1
|
In vitro sepsis induces Nociceptin/Orphanin FQ receptor (NOP) expression in primary human vascular endothelial but not smooth muscle cells. PLoS One 2022; 17:e0274080. [PMID: 36107872 PMCID: PMC9477356 DOI: 10.1371/journal.pone.0274080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Sepsis is a dysregulated host response to infection that can cause widespread effects on other organs including cardiovascular depression, hypotension and organ failure. The receptor for Nociceptin/Orphanin FQ (N/OFQ), NOP is expressed on immune cells and these cells can release the peptide. Exogenous N/OFQ can dilate blood vessels and this peptide is increased in animal and human sepsis. We hypothesise that NOP receptors are present on vascular endothelial cells and therefore provide the target for released N/OFQ to cause vasodilation and hence hypotension. Using human umbilical vein endothelial cells (HUVEC) and human vascular smooth muscle cells (HVSMC) freshly prepared from umbilical cords and up to passage 4, we assessed NOP mRNA expression by Polymerase Chain Reaction (PCR), NOP surface receptor expression using a fluorescent NOP selective probe (N/OFQATTO594) and NOP receptor function with N/OFQ stimulated ERK1/2 phosphorylation. As an in vitro sepsis mimic we variably incubated cells with 100ng/ml Lipopolysaccharide and Peptidoglycan G (LPS/PepG). HUVECs express NOP mRNA and this was reduced by ~80% (n = 49) after 24–48 hours treatment with LPS/PepG. Untreated cells do not express surface NOP receptors but when treated with LPS/PepG the reduced mRNA was translated into protein visualised by N/OFQATTO594 binding (n = 49). These NOP receptors in treated cells produced an N/OFQ (1μM) driven increase in ERK1/2 phosphorylation (n = 20). One (of 50) HUVEC lines expressed NOP mRNA and receptor protein in the absence of LPS/PepG treatment. In contrast, HVSMC expressed NOP mRNA and surface receptor protein (n = 10) independently of LPS/PepG treatment. These receptors were also coupled to ERK1/2 where N/OFQ (1μM) increased phosphorylation. Collectively these data show that an in vitro sepsis mimic (LPS/PepG) upregulates functional NOP expression in the vascular endothelium. Activation of these endothelial receptors as suggested from in vivo whole animal work may contribute to the hypotensive response seen in sepsis. Moreover, blockade of these receptors might be a useful adjunct in the treatment of sepsis.
Collapse
|
2
|
Wils P, Caron B, D’Amico F, Danese S, Peyrin-Biroulet L. Abdominal Pain in Inflammatory Bowel Diseases: A Clinical Challenge. J Clin Med 2022; 11:4269. [PMID: 35893357 PMCID: PMC9331632 DOI: 10.3390/jcm11154269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Up to 60% of inflammatory bowel disease (IBD) patients experience abdominal pain in their lifetime regardless of disease activity. Pain negatively affects different areas of daily life and particularly impacts the quality of life of IBD patients. This review provides a comprehensive overview of the multifactorial etiology implicated in the chronic abdominal pain of IBD patients including peripheral sensitization by inflammation, coexistent irritable bowel syndrome, visceral hypersensitivity, alteration of the brain-gut axis, and the multiple factors contributing to pain persistence. Despite the optimal management of intestinal inflammation, chronic abdominal pain can persist, and pharmacological and non-pharmacological approaches are necessary. Integrating psychological support in care models in IBD could decrease disease burden and health care costs. Consequently, a multidisciplinary approach similar to that used for other chronic pain conditions should be recommended.
Collapse
Affiliation(s)
- Pauline Wils
- Department of Gastroenterology, Claude Huriez Hospital, University of Lille, F-59000 Lille, France
| | - Bénédicte Caron
- Department of Gastroenterology, University of Lorraine, CHRU-Nancy, F-54000 Nancy, France; (B.C.); (L.P.-B.)
- Department of Gastroenterology, University of Lorraine, Inserm, NGERE, F-54000 Nancy, France
| | - Ferdinando D’Amico
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.D.); (S.D.)
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.D.); (S.D.)
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, University of Lorraine, CHRU-Nancy, F-54000 Nancy, France; (B.C.); (L.P.-B.)
- Department of Gastroenterology, University of Lorraine, Inserm, NGERE, F-54000 Nancy, France
| |
Collapse
|
3
|
Loite U, Raam L, Reimann E, Reemann P, Prans E, Traks T, Vasar E, Silm H, Kingo K, Kõks S. The Expression Pattern of Genes Related to Melanogenesis and Endogenous Opioids in Psoriasis. Int J Mol Sci 2021; 22:ijms222313056. [PMID: 34884858 PMCID: PMC8657874 DOI: 10.3390/ijms222313056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
The melanocortin system is a major regulator of stress responses in the skin and is responsible for the induction of melanin synthesis through activation of melanogenesis enzymes. The expression of both melanocortin system genes and melanogenesis enzyme genes is altered in psoriasis, and the focus here was on twelve genes related to the signal transduction between them. Additionally, five endogenous opioid system genes that are involved in cutaneous inflammation were examined. Quantitative real-time-PCR was utilized to measure mRNA expression in punch biopsies from lesional and non-lesional skin of psoriasis patients and from the skin of healthy control subjects. Most of the genes related to melanogenesis were down-regulated in patients (CREB1, MITF, LEF1, USF1, MAPK14, ICAM1, PIK3CB, RPS6KB1, KIT, and ATRN). Conversely, an up-regulation occurred in the case of opioids (PENK, PDYN, and PNOC). The suppression of genes related to melanogenesis is in agreement with the reported reduction in pigmentation signaling in psoriatic skin and potentially results from the pro-inflammatory environment. The increase in endogenous opioids can be associated with their involvement in inflammatory dysregulation in psoriasis.
