1
|
Herath HMUL, Piao MJ, Kang KA, Fernando PDSM, Kang HK, Koh YS, Hyun JW. The inhibitory effect of chlorogenic acid on oxidative stress and apoptosis induced by PM 2.5 in HaCaT keratinocytes. J Biochem Mol Toxicol 2024; 38:e23806. [PMID: 39148258 DOI: 10.1002/jbt.23806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024]
Abstract
Exposure to fine particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) can cause oxidative damage and apoptosis in the human skin. Chlorogenic acid (CGA) is a bioactive polyphenolic compound with antioxidant, antifungal, and antiviral properties. The objective of this study was to identify the ameliorating impact of CGA that might protect human HaCaT cells against PM2.5. CGA significantly scavenged the reactive oxygen species (ROS) generated by PM2.5, attenuated oxidative cellular/organelle damage, mitochondrial membrane depolarization, and suppressed cytochrome c release into the cytosol. The application of CGA led to a reduction in the expression levels of Bcl-2-associated X protein, caspase-9, and caspase-3, while simultaneously increasing the expression of B-cell lymphoma 2. In addition, CGA was able to reverse the decrease in cell viability caused by PM2.5 via the inhibition of extracellular signal-regulated kinase (ERK). This effect was further confirmed by the use of the mitogen-activated protein kinase kinase inhibitor, which acted upstream of ERK. In conclusion, CGA protected keratinocytes from mitochondrial damage and apoptosis via ameliorating PM2.5-induced oxidative stress and ERK activation.
Collapse
Affiliation(s)
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, Republic of Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, Republic of Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| | - Pincha Devage Sameera Madushan Fernando
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, Republic of Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| | - Hee Kyoung Kang
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| | - Young Sang Koh
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, Republic of Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
2
|
Wang H, Cao J, Chang S, Yan C, Zhang G. Metabolomics analysis reveals metabolite diversity of the rare cliff plant Oresitrophe rupifraga unge. Heliyon 2024; 10:e33076. [PMID: 38948034 PMCID: PMC11211885 DOI: 10.1016/j.heliyon.2024.e33076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/25/2024] [Accepted: 06/13/2024] [Indexed: 07/02/2024] Open
Abstract
Oresitrophe is monotypic, with the only species, Oresitrophe rupifraga Bunge, which is exclusive to China, having special growth and developmental traits due to its habitat. Furthermore, it has bright flowers and medicinal benefits. This study investigated the metabolites present in various tissues of Oresitrophe rupifraga Bunge. Using a widely targeted metabolomics approach, 1965 different metabolites were identified in Oresitrophe rupifraga Bunge. Based on principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA), the aboveground and underground metabolites of Oresitrophe rupifraga differed significantly. The comparison between bulblets and leaves revealed the differential expression of 461 metabolites, whereas the comparison between rhizomes and leaves showed the differential expression of 423 metabolites, and the comparison between bulblets and rhizomes showed the differential expression of 249 metabolites. The bulblets exhibited 49 metabolites that were higher and 412 metabolites that were lower than those of the leaves, whereas the rhizomes showed 123 upregulated and 300 downregulated metabolites. Bulblets showed an increase in 18 metabolites and a decrease in 231 metabolites compared to the rhizomes. Leaves contain more phenolic acids than the rhizomes and bulblets, whereas the rhizomes and bulblets contain more terpenoids than the leaves. KEGG pathway analysis showed an association between metabolites and metabolic pathways, as well as their effect on the progression and maturation of Oresitrophe rupifraga Bunge. The research findings can provide some insight into the growth and developmental traits of Oresitrophe rupifraga Bunge, thus providing a theoretical foundation for cultivating and utilising this plant.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northest Forestry University, Harbin, Heilongjiang 150040, China
- Department of Pharmacy, Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Jinjun Cao
- Millet Research Institute, Shanxi Agricultural University, Changzhi, Shanxi 046000, China
| | - Sheng Chang
- Department of Pharmacy, Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Caifeng Yan
- Department of Pharmacy, Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Guangming Zhang
- Department of Pharmacy, Changzhi Medical College, Changzhi, Shanxi 046000, China
| |
Collapse
|
3
|
Makiso MU, Tola YB, Ogah O, Endale FL. Bioactive compounds in coffee and their role in lowering the risk of major public health consequences: A review. Food Sci Nutr 2024; 12:734-764. [PMID: 38370073 PMCID: PMC10867520 DOI: 10.1002/fsn3.3848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 02/20/2024] Open
Abstract
This article addresses the bioactive components in coffee aroma, their metabolism, and the mechanism of action in lowering the risk of various potential health problems. The main bioactive components involved in the perceived aroma of coffee and its related health benefits are caffeine, chlorogenic acid (CGA), trigonelline, diterpenes, and melanoids. These compounds are involved in various physiological activities. Caffeine has been shown to have anticancer properties, as well as the ability to prevent the onset and progression of hepatocellular carcinoma and to be anti-inflammatory. CGA exhibits antioxidant action and is implicated in gut health, neurodegenerative disease protection, type 2 diabetes, and cardiovascular disease prevention. Furthermore, together with diterpenes, CGA has been linked to anticancer activity. Trigonelline, on the other side, has been found to lower oxidative stress by increasing antioxidant enzyme activity and scavenging reactive oxygen species. It also prevents the formation of kidney stones. Diterpenes and melanoids possess anti-inflammatory and antioxidant properties, respectively. Consuming three to four cups of filtered coffee per day, depending on an individual's physiological condition and health status, has been linked to a lower risk of several degenerative diseases. Despite their health benefits, excessive coffee intake above the recommended daily dosage, calcium and vitamin D deficiency, and unfiltered coffee consumption all increase the risk of potential health concerns. In conclusion, moderate coffee consumption lowers the risk of different noncommunicable diseases.
