social and Preventive Medicine (ISPM); Finkenhubelweg 11 Bern Bern Switzerland 3012
| | | | - Muzaffar A Malik
- Brighton and Sussex Medical School, University of Brighton; Department of Medical Education (Postgraduate); Room 341, Mayfield House Falmer UK BN1 9PH
| | - Naji Tabet
- Brighton and Sussex Medical School; Postgraduate Medicine; Mayfield House, University of Brighton Falmer Brighton UK BN1 9PH
| |
Collapse
|
21
|
Scheiber IF, Mercer JF, Dringen R. Metabolism and functions of copper in brain. Prog Neurobiol 2014; 116:33-57. [DOI: 10.1016/j.pneurobio.2014.01.002] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/15/2022]
|
22
|
Bica L, Liddell JR, Donnelly PS, Duncan C, Caragounis A, Volitakis I, Paterson BM, Cappai R, Grubman A, Camakaris J, Crouch PJ, White AR. Neuroprotective copper bis(thiosemicarbazonato) complexes promote neurite elongation. PLoS One 2014; 9:e90070. [PMID: 24587210 PMCID: PMC3938583 DOI: 10.1371/journal.pone.0090070] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 01/29/2014] [Indexed: 11/19/2022] Open
Abstract
Abnormal biometal homeostasis is a central feature of many neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), and motor neuron disease. Recent studies have shown that metal complexing compounds behaving as ionophores such as clioquinol and PBT2 have robust therapeutic activity in animal models of neurodegenerative disease; however, the mechanism of neuroprotective action remains unclear. These neuroprotective or neurogenerative processes may be related to the delivery or redistribution of biometals, such as copper and zinc, by metal ionophores. To investigate this further, we examined the effect of the bis(thiosemicarbazonato)-copper complex, Cu(II)(gtsm) on neuritogenesis and neurite elongation (neurogenerative outcomes) in PC12 neuronal-related cultures. We found that Cu(II)(gtsm) induced robust neurite elongation in PC12 cells when delivered at concentrations of 25 or 50 nM overnight. Analogous effects were observed with an alternative copper bis(thiosemicarbazonato) complex, Cu(II)(atsm), but at a higher concentration. Induction of neurite elongation by Cu(II)(gtsm) was restricted to neurites within the length range of 75-99 µm with a 2.3-fold increase in numbers of neurites in this length range with 50 nM Cu(II)(gtsm) treatment. The mechanism of neurogenerative action was investigated and revealed that Cu(II)(gtsm) inhibited cellular phosphatase activity. Treatment of cultures with 5 nM FK506 (calcineurin phosphatase inhibitor) resulted in analogous elongation of neurites compared to 50 nM Cu(II)(gtsm), suggesting a potential link between Cu(II)(gtsm)-mediated phosphatase inhibition and neurogenerative outcomes.
Collapse
Affiliation(s)
- Laura Bica
- Department of Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jeffrey R. Liddell
- Department of Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul S. Donnelly
- Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Clare Duncan
- Department of Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Aphrodite Caragounis
- Department of Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Irene Volitakis
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Brett M. Paterson
- Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Roberto Cappai
- Department of Pathology, The University of Melbourne, Melbourne, Victoria, Australia
- Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Alexandra Grubman
- Department of Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - James Camakaris
- Department of Genetics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Peter J. Crouch
- Department of Pathology, The University of Melbourne, Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Anthony R. White
- Department of Pathology, The University of Melbourne, Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
23
|
Serum multivalent cationic pattern: speculation on the efficient approach for detection of Alzheimer's disease. Sci Rep 2013; 3:2782. [PMID: 24108247 PMCID: PMC3794368 DOI: 10.1038/srep02782] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/04/2013] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is increasingly becoming one of the greatest medical challenges. Due to the social and financial burden of AD, detection of AD in its early stages is a topic of major research interest. Thus, emergence of well-validated screening methods for fast detection of AD in the early stages would be of great importance. It is now recognized that the homeostasis and serum bioavailability of multivalent cations (e.g. zinc, copper, and iron) are disturbed in AD. Using a standard chemometric approach (hierarchical clustering analysis), we find that the serum concentrations of an array of such multivalent cations can be a fingerprint for identification of AD patients. This may pave the way for a reliable, efficient, and inexpensive method for early detection and treatment of AD.
Collapse
|