Collapse
Affiliation(s)
- Ulvi Loite
- Department of Dermatology and Venerology, University of Tartu, 31 Raja, 50417 Tartu, Estonia; (U.L.); (L.R.); (P.R.); (H.S.); (K.K.)
| | - Liisi Raam
- Department of Dermatology and Venerology, University of Tartu, 31 Raja, 50417 Tartu, Estonia; (U.L.); (L.R.); (P.R.); (H.S.); (K.K.)
- Dermatology Clinic, Tartu University Hospital, 31 Raja, 50417 Tartu, Estonia
| | - Ene Reimann
- Institute of Genomics, University of Tartu, 23b/2 Riia, 51010 Tartu, Estonia;
| | - Paula Reemann
- Department of Dermatology and Venerology, University of Tartu, 31 Raja, 50417 Tartu, Estonia; (U.L.); (L.R.); (P.R.); (H.S.); (K.K.)
| | - Ele Prans
- Department of Anaesthesiology and Intensive Care, Tartu University Hospital, 8 L. Puusepa, 51014 Tartu, Estonia;
| | - Tanel Traks
- Department of Dermatology and Venerology, University of Tartu, 31 Raja, 50417 Tartu, Estonia; (U.L.); (L.R.); (P.R.); (H.S.); (K.K.)
- Correspondence:
| | - Eero Vasar
- Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia;
| | - Helgi Silm
- Department of Dermatology and Venerology, University of Tartu, 31 Raja, 50417 Tartu, Estonia; (U.L.); (L.R.); (P.R.); (H.S.); (K.K.)
- Dermatology Clinic, Tartu University Hospital, 31 Raja, 50417 Tartu, Estonia
| | - Külli Kingo
- Department of Dermatology and Venerology, University of Tartu, 31 Raja, 50417 Tartu, Estonia; (U.L.); (L.R.); (P.R.); (H.S.); (K.K.)
- Dermatology Clinic, Tartu University Hospital, 31 Raja, 50417 Tartu, Estonia
| | - Sulev Kõks
- The Perron Institute for Neurological and Translational Science, 8 Verdun St., Nedlands, WA 6009, Australia;
- Centre for Comparative Genomics, Murdoch University, 90 South St., Murdoch, WA 6150, Australia
| |
Collapse
|
4
|
Ubaldi M, Cannella N, Borruto AM, Petrella M, Micioni Di Bonaventura MV, Soverchia L, Stopponi S, Weiss F, Cifani C, Ciccocioppo R. Role of Nociceptin/Orphanin FQ-NOP Receptor System in the Regulation of Stress-Related Disorders. Int J Mol Sci 2021; 22:12956. [PMID: 34884757 PMCID: PMC8657682 DOI: 10.3390/ijms222312956] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022] Open
Abstract
Nociceptin/orphanin FQ (N/OFQ) is a 17-residue neuropeptide that binds the nociceptin opioid-like receptor (NOP). N/OFQ exhibits nucleotidic and aminoacidics sequence homology with the precursors of other opioid neuropeptides but it does not activate either MOP, KOP or DOP receptors. Furthermore, opioid neuropeptides do not activate the NOP receptor. Generally, activation of N/OFQ system exerts anti-opioids effects, for instance toward opioid-induced reward and analgesia. The NOP receptor is widely expressed throughout the brain, whereas N/OFQ localization is confined to brain nuclei that are involved in stress response such as amygdala, BNST and hypothalamus. Decades of studies have delineated the biological role of this system demonstrating its involvement in significant physiological processes such as pain, learning and memory, anxiety, depression, feeding, drug and alcohol dependence. This review discusses the role of this peptidergic system in the modulation of stress and stress-associated psychiatric disorders in particular drug addiction, mood, anxiety and food-related associated-disorders. Emerging preclinical evidence suggests that both NOP agonists and antagonists may represent a effective therapeutic approaches for substances use disorder. Moreover, the current literature suggests that NOP antagonists can be useful to treat depression and feeding-related diseases, such as obesity and binge eating behavior, whereas the activation of NOP receptor by agonists could be a promising tool for anxiety.
Collapse
Affiliation(s)
- Massimo Ubaldi
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Nazzareno Cannella
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Anna Maria Borruto
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Michele Petrella
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Maria Vittoria Micioni Di Bonaventura
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Laura Soverchia
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Serena Stopponi
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Friedbert Weiss
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - Carlo Cifani
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Roberto Ciccocioppo
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| |
Collapse
|
5
|
Browne CA, Lucki I. Targeting opioid dysregulation in depression for the development of novel therapeutics. Pharmacol Ther 2019; 201:51-76. [PMID: 31051197 DOI: 10.1016/j.pharmthera.2019.04.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Since the serendipitous discovery of the first class of modern antidepressants in the 1950's, all pharmacotherapies approved by the Food and Drug Administration for major depressive disorder (MDD) have shared a common mechanism of action, increased monoaminergic neurotransmission. Despite the widespread availability of antidepressants, as many as 50% of depressed patients are resistant to these conventional therapies. The significant length of time required to produce meaningful symptom relief with these medications, 4-6 weeks, indicates that other mechanisms are likely involved in the pathophysiology of depression which may yield more viable targets for drug development. For decades, no viable candidate target with a different mechanism of action to that of conventional therapies proved successful in clinical studies. Now several exciting avenues for drug development are under intense investigation. One of these emerging targets is modulation of endogenous opioid tone. This review will evaluate preclinical and clinical evidence pertaining to opioid dysregulation in depression, focusing on the role of the endogenous ligands endorphin, enkephalin, dynorphin, and nociceptin/orphanin FQ (N/OFQ) and their respective receptors, mu (MOR), delta (DOR), kappa (KOR), and the N/OFQ receptor (NOP) in mediating behaviors relevant to depression and anxiety. Finally, putative opioid based antidepressants that are under investigation in clinical trials, ALKS5461, JNJ-67953964 (formerly LY2456302 and CERC-501) and BTRX-246040 (formerly LY-2940094) will be discussed. This review will illustrate the potential therapeutic value of targeting opioid dysregulation in developing novel therapies for MDD.