Collapse
Affiliation(s)
- Markos Urugo Makiso
- Department of Food Science and Postharvest TechnologyCollege of Agricultural SciencesWachemo UniversityHossanaEthiopia
- Department of Postharvest ManagementCollege of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | - Yetenayet Bekele Tola
- Department of Postharvest ManagementCollege of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | - Onwuchekwa Ogah
- Department of Applied BiologyEbonyi State UniversityIsiekeNigeria
| | - Fitsum Liben Endale
- Department of Public HealthCollege of Medicine and Health SciencesWachemo UniversityHossanaEthiopia
| |
Collapse
|
4
|
Hashemi SS, Najari M, Parvin M, Kalani MM, Assadi M, Seyedian R, Zaeri S. Wound healing effects of dexpanthenol-loaded core/shell electrospun nanofibers: Implication of oxidative stress in wound healing. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:97-106. [PMID: 38164485 PMCID: PMC10722473 DOI: 10.22038/ijbms.2023.71412.15526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/12/2023] [Indexed: 01/03/2024]
Abstract
Objectives Knowing the detrimental role of oxidative stress in wound healing and the anti-oxidant properties of Dexpanthenol (Dex), we aimed to produce Dex-loaded electrospun core/shell nanofibers for wound healing study. The novelty was measuring oxidative stress in wounds to know how oxidative stress was affected by Dex-loaded fibers. Materials and Methods TPVA solution containing Dex 6% (w/v) (core) and PVA/chitosan solution (shell) were coaxially electrospun with variable injection rates of the shell solution. Fibers were then tested for physicochemical properties, drug release profile, and effects on wound healing. Levels of tissue lipid peroxidation and superoxide dismutase activity were measured. Results Fibers produced at shell injection rate of 0.3 ml/hr (F3 fibers) showed core/shell structure with an average diameter of 252 nm, high hydrophilicity (swelling: 157% at equilibrium), and low weight loss (13.6%). Dex release from F3 fibers seemed to be ruled by the Fickian mechanism based on the Korsmeyer-Peppas model (R2 = 0.94, n = 0.37). Dex-loaded F3 fibers promoted fibroblast viability (128.4%) significantly on day 5 and also accelerated wound healing compared to the neat F3 fibers at macroscopic and microscopic levels on day 14 post-wounding. The important finding was a significant decrease in malondialdehyde (0.39 nmol/ mg protein) level and an increase in superoxide dismutase (5.29 unit/mg protein) activity in Dex-loaded F3 fiber-treated wound tissues. Conclusion Dex-loaded core/shell fibers provided nano-scale scaffolds with sustained release profile that significantly lowered tissue oxidative stress. This finding pointed to the importance of lowering oxidative stress to achieve proper wound healing.
Collapse
Affiliation(s)
- Seyede Sahar Hashemi
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mahmoud Najari
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Milad Parvin
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Mehdi Kalani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Majid Assadi
- Nuclear Medicine and Molecular Imaging Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ramin Seyedian
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sasan Zaeri
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
5
|
Michalak M, Błońska-Sikora E, Stryjecka M, Zagórska-Dziok M, Klimek-Szczykutowicz M, Szopa A. Phytochemical Profile and Antioxidant and Protective Activities of Various Types of Extracts from Hyssopus officinalis L. and Grindelia robusta Nutt. Herb Grown in Poland. Curr Top Med Chem 2024; 24:2238-2253. [PMID: 39253917 DOI: 10.2174/0115680266319052240819104310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/03/2024] [Accepted: 07/24/2024] [Indexed: 09/11/2024]
Abstract
INTRODUCTION The available literature indicates that Hyssopus officinalis and Grindelia robusta are raw materials with great potential for use in prevention and therapy. Therefore, the aims of this study were to assess the phytochemical profile and antioxidant and cytoprotective properties of extracts prepared using various solvents, additionally taking into account different methods of drying the plant material. METHODS Hydrodistilled oil was analysed by GC-MS. The chemical composition of the extracts was estimated by spectrophotometry and the HPLC-DAD method. Antioxidant activity was evaluated using DPPH and FRAP and measuring the intracellular level of ROS. Alamar Blue and Neutral Red tests were used to assess the cytotoxicity of the extracts on skin cells - keratinocytes and fibroblasts. RESULTS The major components of hyssop essential oil were cis- (44.9%) and trans- (18.2%) pinocamphone, while borneol (16.1%), and α-pinene (12.0%) were predominant in grindelia essential oil. Flavonoids were dominant in the extracts (water:ethanol, water:methanol, and water: glycerol) from hot-air dried hyssop herb, while phenolic acids were the predominant compounds in the grindelia herb extracts. The water:ethanol hyssop extract had the highest total content of flavonoids (42.26 mg CE/mL), among which isoquercitrin and rutin were present in the highest quantities (32.61 mg/mL and 21.47 mg/mL, respectively). In the case of grindelia, the highest total phenolic acid content (26.24 mg CAE/mL) was recorded in the water:ethanol extract, and the dominant compounds among them were 1,5-dicaffeoylquinic and chlorogenic acid (10.85 and 6.39 mg/mL, respectively). The water:ethanol extract from both plants also exhibited the highest antioxidant activity in the DPPH and FRAP tests (79.19% and 1.39 mmol/L, respectively, for grindelia and 67.61% and 1.04 mmol/L for hyssop) and was most effective at reducing the level of ROS in cells. In addition, water:ethanol extracts may have a positive impact on the viability of skin cells in vitro. CONCLUSION Water:ethanol extracts from H. officinalis and G. robusta herb are promising sources of active compounds and may find application as natural materials with valuable biological properties, which require further in vitro and in vivo testing.
Collapse
Affiliation(s)
- Monika Michalak
- Department of Pharmaceutical Sciences, Medical College, Jan Kochanowski University in Kielce, Poland
| | - Ewelina Błońska-Sikora
- Department of Pharmaceutical Sciences, Medical College, Jan Kochanowski University in Kielce, Poland
| | - Małgorzata Stryjecka
- Institute of Human Nutrition and Agriculture, The University College of Applied Sciences in Chełm, Poland
| | - Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Poland
| | | | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Kraków, Poland
| |
Collapse
|
6
|
Tundis R, Grande F, Occhiuzzi MA, Sicari V, Loizzo MR, Cappello AR. Lavandula angustifolia mill. (Lamiaceae) ethanol extract and its main constituents as promising agents for the treatment of metabolic disorders: chemical profile, in vitro biological studies, and molecular docking. J Enzyme Inhib Med Chem 2023; 38:2269481. [PMID: 37850338 PMCID: PMC10586085 DOI: 10.1080/14756366.2023.2269481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023] Open
Abstract
Lavandula angustifolia Mill. (lavender) is one of the most used medicinal plants. Herein, we chemically characterised and investigated the antioxidant properties and the capability to inhibit key enzymes for the treatment of type 2 diabetes (TD2) and obesity such as pancreatic lipase, α-glucosidase, and α-amylase of the ethanolic extract of two lavender samples (La1 and La2) from southern Italy. Both extracts significantly inhibited α-glucosidase, while La1 inhibited α-amylase and lipase more effectively than La2. To investigate whether these properties could be due to a direct interaction of the main constituents of the extracts with the targeted enzymes, molecular docking studies have been performed. As a result, the selected compounds were able to interact with the key residues of the binding site of the three proteins, thus supporting biological data. Current findings indicate the new potential of lavender ethanolic extract for the development of novel agents for T2D and obesity.
