1
|
Akintunde J, Farai T, Arogundade M, Adeleke J. Biogenic zinc-oxide nanoparticles of Moringa oleifera leaves abrogates rotenone induced neuroendocrine toxicity by regulation of oxidative stress and acetylcholinesterase activity. Biochem Biophys Rep 2021; 26:100999. [PMID: 33948501 PMCID: PMC8079990 DOI: 10.1016/j.bbrep.2021.100999] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 12/02/2022] Open
Abstract
Zinc oxide nanoparticles (ZnONPs) from plant origin were postulated to regulate complex hormonal control through the hypothalamus- pituitary-testicular axis and somatic cells due to their unique small size and effective drug delivery to target tissues. This study therefore investigates the biogenic synthesis of zinc oxide nanoparticles (ZnO NPs) from Moringa oleifera leaves on key endocrine hormones (LH, FSH and testosterone), MDA level, antioxidant enzymes (SOD and CAT), acetylcholineesterase (AChE) activity and reactive nitrogen species (NO•) level in rotenone induced male rat. The animals were divided into six groups (n = 8). Group I was orally given olive oil as vehicle; Group II received 60 mg/kg of rotenone (RTNE) only; Group III (RTNE + ZnONPs) received 60 mg/kg RTNE + 10 mg/kg ZnONPs; Group IV (RTNE + ZnCAP) received 60 mg/kg RTNE + 50 mg/kg zinc capsule; Group V (ZnONPs only) received 10 mg/kg ZnONPs only. Group VI received 50 mg/kg ZnCAP only. The experiment lasted 10 days. TEM and XRD images revealed ZnO NPs. Moreover, the presence of organic molecules in bio-reduction reactions from the FTIR spectrum showed the stabilization of the nanoparticles. Also, animals induced with rotenone exhibited impairment in the leydig cells by depleting LH, FSH, and testosterone levels with reduced AChE activity and significant (p < 0.05) alteration in cerebral enzymatic antioxidants. There was also brain increase in NO• production: marker of pro-inflammation. Nanotherapeutically, ZnONPs regulated hypothalamus-pituitary-testicular axis via modulation of cerebral NO•, FSH, LH, testosterone and AChE activity with induction of anti-oxidative enzymes.
Collapse
Affiliation(s)
- J.K. Akintunde
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
- Toxicology and Safety Unit, Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Nigeria
| | - T.I. Farai
- Toxicology and Safety Unit, Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Nigeria
| | - M.R. Arogundade
- Toxicology and Safety Unit, Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Nigeria
| | - J.T. Adeleke
- Department of Mathematical and Physical Science, Faculty of Science, Osun State University, Oshogbo, Nigeria
| |
Collapse
|
2
|
Monette A, Mouland AJ. Zinc and Copper Ions Differentially Regulate Prion-Like Phase Separation Dynamics of Pan-Virus Nucleocapsid Biomolecular Condensates. Viruses 2020; 12:E1179. [PMID: 33081049 PMCID: PMC7589941 DOI: 10.3390/v12101179] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is a rapidly growing research focus due to numerous demonstrations that many cellular proteins phase-separate to form biomolecular condensates (BMCs) that nucleate membraneless organelles (MLOs). A growing repertoire of mechanisms supporting BMC formation, composition, dynamics, and functions are becoming elucidated. BMCs are now appreciated as required for several steps of gene regulation, while their deregulation promotes pathological aggregates, such as stress granules (SGs) and insoluble irreversible plaques that are hallmarks of neurodegenerative diseases. Treatment of BMC-related diseases will greatly benefit from identification of therapeutics preventing pathological aggregates while sparing BMCs required for cellular functions. Numerous viruses that block SG assembly also utilize or engineer BMCs for their replication. While BMC formation first depends on prion-like disordered protein domains (PrLDs), metal ion-controlled RNA-binding domains (RBDs) also orchestrate their formation. Virus replication and viral genomic RNA (vRNA) packaging dynamics involving nucleocapsid (NC) proteins and their orthologs rely on Zinc (Zn) availability, while virus morphology and infectivity are negatively influenced by excess Copper (Cu). While virus infections modify physiological metal homeostasis towards an increased copper to zinc ratio (Cu/Zn), how and why they do this remains elusive. Following our recent finding that pan-retroviruses employ Zn for NC-mediated LLPS for virus assembly, we present a pan-virus bioinformatics and literature meta-analysis study identifying metal-based mechanisms linking virus-induced BMCs to neurodegenerative disease processes. We discover that conserved degree and placement of PrLDs juxtaposing metal-regulated RBDs are associated with disease-causing prion-like proteins and are common features of viral proteins responsible for virus capsid assembly and structure. Virus infections both modulate gene expression of metalloproteins and interfere with metal homeostasis, representing an additional virus strategy impeding physiological and cellular antiviral responses. Our analyses reveal that metal-coordinated virus NC protein PrLDs initiate LLPS that nucleate pan-virus assembly and contribute to their persistence as cell-free infectious aerosol droplets. Virus aerosol droplets and insoluble neurological disease aggregates should be eliminated by physiological or environmental metals that outcompete PrLD-bound metals. While environmental metals can control virus spreading via aerosol droplets, therapeutic interference with metals or metalloproteins represent additional attractive avenues against pan-virus infection and virus-exacerbated neurological diseases.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Andrew J. Mouland