Collapse
Affiliation(s)
- Caroline A Browne
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America
| | - Irwin Lucki
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America.
| |
Collapse
|
6
|
Seo EJ, Efferth T, Panossian A. Curcumin downregulates expression of opioid-related nociceptin receptor gene (OPRL1) in isolated neuroglia cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:285-299. [PMID: 30466988 DOI: 10.1016/j.phymed.2018.09.202] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/22/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Curcumin (CC) exerts polyvalent pharmacological actions and multi-target effects, including pain relief and anti-nociceptive activity. In combination with Boswellia serrata extract (BS), curcumin shows greater efficacy in knee osteoarthritis management, presumably due to synergistic interaction of the ingredients. AIM To elucidate the molecular mechanisms underlying the analgesic activity of curcumin and its synergistic interaction with BS. METHODS We performed gene expression profiling by transcriptome-wide mRNA sequencing in human T98G neuroglia cells treated with CC (Curamed), BS, and the combination of CC and BS (CC-BS; Curamin), followed by interactive pathways analysis of the regulated genes. RESULTS Treatment with CC and with CC-BS selectively downregulated opioid-related nociceptin receptor 1 gene (OPRL1) expression by 5.9-fold and 7.2-fold, respectively. No changes were detected in the other canonical opioid receptor genes: OPRK1, OPRD1, and OPRM1. Nociceptin reportedly increases the sensation of pain in supra-spinal pain transduction pathways. Thus, CC and CC-BS may downregulate OPRL1, consequently inhibiting production of the nociception receptor NOP, leading to pain relief. In neuroglia cells, CC and CC-BS inhibited signaling pathways related to opioids, neuropathic pain, neuroinflammation, osteoarthritis, and rheumatoid diseases. CC and CC-BS also downregulated ADAM metallopeptidase gene ADAMTS5 expression by 11.2-fold and 13.5-fold, respectively. ADAMTS5 encodes a peptidase that plays a crucial role in osteoarthritis development via inhibition of a corresponding signaling pathway. CONCLUSION Here, we report for the first time that CC and CC-BS act as nociceptin receptor antagonists, selectively downregulating opioid-related nociceptin receptor 1 gene (OPRL1) expression, which is associated with pain relief. BS alone did not affect OPRL1 expression, but rather appears to potentiate the effects of CC via multiple mechanisms, including synergistic interactions of molecular networks.
Collapse
Affiliation(s)
- Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| | - Alexander Panossian
- EuroPharma USA Inc., 955 Challenger Dr., Green Bay, WI 54311, USA; Phytomed AB,Bofinkvagen 1, 31275 Vaxtorp, Halland, Sweden.
| |
Collapse
|
7
|
Sałat K, Furgała A, Sałat R. Evaluation of cebranopadol, a dually acting nociceptin/orphanin FQ and opioid receptor agonist in mouse models of acute, tonic, and chemotherapy-induced neuropathic pain. Inflammopharmacology 2018; 26:361-374. [PMID: 29071457 PMCID: PMC5859690 DOI: 10.1007/s10787-017-0405-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/06/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cebranopadol (a.k.a. GRT-6005) is a dually acting nociceptin/orphanin FQ and opioid receptor agonist that has been recently developed in Phase 2 clinical trials for painful diabetic neuropathy or cancer pain. It also showed analgesic properties in various rat models of pain and had a better safety profile as compared to equi-analgesic doses of morphine. Since antinociceptive properties of cebranopadol have been studied mainly in rat models, in the present study, we assessed analgesic activity of subcutaneous cebranopadol (10 mg/kg) in various mouse pain models. METHODS We used models of acute, tonic, and chronic pain induced by thermal and chemical stimuli, with a particular emphasis on pharmacoresistant chronic neuropathic pain evoked by oxaliplatin in which cebranopadol was used alone or in combination with simvastatin. KEY RESULTS As shown in the hot plate test, the analgesic activity of cebranopadol developed more slowly as compared to morphine (90-120 min vs. 60 min). Cebranopadol displayed a significant antinociceptive activity in acute pain models, i.e., the hot plate, writhing, and capsaicin tests. It attenuated nocifensive responses in both phases of the formalin test and reduced cold allodynia in oxaliplatin-induced neuropathic pain model. Its efficacy was similar to that of morphine. Used in combination and administered simultaneously, 4 or 6 h after simvastatin, cebranopadol did not potentiate antiallodynic activity of this cholesterol-lowering drug. Cebranopadol did not induce any motor deficits in the rotarod test. CONCLUSION Cebranopadol may have significant potential for the treatment of various pain types, including inflammatory and chemotherapy-induced neuropathic pain.