Collapse
Affiliation(s)
- Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria A. Occhiuzzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Vincenzo Sicari
- Department of Agraria, Mediterranean University of Reggio Calabria, Reggio Calabria, Italy
| | - Monica R. Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Anna R. Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
7
|
Park J, Kim D, Lee M, Park GD, Kim SR, Jiang Y, Jun W, Kim OK, Lee J. Unripe Pear Extract Suppresses UVB-Induced Skin Photoaging in Hairless Mice and Keratinocytes. J Med Food 2023; 26:902-910. [PMID: 38010847 DOI: 10.1089/jmf.2023.k.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Our study aimed to investigate whether unripe pear extract (UP) could provide protection against UVB-induced damage to both mouse skin and keratinocytes. We observed that UVB exposure, a common contributor to skin photoaging, led to wrinkle formation, skin dryness, and inflammation in mice. Nevertheless, these effects were mitigated in the groups of UVB-irradiated mice treated with UP. Moreover, UP treatment at 400 μg/mL increased the antioxidant enzyme activities (sodium dodecyl sulfate, 2.22-fold higher; catalase, 2.91-fold higher; GPx, 1.96-fold higher) along with sphingomyelin (1.58-fold higher) and hyaluronic acid (1.31-fold higher) levels in UVB-irradiated keratinocytes. In the keratinocytes irradiated with UVB, UP 400 μg/mL resulted in reduced cytokine production (TNF-α, 33.2%; IL-1β, 45.3%; IL-6, 33.4%) and the expression of inflammatory pathway-related proteins. The findings indicate that UP has a direct protective effect on UVB-irradiated keratinocytes and is also able to shield against photoaging induced by UVB. Hence, it is suggested that UP could contribute to improved skin health by averting skin photoaging.
Collapse
Affiliation(s)
- Jeongjin Park
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| | - Dakyung Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | | | - Soo Ro Kim
- Suheung Research Center, Seongnam, Korea
| | | | - Woojin Jun
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| | - Ok-Kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| |
Collapse
|
8
|
Skalska-Kamińska A, Wójciak W, Żuk M, Paduch R, Wójciak M. Protective Effect of Urtica dioica Extract against Oxidative Stress in Human Skin Fibroblasts. Life (Basel) 2023; 13:2182. [PMID: 38004322 PMCID: PMC10672499 DOI: 10.3390/life13112182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Urtica dioica is a species with well-established significance in folk medicine in many countries. It was utilized to support the treatment of arthritis, allergies, and urinary tract disorders; however, the substantial presence of antioxidants suggests that nettle extract could also have a positive impact on the skin. The objective of this study was to assess the impact of nettle extract on human skin fibroblasts subjected to oxidative stress. Various solvents were tested to prepare an extract rich in polyphenolic compounds with high antioxidant potential. The chemical composition was determined using ultra-high-performance liquid chromatography with mass spectrometry (UPLC-DAD-MS). H2O2 treatment was used to induce oxidative stress and cell viability, and the metabolism was evaluated through NR and MTT assays. Our study demonstrated that extraction with 80% ethanol, followed by the drying and re-dissolving of the extract in pure water, was more efficient than direct extraction with water. This yielded an extract rich in polyphenolic compounds, with chlorogenic acid and caffeoylmalic acid as the predominant compounds, averaging 64.9 and 114.4 µg/mL, respectively. The extract exhibited antioxidant properties in the DPPH and ABTS assays. Furthermore, it did not exhibit cytotoxicity and did not negatively affect cell metabolism. In addition, it effectively reduced ROS in the H2O2-stimulated cells, and at the highest concentration tested, the ROS levels returned to those of the untreated control. The extract also protected against H2O2-induced cytotoxicity. The cell viability was maintained at the level of the untreated control when the cells were pretreated with the extract before H2O2 exposure. These findings indicate that U. dioica extract is a valuable and safe additive in skincare products.
Collapse
Affiliation(s)
- Agnieszka Skalska-Kamińska
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (A.S.-K.); (W.W.); (M.Ż.)
| | - Weronika Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (A.S.-K.); (W.W.); (M.Ż.)
| | - Magdalena Żuk
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (A.S.-K.); (W.W.); (M.Ż.)
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (A.S.-K.); (W.W.); (M.Ż.)
| |
Collapse
|
9
|
Decot H, Sudhakaran M, Boismier E, Schilmiller A, Claucherty E, Doseff AI, Aliakbarian B. Tart Cherry ( Prunus cerasus L.) Pit Extracts Protect Human Skin Cells against Oxidative Stress: Unlocking Sustainable Uses for Food Industry Byproducts. Foods 2023; 12:3748. [PMID: 37893640 PMCID: PMC10606708 DOI: 10.3390/foods12203748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Industrial processing of tart cherries (Prunus cerasus L.) produces bioproducts like cherry pits (CP), which contribute to adverse environmental effects. To identify sustainable strategies to minimize the environmental impact of cherry processing, we investigated their potential value as antioxidants for prospective utilization within cosmeceutical applications. Untargeted metabolomic analyses of water and water: ethanol CP extracts using an eco-friendly technique revealed significant enrichment in coumaroyl derivatives and flavonoids with congruent metabolite representation regardless of the extraction solvent. The antioxidant activity of tart CP extracts was evaluated on human skin cells exposed to H2O2 or LPS, modeling environmentally induced oxidants. Notably, both CP extracts provide antioxidant activity by reducing H2O2 or LPS-induced ROS in human skin keratinocytes without affecting cell viability. The CP extracts increased the expression of CAT and SOD1 genes encoding antioxidant regulatory enzymes while decreasing the expression of NOS2, a pro-oxidant regulator. These findings reveal the antioxidant properties of tart CP, offering new opportunities to produce natural-based skin care products and adding economic value while providing sustainable options to reduce the environmental impact of food byproducts.