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
3
|
Zinc Therapy in Early Alzheimer's Disease: Safety and Potential Therapeutic Efficacy. Biomolecules 2020; 10:biom10081164. [PMID: 32784855 PMCID: PMC7466035 DOI: 10.3390/biom10081164] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Zinc therapy is normally utilized for treatment of Wilson disease (WD), an inherited condition that is characterized by increased levels of non-ceruloplasmin bound ('free') copper in serum and urine. A subset of patients with Alzheimer's disease (AD) or its prodromal form, known as Mild Cognitive Impairment (MCI), fail to maintain a normal copper metabolic balance and exhibit higher than normal values of non-ceruloplasmin copper. Zinc's action mechanism involves the induction of intestinal cell metallothionein, which blocks copper absorption from the intestinal tract, thus restoring physiological levels of non-ceruloplasmin copper in the body. On this basis, it is employed in WD. Zinc therapy has shown potential beneficial effects in preliminary AD clinical trials, even though the studies have missed their primary endpoints, since they have study design and other important weaknesses. Nevertheless, in the studied AD patients, zinc effectively decreased non-ceruloplasmin copper levels and showed potential for improved cognitive performances with no major side effects. This review discusses zinc therapy safety and the potential therapeutic effects that might be expected on a subset of individuals showing both cognitive complaints and signs of copper imbalance.
Collapse
|
4
|
Squitti R, Salustri C, Rongioletti M, Siotto M. Commentary: The Case for Abandoning Therapeutic Chelation of Copper Ions in Alzheimer's Disease. Front Neurol 2017; 8:503. [PMID: 28993754 PMCID: PMC5622302 DOI: 10.3389/fneur.2017.00503] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/08/2017] [Indexed: 01/06/2023] Open
Affiliation(s)
- Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - Carlo Salustri
- Institute of Cognitive Sciences and Technologies (CNR), Rome, Italy
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita-Fatebenefratelli Hospital, Rome, Italy
| | | |
Collapse
|
5
|
Drew SC. The Case for Abandoning Therapeutic Chelation of Copper Ions in Alzheimer's Disease. Front Neurosci 2017; 11:317. [PMID: 28626387 PMCID: PMC5455140 DOI: 10.3389/fnins.2017.00317] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/18/2017] [Indexed: 12/26/2022] Open
Abstract
The "therapeutic chelation" approach to treating Alzheimer's disease (AD) evolved from the metals hypothesis, with the premise that small molecules can be designed to prevent transition metal-induced amyloid deposition and oxidative stress within the AD brain. Over more than 20 years, countless in vitro studies have been devoted to characterizing metal binding, its effect on Aβ aggregation, ROS production, and in vitro toxicity. Despite a lack of evidence for any clinical benefit, the conjecture that therapeutic chelation is an effective approach for treating AD remains widespread. Here, the author plays the devil's advocate, questioning the experimental evidence, the dogma, and the value of therapeutic chelation, with a major focus on copper ions.
Collapse
Affiliation(s)
- Simon C. Drew
- Department of Medicine, Royal Melbourne Hospital, University of MelbourneMelbourne, VIC, Australia
| |
Collapse
|
6
|
Squitti R, Siotto M, Polimanti R. Low-copper diet as a preventive strategy for Alzheimer's disease. Neurobiol Aging 2014; 35 Suppl 2:S40-50. [PMID: 24913894 DOI: 10.1016/j.neurobiolaging.2014.02.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 12/21/2022]
Abstract
Copper is an essential element, and either a copper deficiency or excess can be life threatening. Recent studies have indicated that alteration of copper metabolism is one of the pathogenetic mechanisms of Alzheimer's disease (AD). In light of these findings, many researchers have proposed preventive strategies to reduce AD risk. Because the general population comes in contact with copper mainly through dietary intake, that is, food 75% and drinking water 25%, a low-copper diet can reduce the risk of AD in individuals with an altered copper metabolism. We suggest that a diet-gene interplay is at the basis of the "copper phenotype" of sporadic AD. Herein, we describe the pathways regulating copper homeostasis, the adverse sequelae related to its derangements, the pathogenic mechanism of the AD copper phenotype, indications for a low-copper diet, and future perspectives to improve this preventive strategy.