Collapse
Affiliation(s)
- Kinga Sałat
- Chair of Pharmacodynamics, Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Krakow, Poland.
| | - Anna Furgała
- Chair of Pharmacodynamics, Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Krakow, Poland
| | - Robert Sałat
- Faculty of Production Engineering, Warsaw University of Life Sciences, 164 Nowoursynowska St, 02-787, Warsaw, Poland
| |
Collapse
|
8
|
Zhang L, Stuber F, Lippuner C, Schiff M, Stamer UM. Phorbol-12-myristate-13-acetate induces nociceptin in human Mono Mac 6 cells via multiple transduction signalling pathways. Br J Anaesth 2016; 117:250-7. [PMID: 27307289 DOI: 10.1093/bja/aew063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2016] [Indexed: 12/16/2023] Open
Abstract
BACKGROUND Nociceptin in the peripheral circulation has been proposed to have an immunoregulatory role with regards to inflammation and pain. However, the mechanisms involved in its regulation are still not clear. The aim of this study was to investigate signalling pathways contributing to the regulation of the expression of nociceptin under inflammatory conditions. METHODS Mono Mac 6 cells (MM6) were cultured with or without phorbol-12-myristate-13-acetate (PMA). Prepronociceptin (ppNOC) mRNA was detected by RT-qPCR and extracellular nociceptin by fluorescent-enzyme immunoassay. Intracellular nociceptin and phosphorylated kinases were measured using flow cytometry. To evaluate the contribution of various signalling pathways to the regulation of ppNOC mRNA and nociceptin protein, cells were pre-treated with specific kinase inhibitors before co-culturing with PMA. RESULTS ppNOC mRNA was expressed in untreated MM6 at low concentrations. Exposure of cells to PMA upregulated ppNOC after nine h compared with controls without PMA (median normalized ratio with IQR: 0.18 (0.15-0.26) vs. 0 (0-0.02), P<0.01). Inhibition of mitogen-activated protein kinases specific for signal transduction reversed the PMA effects (all P<0.001). Induction of nociceptin protein concentrations in PMA stimulated MM6 was prevented predominantly by identity of ERK inhibitor (P<0.05). CONCLUSIONS Upregulation of nociceptin expression by PMA in MM6 cells involves several pathways. Underlying mechanisms involved in nociceptin expression may lead to new insights in the treatment of pain and inflammatory diseases.
Collapse
Affiliation(s)
- L Zhang
- Department of Anaesthesiology and Pain Medicine, Inselspital and Department of Clinical Research, University of Bern, Bern, Switzerland
| | - F Stuber
- Department of Anaesthesiology and Pain Medicine, Inselspital and Department of Clinical Research, University of Bern, Bern, Switzerland
| | - C Lippuner
- Department of Anaesthesiology and Pain Medicine, Inselspital and Department of Clinical Research, University of Bern, Bern, Switzerland
| | - M Schiff
- Department of Anaesthesiology and Pain Medicine, Inselspital and Department of Clinical Research, University of Bern, Bern, Switzerland
| | - U M Stamer
- Department of Anaesthesiology and Pain Medicine, Inselspital and Department of Clinical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Medeiros IU, Ruzza C, Asth L, Guerrini R, Romão PRT, Gavioli EC, Calo G. Blockade of nociceptin/orphanin FQ receptor signaling reverses LPS-induced depressive-like behavior in mice. Peptides 2015; 72:95-103. [PMID: 26028163 DOI: 10.1016/j.peptides.2015.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 11/25/2022]
Abstract
Nociceptin/orphanin FQ is the natural ligand of a Gi-protein coupled receptor named NOP. This peptidergic system is involved in the regulation of mood states and inflammatory responses. The present study aimed to investigate the consequences of blocking NOP signaling in lipopolysaccharide (LPS)-induced sickness and depressive-like behaviors in mice. LPS 0.8mg/kg, ip, significantly induced sickness signs such as weight loss, decrease of water and food intake and depressive-like behavior in the tail suspension test. Nortriptyline (ip, 60min prior the test) reversed the LPS-induced depressive states. The NOP receptor antagonist SB-612111, 30min prior LPS, did not modify LPS-induced sickness signs and depressive-like behavior. However, when injected 24h after LPS, NOP antagonists (UFP-101, icv, and SB-612111, ip) significantly reversed the mood effects of LPS. LPS evoked similar sickness signs and significantly increased tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) plasma levels 6h post-injection in wild-type ((NOP(+/+)) and NOP knockout ((NOP(-/-)) mice. However, LPS treatment elicited depressive-like effects in NOP(+/+) but not in NOP(-/-) mice. In conclusion, the pharmacological and genetic blockade of NOP signaling does not affect LPS evoked sickness signs while reversing depressive-like behavior.