Collapse
Affiliation(s)
- Hannah Decot
- Molecular, Cellular, and Integrative Physiology Graduate Program, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA; (H.D.); (M.S.)
- Department of Physiology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA;
| | - Meenakshi Sudhakaran
- Molecular, Cellular, and Integrative Physiology Graduate Program, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA; (H.D.); (M.S.)
- Department of Physiology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA;
| | - Emma Boismier
- Department of Physiology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA;
| | - Anthony Schilmiller
- Mass Spectrometry and Metabolomics Core, Michigan State University, 603 Wilson Rd., East Lansing, MI 48824, USA;
| | - Ethan Claucherty
- The Axia Institute, Michigan State University, 1910 W. St. Andrews Rd., Midland, MI 49640, USA;
| | - Andrea I. Doseff
- Department of Physiology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue St., East Lasing, MI 48824, USA
| | - Bahar Aliakbarian
- The Axia Institute, Michigan State University, 1910 W. St. Andrews Rd., Midland, MI 49640, USA;
- Department of Biosystems and Agricultural Engineering, Michigan State University, 524 S Shaw Lane, East Lansing, MI 48824, USA
| |
Collapse
|
10
|
Kour R, Sharma N, Showkat S, Sharma S, Nagaiah K, Kumar S, Kaur S. Methanolic fraction of Cassia fistula L. bark exhibits potential to combat oxidative stress and possess antiproliferative activity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:296-312. [PMID: 36919564 DOI: 10.1080/15287394.2023.2189435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cassia fistula L. is well known for its traditional medicinal properties as an anti-inflammatory, hepatoprotective, antifungal, antibacterial, antimutagenic, and wound healing agent. The aim of the present study was to determine antioxidant, genoprotective, and cytotoxic potential of different fractions of C. fistula bark including hexane (CaMH), chloroform (CaMC), ethyl acetate (CaME), and methanol (CaMM). Among all the fractions studied, CaMM exhibited maximal radical scavenging activity in antioxidant DPPH assay, Superoxide anion radical scavenging assay and nitric oxide radical scavenging assay displayed an IC50 value of 18.95, 29.41, and 13.38 µg/ml, respectively. CaMM fraction possessed the highest phenolic (130.37 mg gallic acid equivalent/g dry weight of extract) and flavonoid (36.96 mg rutin equivalent/g dry weight of fraction) content. Data demonstrated significant positive correlation between polyphenol levels and radical scavenging activity. Single cell gel electrophoresis (Comet assay) exhibited genoprotective potential of C. fistula bark fractions against DNA damage induced by hydrogen peroxide (H2O2) in human lymphocytes. CaMM fraction displayed highest protective ability against H2O2 induced-toxicity as evidenced by significant decrease in % tail DNA content from 30 to 7% at highest concentration (200 µg/ml). CaMM was found to be rich in catechin, gallic acid, chlorogenic acid, and kaempferol. The phenolic content and antioxidant ability of the fractions was markedly negatively correlated with H2O2- induced DNA damage in human lymphocytes. Cytotoxic potential was evaluated against dermal epidermoid carcinoma (A431), pancreatic (MIA PaCa-2) and brain glioblastoma (LN-18) cancer cell lines using MTT assay. Results showed that C. fistula bark fractions possessed highest toxicity against the skin carcinoma cells. CaMM fraction reduced over 50% cell growth at the concentration of 76.72 µg/ml in A431 cells. These findings suggest that fractions of C. fistula bark exhibit potential to be considered as therapeutic agents in various carcinomas.
Collapse
Affiliation(s)
- Rasdeep Kour
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neha Sharma
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sheikh Showkat
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sunil Sharma
- Aquatic toxicology lab, Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Kommu Nagaiah
- Centre for natural products and Traditional knowledge, CSIR- Indian Institute of Chemical Technology, Hyderabad, India
| | - Subodh Kumar
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Satwinderjeet Kaur
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
11
|
Matsumura Y, Kitabatake M, Kayano SI, Ito T. Dietary Phenolic Compounds: Their Health Benefits and Association with the Gut Microbiota. Antioxidants (Basel) 2023; 12:antiox12040880. [PMID: 37107256 PMCID: PMC10135282 DOI: 10.3390/antiox12040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Oxidative stress causes various diseases, such as type II diabetes and dyslipidemia, while antioxidants in foods may prevent a number of diseases and delay aging by exerting their effects in vivo. Phenolic compounds are phytochemicals such as flavonoids which consist of flavonols, flavones, flavanonols, flavanones, anthocyanidins, isoflavones, lignans, stilbenoids, curcuminoids, phenolic acids, and tannins. They have phenolic hydroxyl groups in their molecular structures. These compounds are present in most plants, are abundant in nature, and contribute to the bitterness and color of various foods. Dietary phenolic compounds, such as quercetin in onions and sesamin in sesame, exhibit antioxidant activity and help prevent cell aging and diseases. In addition, other kinds of compounds, such as tannins, have larger molecular weights, and many unexplained aspects still exist. The antioxidant activities of phenolic compounds may be beneficial for human health. On the other hand, metabolism by intestinal bacteria changes the structures of these compounds with antioxidant properties, and the resulting metabolites exert their effects in vivo. In recent years, it has become possible to analyze the composition of the intestinal microbiota. The augmentation of the intestinal microbiota by the intake of phenolic compounds has been implicated in disease prevention and symptom recovery. Furthermore, the “brain–gut axis”, which is a communication system between the gut microbiome and brain, is attracting increasing attention, and research has revealed that the gut microbiota and dietary phenolic compounds affect brain homeostasis. In this review, we discuss the usefulness of dietary phenolic compounds with antioxidant activities against some diseases, their biotransformation by the gut microbiota, the augmentation of the intestinal microflora, and their effects on the brain–gut axis.