Collapse
Affiliation(s)
- Rosanna Squitti
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, "San Giovanni Calibita" Fatebenefratelli Hospital, Rome, Italy; Laboratorio di Neurodegenerazione, IRCCS San Raffaele Pisana, Rome, Italy.
| | | | - Renato Polimanti
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
7
|
Squitti R, Polimanti R. Copper phenotype in Alzheimer's disease: dissecting the pathway. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2013; 2:46-56. [PMID: 23844331 PMCID: PMC3703119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/31/2013] [Indexed: 06/02/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Several hypotheses have been put forward to explain the basis of disease onset and progression. Unfortunately, none of these seems to clarify the complexity of the pathogenesis. In fact, diverse and independent pathogenetic pathways can be disrupted at the same time, and each contributes to disease etiology. In recent years, researchers have begun studying biometals more deeply. A number of studies have shown that metal dyshomeostasis may enhance AD onset and progression. Specifically, different authors have hypothesized that alterations in metal metabolism are associated with an increased in metal-related oxidative stress and beta-amyloid oligomer formation and precipitation. Studies conducted in vivo, in vitro, in living patients and in silico studies have demonstrated that local and systemic defects in copper metabolism are characteristic signs of AD. This strongly supports the hypothesis that copper pathways may be disrupted by the disease. More specifically, a copper phenotype can be proposed for AD, based on defects found in genes involved in copper metabolism. In this review, we describe copper dyshomeostasis in AD patients and attempt to explain the basis of the AD copper phenotype. Dissecting copper pathways, we highlight mechanisms which may be at the basis of the disease. We also discuss various associated translation outcomes.
Collapse
Affiliation(s)
- Rosanna Squitti
- Department of Neuroscience, AFaR - “San Giovanni Calibita” Fatebenefratelli HospitalRome, Italy
- Laboratorio di Neurodegenerazione, IRCCS San Raffaele PisanaItaly
| | - Renato Polimanti
- Department of Biology, University of Rome “Tor Vergata”Rome, Italy
| |
Collapse
|
8
|
Eskici G, Axelsen PH. Copper and Oxidative Stress in the Pathogenesis of Alzheimer’s Disease. Biochemistry 2012; 51:6289-311. [DOI: 10.1021/bi3006169] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gözde Eskici
- Departments of Pharmacology, Biochemistry and Biophysics,
and Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United
States
| | - Paul H. Axelsen
- Departments of Pharmacology, Biochemistry and Biophysics,
and Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United
States
| |
Collapse
|
9
|
Kristinsson J, Snaedal J, Tórsdóttir G, Jóhannesson T. Ceruloplasmin and iron in Alzheimer's disease and Parkinson's disease: a synopsis of recent studies. Neuropsychiatr Dis Treat 2012; 8:515-21. [PMID: 23144563 PMCID: PMC3493298 DOI: 10.2147/ndt.s34729] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ceruloplasmin (Cp) concentration and oxidative activity in serum are lowered in Parkinson's disease (PD). In most PD patients, iron increases in the substantia nigra in the midbrain. In PD, the low Cp concentration and activity in serum and the high iron amounts in the substantia nigra appears to be correlated. An hereditary background is common in PD and variations in the Cp gene that have been found in PD are associated with high iron levels in the substantia nigra. Variations in Cp synthesis and in the incorporation of copper into the Cp molecule are essential features of PD. In Alzheimer's disease (AD), the Cp activity in serum is lowered but not the concentration, except in the advanced stages of the disease. Generally, iron is not increased in the AD brain. In the AD brain, iron accumulates in neuritic plaques and in neurofibrillary tangles. There is also increased risk of iron-mediated tissue damage, which may possibly be counteracted by Cp. At the same time, the AD brain is short in copper, which presumably results in the deficient activity of many copper enzymes in the brain, in addition to Cp. Lowered Cp activity in serum most likely stems from lessened incorporation of copper in the Cp molecule and similar incorporation defects might also apply to other copper enzymes in AD.
Collapse
Affiliation(s)
- Jakob Kristinsson
- Department of Pharmacology and Toxicology, University of Iceland, Reykjavik, Iceland
| | | | | | | |
Collapse
|