Collapse
Affiliation(s)
- Iris U Medeiros
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Medical Science, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Chiara Ruzza
- Department of Medical Science, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Laila Asth
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Pedro R T Romão
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Elaine C Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | - Girolamo Calo
- Department of Medical Science, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| |
Collapse
|
10
|
Gáspár R, Deák BH, Klukovits A, Ducza E, Tekes K. Effects of nociceptin and nocistatin on uterine contraction. VITAMINS AND HORMONES 2015; 97:223-40. [PMID: 25677774 DOI: 10.1016/bs.vh.2014.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The presence and effects of nociceptin (N/OFQ) and nocistatin (NST) in the central nervous system have been reasonably well described, but less data are available on their peripheral functions. Besides their presence in several peripheral organs (white blood cells, airway, liver, skin, vascular and intestinal smooth muscles, ovary, and testis), they have been found in the pregnant myometrium in both rat and human. The level of their precursor prepronociceptin is elevated in the preterm human myometrium as compared with full-term samples, whereas it gradually increases toward term in the pregnant rat uterus. Both N/OFQ and NST inhibit myometrial contractions, an effect which can be enhanced by naloxone and blocked by Ca²⁺-dependent K⁺ channel (BK(Ca)) inhibitors. Both compounds increase the myometrial cAMP level which may be responsible for the activation of this channel and subsequent intracellular hyperpolarization. NST releases calcitonin gene-related peptide from the sensory nerve ends, which explains its cAMP-elevating effect. In contrast with the nervous system, where they behave as antagonists, N/OFQ and NST are able to potentiate the uterine-relaxing effect of each other in both rat and human tissues. Further studies are required to clarify the roles of N/OFQ and NST in the regulation of the myometrial contractions and the perception of pain during delivery.
Collapse
Affiliation(s)
- Róbert Gáspár
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary.
| | - Beáta H Deák
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Anna Klukovits
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Kornélia Tekes
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
Gavioli EC, de Medeiros IU, Monteiro MC, Calo G, Romão PRT. Nociceptin/orphanin FQ-NOP receptor system in inflammatory and immune-mediated diseases. VITAMINS AND HORMONES 2015; 97:241-66. [PMID: 25677775 DOI: 10.1016/bs.vh.2014.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The neuropeptide nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand of the G-protein-coupled receptor NOP. Cells from the immune system express the precursor preproN/OFQ and the NOP receptor, as well as secrete N/OFQ. The activation of the N/OFQ-NOP pathway can regulate inflammatory and immune responses. Several immune activities, including leukocyte migration, cytokine and chemokine production, and lymphocytes proliferation are influenced by NOP activation. It was demonstrated that cytokines and other stimuli such as Toll-like receptor agonist (e.g., lipopolysaccharide) induce N/OFQ production by cells from innate and adaptive immune response. In this context, N/OFQ could modulate the outcome of inflammatory diseases, such as sepsis and immune-mediated pathologies by mechanisms not clearly elucidated. In fact, clinical studies revealed increased levels of N/OFQ under sepsis, arthritis, and Parkinson's disease. Preclinical and clinical studies pointed to the blockade of NOP receptor signaling as successful strategy for the treatment of inflammatory diseases. This review is focused on experimental and clinical data that suggest the participation of N/OFQ-NOP receptor activation in the modulation of the immune response, highlighting the immunomodulatory potential of NOP antagonists in the inflammatory and immunological disturbances.
Collapse
Affiliation(s)
- Elaine C Gavioli
- Department of Biophysic and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Iris Ucella de Medeiros
- Department of Biophysic and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Marta C Monteiro
- Laboratory of Clinical Microbiology and Immunology, Faculty of Pharmacy, Federal University of Pará, Belém, Brazil
| | - Girolamo Calo
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Pedro R T Romão
- Laboratory of Immunology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Rua Sarmento Leite, Porto Alegre, Brazil.
| |
Collapse
|
12
|
Fichna J, Sobczak M, Mokrowiecka A, Cygankiewicz AI, Zakrzewski PK, Cenac N, Sałaga M, Timmermans JP, Vergnolle N, Małecka-Panas E, Krajewska WM, Storr M. Activation of the endogenous nociceptin system by selective nociceptin receptor agonist SCH 221510 produces antitransit and antinociceptive effect: a novel strategy for treatment of diarrhea-predominant IBS. Neurogastroenterol Motil 2014; 26:1539-50. [PMID: 25041572 DOI: 10.1111/nmo.12390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/06/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diarrhea-predominant irritable bowel syndrome (IBS-D) is a functional gastrointestinal (GI) disorder, defined by the presence of loose stools and abdominal pain. In search for a novel anti-IBS-D therapy, here we investigated the nociceptin receptor (NOP)-dependent effects in the GI tract. METHODS A novel potent and selective NOP agonist SCH 221510 was used in the study. The effect of NOP activation on mouse intestinal motility was characterized in vitro and in vivo, in physiological conditions and in animal models of hypermotility and diarrhea. Well-established mouse models of visceral pain were used to characterize the antinociceptive effect of the NOP activation. To provide additional evidence that the endogenous nociceptin system is a relevant target for IBS, NOP expression and nociceptin levels were quantified in serum and colonic biopsies from IBS-D patients. KEY RESULTS SCH 221510 produced a potent NOP-mediated inhibitory effect on mouse intestinal motility in vitro and in vivo in physiological conditions. The NOP agonist displayed an antidiarrheal and analgesic action after oral administration in animal models mimicking the symptoms of IBS-D. Studies on human samples revealed a strong decrease in endogenous nociceptin system expression in IBS-D patients compared with healthy controls. CONCLUSIONS & INFERENCES Collectively, mouse and human data suggest that the endogenous nociceptin system is involved in IBS-D and may become a target for anti-IBS-D treatments using potent and selective synthetic NOP agonists.