Collapse
Affiliation(s)
- Yoko Matsumura
- Department of Nutrition, Faculty of Health Sciences, Kio University, Kitakatsuragi-gun, Nara 635-0832, Japan
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Masahiro Kitabatake
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shin-ichi Kayano
- Department of Nutrition, Faculty of Health Sciences, Kio University, Kitakatsuragi-gun, Nara 635-0832, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
12
|
Sun G, Wang J, Xu X, Zhai L, Li Z, Liu J, Zhao D, Jiang R, Sun L. Panax ginseng Meyer cv. Silvatica phenolic acids protect DNA from oxidative damage by activating Nrf2 to protect HFF-1 cells from UVA-induced photoaging. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115883. [PMID: 36328205 DOI: 10.1016/j.jep.2022.115883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Long-wave ultraviolet A (UVA) causes skin aging by damaging the fine structures of the skin, such as elastic fibers and collagen fibers, through oxidation. Currently, the use of plant extracts to protect skin from photoaging is a popular method. Panax ginseng C.A. Meyer exerts commendable anti-photoaging and antioxidant effects. P. ginseng Meyer cv. Silvatica, also known as forest ginseng (FG), is a type of ginseng cultivated by artificially simulating the growth environment of wild ginseng aged >15 years. However, there are only a few reports on its anti-photoaging effect on the skin caused by UVA stimulation. AIM OF THE STUDY To investigate whether isolated and extracted FG can inhibit skin photoaging as well as to explore its action mechanism. METHODS The FG extract (FGE) was obtained from the supernatant of FG after water extraction and alcohol precipitation with the D101 resin. The composition and content of phenolic acids in FGE were determined by high-performance liquid chromatography (HPLC). The MTT assay was performed to detect cell viability. The ratio of SA-β-GAL-positive cells, CoL-I level, 8-OHdG concentration, MDA, GSH, GPx, SOD, and CAT activity were measured using relevant kits. Furthermore, cell cycle alterations and ROS accumulation were assessed by flow cytometry. The expressions of p53, p21, p16, and Keap1 protein were detected by Western blotting. The Nrf2 translocation was monitored by immunofluorescence staining. RESULTS The findings revealed that FGE significantly restored UVA injury-induced cell viability, reduced the proportion of SA-β-GAL-positive cells, and increased the level of CoL-I secretion in a dose-dependent manner, where the main ingredients were chlorogenic acid, protocatechuic acid, salicylic acid, p-hydroxybenzoic acid, vanillic acid, ferulic acid, and caffeic acid. Further studies indicated that this phenolic acid mixture (PAM) could alleviate UVA-induced HFF-1 cell cycle arrest and protect the DNA from oxidative damage caused by UVA stimulation. Moreover, the expressions of cell cycle regulatory proteins p53, p21, and p16 and the accumulation of ROS were inhibited, the translocation of Nrf2 into the nucleus was promoted, the expression of Keap1 protein was inhibited, the activity of intracellular antioxidant indicators GSH, GPx, SOD, and CAT was enhanced, and the expression of malondialdehyde (MDA) was inhibited. CONCLUSIONS Collectively, our results demonstrated that FG phenolic acids protect DNA from oxidative damage by activating Nrf2 to safeguard the skin from photoaging induced by UVA stimulation.
Collapse
Affiliation(s)
- Guang Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Jing Wang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Xiaohao Xu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Lu Zhai
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Zhenzhuo Li
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Jianzeng Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China; Jilin Province Traditional Chinese Medicine Characteristic Health Product Research and Development Cross-regional Cooperation Science and Technology Innovation Center, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China
| | - Rui Jiang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China.
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China.
| |
Collapse
|
13
|
Chlorogenic Acids and Caffeine from Coffee By-Products: A Review on Skincare Applications. COSMETICS 2023. [DOI: 10.3390/cosmetics10010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Upcycling is a modern trend in the cosmetic sector, focusing on by-products reuse and waste reduction. Consumers are more aware of the origin of cosmetic products and their environmental impact, promoting the upcycling phenomenon. Converting these raw materials into products of higher quality or value contributes to the final product’s sustainability. In fact, several agri-food by-products that are typically discarded have generated great interest, due to their value-added compounds with high functionality and/or bioactivity. Coffee is well known as a cosmetic ingredient, particularly due to the presence of phenolic compounds, such as chlorogenic acids, and caffeine. Caffeine is widely used in cosmetic formulations due to its photoprotector and anti-aging properties, as well as lipolytic action in cellulitis, and hair regrowth. Chlorogenic acids are powerful antioxidants and exhibit anti-aging and photoprotector abilities. Coffee by-products, such as coffee beans, possess these bioactive compounds and other chemical characteristics that can provide functional properties in cosmetic formulations. Coffee silverskin and spent coffee grounds are high-volume by-products of the coffee industry. Their use has been explored in different cosmetic formulations demonstrating safety, stability, acceptability as well as skin improvement, thus supporting their valorization as natural and sustainable new ingredients in skincare products.
Collapse
|
14
|
Zha P, Wei L, Liu W, Chen Y, Zhou Y. Effects of dietary supplementation with chlorogenic acid on growth performance, antioxidant capacity, and hepatic inflammation in broiler chickens subjected to diquat-induced oxidative stress. Poult Sci 2023; 102:102479. [PMID: 36669355 PMCID: PMC9871335 DOI: 10.1016/j.psj.2023.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/19/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023] Open
Abstract
This study was conducted to investigate the protective effects of chlorogenic acid (CGA) on broilers subjected to (DQ)-induced oxidative stress. In experiment 1, one hundred and ninety-two male one-day-old Ross 308 broiler chicks were distributed into 4 groups and fed a basal diet supplemented with 0, 250, 500, or 1,000 mg/kg CGA for 21 d. In experiment 2, an equivalent number of male one-day-old chicks were allocated to 4 treatments for a 21-d trial: 1) Control group, normal birds fed a basal diet; 2) DQ group, DQ-challenged birds fed a basal diet; and 3) and 4) CGA-treated groups: DQ-challenged birds fed a basal diet supplemented with 500 or 1,000 mg/kg CGA. The intraperitoneal DQ challenge was performed at 20 d. In experiment 1, CGA administration linearly increased 21-d body weight, and weight gain and feed intake during 1 to 21 d (P < 0.05). CGA linearly and/or quadratically increased total antioxidant capacity, catalase, superoxide dismutase, and glutathione peroxidase activities, elevated glutathione level, and reduced malondialdehyde accumulation in serum, liver, and/or jejunum (P < 0.05). In experiment 2, compared with the control group, DQ challenge reduced body weight ratio (P < 0.05), which was reversed by CGA administration (P < 0.05). DQ challenge increased serum total protein level, aspartate aminotransferase activity, and total bilirubin concentration (P < 0.05), which were normalized when supplementing 500 mg/kg and/or 1,000 mg/kg CGA (P < 0.05). DQ administration elevated hepatic interleukin-1β, tumor necrosis factor-α, and interleukin-6 levels (P < 0.05), and the values of interleukin-1β were normalized to control values when supplementing CGA (P < 0.05). DQ injection decreased serum superoxide dismutase activity, hepatic catalase activity, and serum and hepatic glutathione level, but increased malondialdehyde concentration in serum and liver (P < 0.05), and the values of these parameters (except hepatic catalase activity) were reversed by 500 and/or 1,000 mg/kg CGA. The results suggested that CGA could improve growth performance, alleviate oxidative stress, and ameliorate hepatic inflammation in DQ-challenged broilers.