Collapse
Affiliation(s)
- J Fichna
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Thomas R, Stover C, Lambert DG, Thompson JP. Nociceptin system as a target in sepsis? J Anesth 2014; 28:759-67. [PMID: 24728719 DOI: 10.1007/s00540-014-1818-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/05/2014] [Indexed: 11/29/2022]
Abstract
The nociceptin system comprises the nociceptin receptor (NOP) and the ligand nociceptin/orphanin FQ (N/OFQ) that binds to the receptor. The archetypal role of the system is in pain processing but the NOP receptor is also expressed on immune cells. Activation of the NOP receptor is known to modulate inflammatory responses, such as mast-cell degranulation, neutrophil rolling, vasodilation, increased vascular permeability, adhesion molecule regulation and leucocyte recruitment. As there is a loss of regulation of inflammatory responses during sepsis, the nociceptin system could be a target for therapies aimed at modulating sepsis. This review details the known effects of NOP activation on leucocytes and the vascular endothelium and discusses the most recent human and animal data on the role of the nociceptin system in sepsis.
Collapse
Affiliation(s)
- Róisín Thomas
- University Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, UK
| | | | | | | |
Collapse
|
14
|
Witkin JM, Statnick MA, Rorick-Kehn LM, Pintar JE, Ansonoff M, Chen Y, Tucker RC, Ciccocioppo R. The biology of Nociceptin/Orphanin FQ (N/OFQ) related to obesity, stress, anxiety, mood, and drug dependence. Pharmacol Ther 2014; 141:283-99. [PMID: 24189487 PMCID: PMC5098338 DOI: 10.1016/j.pharmthera.2013.10.011] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/10/2013] [Indexed: 01/16/2023]
Abstract
Nociceptin/Orphanin FQ (N/OFQ) is a 17 amino acid peptide that was deorphanized in 1995. The generation of specific agonists, antagonists and receptor deficient mice and rats has enabled progress in elucidating the biological functions of N/OFQ. Additionally, radio-imaging technologies have been advanced for investigation of this system in animals and humans. Together with traditional neurobehavioral techniques, these tools have been utilized to identify the biological significance of the N/OFQ system and its interacting partners. The present review focuses on the role of N/OFQ in the regulation of feeding, body weight homeostasis, stress, the stress-related psychiatric disorders of depression and anxiety, and in drug and alcohol dependence. Critical evaluation of the current scientific preclinical literature suggests that small molecule modulators of nociceptin opioid peptide receptors (NOP) might be useful in the treatment of diseases related to these biological functions. In particular, the literature data suggest that antagonism of NOP receptors will produce anti-obesity and antidepressant activities in humans. However, there are also contradictory data discussed. The current literature on the role of N/OFQ in anxiety and addiction, on the other hand points primarily to a role of agonist modulation being potentially therapeutic. Some drug-like molecules that function either as agonists or antagonists of NOP receptors have been optimized for human clinical study to test some of these hypotheses. The discovery of PET ligands for NOP receptors, combined with the pharmacological tools and burgeoning preclinical data set discussed here bodes well for a rapid advancement of clinical understanding and potential therapeutic benefit.
Collapse
Key Words
- (1S,3aS)-8- (2,3,3a,4,5,6-hexahydro-1H-phenalen-1-yl)-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one, a NOP receptor agonist
- (±)trans-1-[1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one, a NOP receptor antagonist
- 2-{3-[1-((1R)-acenaphthen-1-yl)piperidin-4-yl]-2,3-dihydro-2-oxo-benzimidazol-1-yl}-N-methylacetamide, a NOP receptor agonist
- 5-HT
- 5-hydroxytryptamine or serotonin
- 8-[bis(2-methylphenyl)-methyl]-3-phenyl-8-azabicyclo[3.2.1]octan-3-ol
- ACTH
- Alcohol-preferring rats
- Anxiety
- BED
- BNST
- CGRP
- CPP
- CRF
- CTA
- Calcitonin gene related peptide
- CeA
- DA
- Depression
- Drug dependence
- EPSC
- FST
- G-protein activated, inwardly rectifying K(+) channel
- G-protein-coupled receptor
- GIRK
- GPCR
- HPA
- J-113397
- JTC-801
- KO
- MDD
- Marchigian Sardinian Alcohol-Preferring
- N-(4-amino-2-methylquinolin-6-yl)-2-(4-ethylphenoxymethyl)benzamide hydrochloride, a NOP receptor antagonist
- N/OFQ
- NAcc
- NE
- NOP
- NPY
- Nociceptin opioid peptide or Nociceptin opioid peptide receptor
- Nociceptin/Orphanin FQ
- Nociceptin/Orphanin FQ (F: phenylalanine, Q: glutamine, the amino acids that begin and end the peptide sequence)
- ORL
- Obesity
- P rats
- POMC
- Pro-opiomelanocortin
- Ro 64-6198
- SB-612111
- SCH 221510
- SCH 655842
- Stress
- TST
- UFP-101
- VTA
- W212393
- [(–)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol, a NOP receptor antagonist
- [Nphe(1),Arg(14),Lys(15)]N/OFQ-NH(2), a NOP receptor antagonist
- adrenocorticotropic hormone
- bed nucleus of stria terminalis
- binge eating disorder
- central nucleus of the amygdala
- conditioned place preference
- conditioned taste aversion
- corticotrophin-releasing factor
- dopamine
- endo-8-[bis(2-chlorophenyl)methyl]-3-phenyl-8-azabicyclo[3.2.1]octane-3-carboxamide, a NOP receptor agonist
- excitatory post-synaptic current
- forced-swim test
- hypothalamic–pituitary axis
- knockout
- mPFC
- major depressive disorder
- medial prefrontal cortex
- msP
- neuropeptide Y
- norepinephrine
- nucleus accumbens
- opioid-receptor-like
- tail-suspension test
- ventral tegmental area
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA.