Collapse
Affiliation(s)
| | | | | | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | | |
Collapse
|
15
|
Effects of different levels of dietary chlorogenic acid supplementation on growth performance, intestinal integrity, and antioxidant status of broiler chickens at an early age. Anim Feed Sci Technol 2023. [DOI: 10.1016/j.anifeedsci.2023.115570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Zhang R, Kang X, Liu L, Wang X, Li H, Zhu J, Cao Y, Zhu H. Gut microbiota modulation by plant polyphenols in koi carp (Cyprinus carpio L.). Front Microbiol 2022; 13:977292. [PMID: 36312947 PMCID: PMC9597254 DOI: 10.3389/fmicb.2022.977292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Plant polyphenol supplementation may improve fish health in aquaculture systems. To assess the potential benefits and function mechanism of plant polyphenols in aquaculture, fish were fed either basal feed (CON) or the basal feed supplemented with 500 mg/kg of curcumin (CUR), oligomeric proanthocyanidins (OPC), chlorogenic acid (CGA), or resveratrol (RES). After an 8-week feeding experiment, blood samples were used to analyze the concentrations of biochemical indices. Gut samples were collected to evaluate microbiota, short chain fatty acid (SCFA) levels, and gene expression. The results indicated that polyphenol administration reduced serum glucose and insulin. Lysozyme activity was enhanced by OPC and CGA, and superoxide dismutase activity was increased by CUR, OPC, and CGA. The gut microbial structure of the RES group was segregated from that of the CON, and the genus Bacteroides was identified as a potential biomarker in the CUR, CGA, and RES groups. Total gut SCFA increased in the CUR, CGA, and RES groups. A strong correlation was observed between Bacteroides and SCFA. In conclusion, dietary polyphenols have distinct anti-inflammatory, anti-oxidant, and anti-hyperglycemic activities that may be closely associated with their microbiota-modulation effects.
Collapse
Affiliation(s)
- Rong Zhang
- Beijing Key Laboratory of Fishery Biotechnology, Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xin Kang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Lili Liu
- Beijing Key Laboratory of Fishery Biotechnology, Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaowen Wang
- Beijing Key Laboratory of Fishery Biotechnology, Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Huijuan Li
- Beijing Key Laboratory of Fishery Biotechnology, Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jianya Zhu
- Beijing Key Laboratory of Fishery Biotechnology, Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yongchun Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Hua Zhu
- Beijing Key Laboratory of Fishery Biotechnology, Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- *Correspondence: Hua Zhu,
| |
Collapse
|
17
|
Hesperidin Protects SH−SY5Y Neuronal Cells against High Glucose−Induced Apoptosis via Regulation of MAPK Signaling. Antioxidants (Basel) 2022; 11:antiox11091707. [PMID: 36139782 PMCID: PMC9495902 DOI: 10.3390/antiox11091707] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 12/06/2022] Open
Abstract
Neurodegenerative diseases are associated with neuronal cell death through apoptosis. Apoptosis is tightly associated with the overproduction of reactive oxygen species (ROS), and high glucose levels contribute to higher oxidative stress in diabetic patients. Hesperidin, a natural active compound, has been reported to scavenge free radicals. Only a few studies have explored the protective effects of hesperidin against high glucose−induced apoptosis in SH−SY5Y neuronal cells. Glucose stimulated neuronal cells to generate excessive ROS and caused DNA damage. In addition, glucose triggered endoplasmic reticulum stress and upregulated cytoplasmic as well as mitochondrial calcium levels. Hesperidin inhibited glucose−induced ROS production and mitigated the associated DNA damage and endoplasmic reticulum stress. The downregulation of antiapoptotic protein Bcl−2 following glucose treatment was reversed by a hesperidin treatment. Furthermore, hesperidin repressed the glucose−induced Bcl−2−associated X protein, cleaved caspase−9, and cleaved caspase−3. Hesperidin also suppressed the glucose−induced phosphorylation of extracellular signal−regulated kinase and c−Jun N−terminal kinase. The current results confirmed that hesperidin could protect neuronal cells against glucose−induced ROS. Mechanistically, hesperidin was shown to promote cell viability via attenuation of the mitogen−activated protein kinase signaling pathway.
Collapse
|
18
|
Hesperidin Exhibits Protective Effects against PM2.5-Mediated Mitochondrial Damage, Cell Cycle Arrest, and Cellular Senescence in Human HaCaT Keratinocytes. Molecules 2022; 27:molecules27154800. [PMID: 35956749 PMCID: PMC9369620 DOI: 10.3390/molecules27154800] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/13/2022] Open
Abstract
Particulate matter 2.5 (PM2.5) exposure can trigger adverse health outcomes in the human skin, such as skin aging, wrinkles, pigment spots, and atopic dermatitis. PM2.5 is associated with mitochondrial damage and the generation of reactive oxygen species (ROS). Hesperidin is a bioflavonoid that exhibits antioxidant and anti-inflammatory properties. This study aimed to determine the mechanism underlying the protective effect of hesperidin on human HaCaT keratinocytes against PM2.5-induced mitochondrial damage, cell cycle arrest, and cellular senescence. Human HaCaT keratinocytes were pre-treated with hesperidin and then treated with PM2.5. Hesperidin attenuated PM2.5-induced mitochondrial and DNA damage, G0/G1 cell cycle arrest, and SA-βGal activity, the protein levels of cell cycle regulators, and matrix metalloproteinases (MMPs). Moreover, treatment with a specific c-Jun N-terminal kinase (JNK) inhibitor, SP600125, along with hesperidin markedly restored PM2.5-induced cell cycle arrest and cellular senescence. In addition, hesperidin significantly reduced the activation of MMPs, including MMP-1, MMP-2, and MMP-9, by inhibiting the activation of activator protein 1. In conclusion, hesperidin ameliorates PM2.5-induced mitochondrial damage, cell cycle arrest, and cellular senescence in human HaCaT keratinocytes via the ROS/JNK pathway.
Collapse
|
19
|
Butkeviciute A, Ramanauskiene K, Kurapkiene V, Janulis V. Dermal Penetration Studies of Potential Phenolic Compounds Ex Vivo and Their Antioxidant Activity In Vitro. PLANTS (BASEL, SWITZERLAND) 2022; 11:1901. [PMID: 35893606 PMCID: PMC9331963 DOI: 10.3390/plants11151901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Phenolic compounds with miscellaneous biological activities are an interesting component in dermatology and cosmetology practices. The aim of our study was to determine the phenolic compounds released from emulsion, emulgel, gel, ointment, and oleogel formulations penetration into human skin layers, both the epidermis and dermis, and estimate their antioxidant activity. The ex vivo penetration study was performed using Bronaugh type flow-through diffusion cells. Penetration studies revealed that, within 24 h, the chlorogenic acid released from the oleogel penetrated into skin layers to a depth of 2.0 ± 0.1 µg/mL in the epidermis and 1.5 ± 0.07 µg/mL in the dermis. The oleogel-released complex of phenolic compounds penetrating into epidermis showed the strongest DPPH free radical scavenging activity (281.8 ± 14.1 µM TE/L). The study estimated a strong positive correlation (r = 0.729) between the amount of quercetin penetrated into epidermis and the antioxidant activity detected in the epidermis extract. Plant based phenolic compounds demonstrated antioxidant activity and showed great permeability properties through the skin.
Collapse
Affiliation(s)
- Aurita Butkeviciute
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, LT-50162 Kaunas, Lithuania;
| | - Kristina Ramanauskiene
- Department of Clinical Pharmacy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, LT-50162 Kaunas, Lithuania; (K.R.); (V.K.)
| | - Vaida Kurapkiene
- Department of Clinical Pharmacy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, LT-50162 Kaunas, Lithuania; (K.R.); (V.K.)
| | - Valdimaras Janulis
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, LT-50162 Kaunas, Lithuania;
| |
Collapse
|
20
|
Xue N, Liu Y, Jin J, Ji M, Chen X. Chlorogenic Acid Prevents UVA-Induced Skin Photoaging through Regulating Collagen Metabolism and Apoptosis in Human Dermal Fibroblasts. Int J Mol Sci 2022; 23:ijms23136941. [PMID: 35805942 PMCID: PMC9266774 DOI: 10.3390/ijms23136941] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/21/2022] Open
Abstract
Skin aging is categorized as chronological aging and photo-aging that affected by intrinsic and extrinsic factors. The present study aimed to investigate the anti-aging ability and its underlying mechanism of chlorogenic acid (CGA) on human dermal fibroblasts (HDFs). In this study, CGA specifically up-regulated collagen I (Col1) mRNA and protein expressions and increased the collagen secretion in the supernatant of HDFs without affecting the cell viability, the latter was also demonstrated in BioMAP HDF3CGF system. Under ultraviolet A (UVA)-induced photoaging, CGA regulated collagen metabolism by increasing Col1 expression and decreasing matrix metalloproteinase 1 (MMP1) and MMP3 levels in UVA-irradiated HDFs. The activation of transforming growth factor-β (TGF-β)-mediated Smad2/3 molecules, which is crucial in Col1 synthesis, was suppressed by UVA irradiation and but enhanced at the presence of CGA. In addition, CGA reduced the accumulation of UVA-induced reactive oxygen species (ROS), attenuated the DNA damage and promoted cell repair, resulting in reducing the apoptosis of UVA-irradiated HDFs. In conclusion, our study, for the first time, demonstrate that CGA has protective effects during skin photoaging, especially triggered by UVA-irradiation, and provide rationales for further investigation of CGA being used to prevent or treat skin aging.
Collapse
|
21
|
Anti-Cancer Effects of Dietary Polyphenols via ROS-Mediated Pathway with Their Modulation of MicroRNAs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123816. [PMID: 35744941 PMCID: PMC9227902 DOI: 10.3390/molecules27123816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/23/2022]
Abstract
Consumption of coffee, tea, wine, curry, and soybeans has been linked to a lower risk of cancer in epidemiological studies. Several cell-based and animal studies have shown that dietary polyphenols like chlorogenic acid, curcumin, epigallocatechin-3-O-gallate, genistein, quercetin and resveratrol play a major role in these anticancer effects. Several mechanisms have been proposed to explain the anticancer effects of polyphenols. Depending on the cellular microenvironment, these polyphenols can exert double-faced actions as either an antioxidant or a prooxidant, and one of the representative anticancer mechanisms is a reactive oxygen species (ROS)-mediated mechanism. These polyphenols can also influence microRNA (miR) expression. In general, they can modulate the expression/activity of the constituent molecules in ROS-mediated anticancer pathways by increasing the expression of tumor-suppressive miRs and decreasing the expression of oncogenic miRs. Thus, miR modulation may enhance the anticancer effects of polyphenols through the ROS-mediated pathways in an additive or synergistic manner. More precise human clinical studies on the effects of dietary polyphenols on miR expression will provide convincing evidence of the preventive roles of dietary polyphenols in cancer and other diseases.