| | | | | | - John E Pintar
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Michael Ansonoff
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Yanyun Chen
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - R Craig Tucker
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | | |
Collapse
|
15
|
Sobczak M, Mokrowiecka A, Cygankiewicz AI, Zakrzewski PK, Sałaga M, Storr M, Kordek R, Małecka-Panas E, Krajewska WM, Fichna J. Anti-inflammatory and antinociceptive action of an orally available nociceptin receptor agonist SCH 221510 in a mouse model of inflammatory bowel diseases. J Pharmacol Exp Ther 2013; 348:401-9. [PMID: 24345466 DOI: 10.1124/jpet.113.209825] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The nociceptin receptors (NOPs) are expressed in the gastrointestinal (GI) tract on muscle cell membranes and neurons, as well as the immune cells that infiltrate the mucosa. The involvement of NOPs in the pathophysiology of GI inflammation has been suggested, but due to the lack of selective NOP agonists, it never fully elucidated. Our aim was to characterize the anti-inflammatory and antinociceptive effect of the NOP agonist, SCH 221510 [3-endo-8-[bis(2-methylphenyl)methyl]-3-phenyl-8-azabicyclo [3.2.1]octan-3-ol], as a potential therapeutic strategy in the treatment of inflammatory bowel diseases (IBD). The anti-inflammatory action of SCH 221510 was determined after intraperitoneal, oral, and intracolonic administration of SCH 221510 (0.1-3.0 mg/kg once or twice daily) in mice treated with 2,4,6-trinitrobenzenesulfonic acid (TNBS). Antinociceptive action of SCH 221510 was evaluated in the mouse model of mustard oil (MO)-induced abdominal pain. Relative NOP mRNA expression was assessed in patients with IBD using real-time reverse transcriptase-polymerase chain reaction. We found that the expression of NOP mRNA was significantly decreased in patients with IBD. The administration (0.1 and 1.0 mg/kg i.p. twice daily and 3 mg/kg p.o. twice daily) of SCH 221510 attenuated TNBS colitis in mice. This effect was blocked by a selective NOP antagonist [J-113397 [(±)-1-[(3R*,4R*)-1-(cyclooctylmethyl)-3-(hydroxymethyl)-4-piperidinyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one]]. The intracolonic injections of SCH 221510 did not improve colitis in mice. The antinociceptive effect of SCH 221510 was observed after oral administration of SCH 221510 in MO-induced pain tests in mice with acute colitis. In conclusion, our results show a potent anti-inflammatory and antinociceptive effect upon selective activation of NOP receptors and suggest that the NOP agonist SCH 221510 is a promising drug candidate for future treatment of IBD.
Collapse
Affiliation(s)
- Marta Sobczak
- Department of Biomolecular Chemistry (M.So., M.Sa., J.F.), Department of Digestive Tract Diseases (A.M., E.M.-P.), and Department of Pathology (R.K.), Faculty of Medicine, Medical University of Lodz, Lodz, Poland; Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland (A.I.C., P.K.Z., W.M.K.); and Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany (M.St.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gavioli EC, Calo' G. Nociceptin/orphanin FQ receptor antagonists as innovative antidepressant drugs. Pharmacol Ther 2013; 140:10-25. [PMID: 23711793 DOI: 10.1016/j.pharmthera.2013.05.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/21/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) and its receptor (NOP) were identified in the mid 90s as a novel peptidergic system structurally related to opioids. A growing body of preclinical evidence suggests that blockade of NOP receptors evokes antidepressant-like actions. These have been explored using a range of compounds (peptide and non peptide antagonists), across different species (rat and mouse) and assays (behavioral despair and chronic mild stress) suggesting a robust and consistent antidepressant-like effect. Moreover, rats and mice knockout for the NOP receptor gene display an antidepressant-like phenotype in behavioral despair assays. Electrophysiological, immunohistochemical and neurochemical studies point to an important role played by monoaminergic systems, particularly 5-HTergic, in mediating the antidepressant-like properties of NOP antagonists. However other putative mechanisms of action, including modulation of the CRF system, circadian rhythm and a possible neuroendocrine-immune control might be involved. A close relationship between the N/OFQ-NOP receptor system and stress responses is well described in the literature. Stressful situations also alter endocrine, behavioral and neurochemical parameters in rats and chronic administration of a NOP antagonist restored these alterations. Interestingly, clinical findings showed that plasma N/OFQ levels were significantly altered in major and post-partum depression, and bipolar disease patients. Collectively, data in the literature support the notion that blockade of NOP receptor signaling could be a novel and interesting strategy for the development of innovative antidepressants.
Collapse
Affiliation(s)
- Elaine Cristina Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, 59078-970 Natal-RN, Brazil.
| | | |
Collapse
|
17
|
Zhang L, Stuber F, Stamer UM. Inflammatory mediators influence the expression of nociceptin and its receptor in human whole blood cultures. PLoS One 2013; 8:e74138. [PMID: 24066107 PMCID: PMC3774641 DOI: 10.1371/journal.pone.0074138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/29/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Nociceptin/orphanin FQ and its receptor (NOP) are involved in immune responses, inflammation and pain processing. The aim of this study was to investigate the modulation of NOP and prepro-nociceptin (PNoc), the precursor of nociceptin, by inflammatory mediators in human whole blood. METHODS Peripheral blood from healthy volunteers was cultured for 0, 3, 6 and 24 hrs with or without lipopolysaccharide (LPS), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-10 or interferon (IFN)-γ. NOP and PNoc mRNA of peripheral white blood cells were detected by quantitative RT-PCR. Cytokine concentrations in supernatants of whole blood cultures were measured using ELISA. In addition, an intervention experiment using anti-cytokine antibodies was conducted to evaluate possible mechanisms involved in the modulation of NOP and PNoc by LPS. The primary goal was to investigate NOP and PNoc mRNA expression in human peripheral blood under inflammatory conditions. RESULTS LPS significantly suppressed NOP (median area under the mRNA-expression-time curve (1(st)/3(rd) quartile): 5.4 (4.6/6.6) normalized ratio · hr) and PNoc expression (40.8 (34.4/49.5)) compared to baseline measures (NOP: 22.7 (17.1/25.3); PNoc: 69.9 (58.4/89.2), both p<0.001). LPS incubation induced cytokine concentrations (TNF-α, IL-1β, IL-10 and IFN-γ) in whole blood cultures. Incubation with TNF-α, IL-1β, IL-10 or IFN-γ decreased NOP mRNA levels to varying extents (p<0.05 for all). In contrast, PNoc mRNA expression was decreased by IL-10 only (p = 0.018). The LPS effect on NOP expression could be antagonized by anti-TNF-α and anti-IL-1β, whereas anti-IL-10 and anti-INF-γ had no effect. There was no change of PNoc expression when LPS induced cytokines were antagonized by the respective antibodies. CONCLUSIONS LPS as well as cytokines suppress mainly NOP and, in part, PNoc mRNA expression in human whole blood cultures. This may represent a negative feedback loop to the previously described upregulation of cytokines by PNoc.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Anaesthesiology and Pain Medicine, Inselspital, University of Bern, Bern, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Frank Stuber
- Department of Anaesthesiology and Pain Medicine, Inselspital, University of Bern, Bern, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Ulrike M. Stamer
- Department of Anaesthesiology and Pain Medicine, Inselspital, University of Bern, Bern, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Tariq S, Nurulain SM, Tekes K, Adeghate E. Deciphering intracellular localization and physiological role of nociceptin and nocistatin. Peptides 2013; 43:174-83. [PMID: 23454174 DOI: 10.1016/j.peptides.2013.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 01/16/2023]
Abstract
Nociceptin and nocistatin are endogenous ligands of G protein coupled receptor family. Numerous techniques have been used to study the diverse parameters including, localization, distribution and ultrastructure of these peptides. The majority of the study parameters are based on their physiological roles in different organ systems. The present study presents an overview of the different methods used for the study of nociceptin, nocistatin and their receptors. Nociceptin has been implicated in many physiological functions including, nociception, locomotion, stressed-induced analgesia, learning and memory, neurotransmitter and hormone release, renal function, neuronal differentiation, sexual and reproductive behavior, uterine contraction, feeding, anxiety, gastrointestinal motility, cardiovascular function, micturition, cough, hypoxic-ischemic brain injury, diuresis and sodium balance, temperature regulation, vestibular function, and mucosal transport. It has been noted that the use of light and electron microscopy was less frequent, though it may be one of the most promising tools to study the intracellular localization of these neuropeptides. In addition, more studies on the level of circulating nociceptin and nocistatin are also necessary for investigating their clinical roles in health and disease. A variety of modern tools including physiological, light and electron microscopy (EM) are needed to decipher the extent of intracellular localization, tissue distribution and function of these peptides. The intracellular localization of nociceptin and nocistatin will require a high resolution transmission EM capable of identifying these peptides and other supporting molecules that co-localize with them. A tracing technique could also elucidate a possible migratory ability of nociceptin and nocistatin from one cellular compartment to the other.
Collapse
Affiliation(s)
- Saeed Tariq
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | | | | |
Collapse
|
19
|
Singh SR, Sullo N, D'Agostino B, Brightling CE, Lambert DG. The effects of nociceptin peptide (N/OFQ)-receptor (NOP) system activation in the airways. Peptides 2013; 39:36-46. [PMID: 23123316 DOI: 10.1016/j.peptides.2012.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/17/2012] [Accepted: 10/22/2012] [Indexed: 11/20/2022]
Abstract
The heptadecapeptide nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand for the N/OFQ peptide (NOP) receptor. It is cleaved from a larger precursor identified as prepronociceptin (ppN/OFQ). NOP is a member of the seven transmembrane-spanning G-protein coupled receptor (GPCR) family. ppN/OFQ and NOP receptors are widely distributed in different human tissues. Asthma is a complex heterogeneous disease characterized by variable airflow obstruction, bronchial hyper-responsiveness and chronic airway inflammation. Limited therapeutic effectiveness of currently available asthma therapies warrants identification of new drug compounds. Evidence from animal studies suggests that N/OFQ modulates airway contraction and inflammation. Interestingly up regulation of the N/OFQ-NOP system reduces airway hyper-responsiveness. In contrast, inflammatory cells central to the inflammatory response in asthma may be both sources of N/OFQ and respond to NOP activation. Hence paradoxical dysregulation of the N/OFQ-NOP system may potentially play an important role in regulating airway inflammation and airway tone. To date there is no data on N/OFQ-NOP expression in the human airways. Therefore, the potential role of N/OFQ-NOP system in asthma is unknown. This review focuses on its physiological effects within airways and potential value as a novel asthma therapy.
Collapse
Affiliation(s)
- Shailendra R Singh
- Department of Cardiovascular Sciences (Pharmacology and Therapeutics Group), Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester Royal Infirmary, Leicester, UK.
| | | | | | | | | |
Collapse
|