Collapse
|
22
|
Rojas-González A, Figueroa-Hernández CY, González-Rios O, Suárez-Quiroz ML, González-Amaro RM, Hernández-Estrada ZJ, Rayas-Duarte P. Coffee Chlorogenic Acids Incorporation for Bioactivity Enhancement of Foods: A Review. Molecules 2022; 27:3400. [PMID: 35684338 PMCID: PMC9181911 DOI: 10.3390/molecules27113400] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
The demand of foods with high antioxidant capacity have increased and research on these foods continues to grow. This review is focused on chlorogenic acids (CGAs) from green coffee, which is the most abundant source. The main CGA in coffee is 5-O-caffeoylquinic acid (5-CQA). Coffee extracts are currently the most widely used source to enhance the antioxidant activity of foods. Due to the solubility of CGAs, their extraction is mainly performed with organic solvents. CGAs have been associated with health benefits, such as antioxidant, antiviral, antibacterial, anticancer, and anti-inflammatory activity, and others that reduce the risk of cardiovascular diseases, type 2 diabetes, and Alzheimer's disease. However, the biological activities depend on the stability of CGAs, which are sensitive to pH, temperature, and light. The anti-inflammatory activity of 5-CQA is attributed to reducing the proinflammatory activity of cytokines. 5-CQA can negatively affect colon microbiota. An increase in anthocyanins and antioxidant activity was observed when CGAs extracts were added to different food matrices such as dairy products, coffee drinks, chocolate, and bakery products. The fortification of foods with coffee CGAs has the potential to improve the functionality of foods.
Collapse
Affiliation(s)
- Alexis Rojas-González
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, 123 FAPC, Stillwater, OK 74078, USA
| | - Claudia Yuritzi Figueroa-Hernández
- CONACYT-Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, M. A. de Quevedo 2779, Veracruz 91897, Mexico;
| | - Oscar González-Rios
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Mirna Leonor Suárez-Quiroz
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Rosa María González-Amaro
- CONACYT-Instituto de Ecología, A.C., Carretera Antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz 91073, Mexico;
| | - Zorba Josué Hernández-Estrada
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Patricia Rayas-Duarte
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, 123 FAPC, Stillwater, OK 74078, USA
| |
Collapse
|
23
|
Yang L, An L, Wang Y, Li J. Protective effect of isopsoralen on UVB-induced injury in HaCaT cells via the ER and p38MAPK signaling pathways. J Food Biochem 2022; 46:e14163. [PMID: 35415935 DOI: 10.1111/jfbc.14163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022]
Abstract
This study investigated the protective effect of isopsoralen on UVB-induced damage in HaCaT cells and its molecular mechanism. The cytotoxicity of isopsoralen and its effects on the viability of HaCaT cells were examined using the MTT assay. The effects of UVB irradiation and isopsoralen on the intracellular glutathione (GSH-PX), superoxide dismutase (SOD), malondialdehyde (MDA), and reactive oxygen species (ROS) content were examined using commercially available assay kits. Further, the effects of UVB irradiation and isopsoralen on the levels of the inflammatory cytokines TNF-α, IL-6, and IL-1α were examined using enzyme-linked immunosorbent assay. Finally, we examined the effect of adding the estrogen receptor (ER) antagonist ICI182780,780 and the p38MAPK antagonist SB203580 on the changes in inflammatory cytokines induced by isopsoralen treatment and UVB irradiation. Isopsoralen pretreatment markedly inhibited UVB-induced reduction in the viability and proliferation of HaCaT cells. Isopsoralen also reduced UVB-induced increase in the expression of the inflammatory cytokines and the level of free radicals (ROS and MDA), and reversed the UVB-induced suppression of antioxidant activity. Additionally, inhibition of ER and p38MAPK via the addition of their respective antagonists reversed the observed anti-inflammatory effects of Isopsoralen. Isopsoralen can efficiently provide protection against UVB-induced damage in HaCaT cells brought about via oxidation and inflammatory reactions, and the underlying mechanisms involve the ER and p38MAPK pathways. Therefore, Isopsoralen could be used in therapeutic solutions for UVB-induced skin conditions. PRACTICAL APPLICATIONS: Isopsoralen shows antioxidant and anti-inflammatory effects. As natural, healthy, and effective additives, isopsoralen has been widely used in cosmetics and botanical medicine products. The results of this study reveal the molecular mechanisms underlying isopsoralen effects, showing that isopsoralen reverses the effects of UVB irradiation regulating ER and p38MAPK signaling pathways. Consequently, isopsoralen regulates the expression of ER and p38MAPK signaling pathways, thereby reducing the activation of antioxidant and anti-inflammatory activity. These findings suggest that isopsoralen can be used as the base ingredient for antiphotoaging cosmetics and botanical medicine products. This study provides both theoretical and experimental background for isopsoralen deep processing and utilization.
Collapse
Affiliation(s)
- Liu Yang
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Lifeng An
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Yeqiu Wang
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Jianmin Li
- Hospital of the First Auxiliary, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
24
|
Schuster C, Wolpert N, Moustaid-Moussa N, Gollahon LS. Combinatorial Effects of the Natural Products Arctigenin, Chlorogenic Acid, and Cinnamaldehyde Commit Oxidation Assassination on Breast Cancer Cells. Antioxidants (Basel) 2022; 11:591. [PMID: 35326241 PMCID: PMC8945099 DOI: 10.3390/antiox11030591] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Major obstacles in current breast cancer treatment efficacy include the ability of breast cancer cells to develop resistance to chemotherapeutic drugs and the off-target cytotoxicity of these drugs on normal cells, leading to debilitating side effects. One major difference between cancer and normal cells is their metabolism, as cancer cells acquire glycolytic and mitochondrial metabolism alterations throughout tumorigenesis. In this study, we sought to exploit this metabolic difference by investigating alternative breast cancer treatment options based on the application of phytochemicals. Herein, we investigated three phytochemicals, namely cinnamaldehyde (CA), chlorogenic acid (CGA), and arctigenin (Arc), regarding their anti-breast-cancer properties. These phytochemicals were administered alone or in combination to MCF-7, MDA-MB-231, and HCC1419 breast cancer or normal MCF-10A and MCF-12F breast cells. Overall, our results indicated that the combination treatments showed stronger inhibitory effects on breast cancer cells versus single treatments. However, only treatments with CA (35 μM), CGA (250 μg/mL), and the combination of CA + CGA (35 μM + 250 μg/mL) showed no significant cytotoxic effects on normal mammary epithelial cells, suggesting that Arc was the driver of normal cell cytotoxicity in all other treatments. CA + CGA and, to a lesser extent, CGA alone effectively induced breast cancer cell death accompanied by decreases in mitochondrial membrane potential, increased mitochondrial superoxide, reduced mitochondrial and glycolytic ATP production, and led to significant changes in cellular and mitochondrial morphology. Altogether, the combination of CA + CGA was determined as the best anti-breast-cancer treatment strategy due to its strong anti-breast-cancer effects without strong adverse effects on normal mammary epithelial cells. This study provides evidence that targeting the mitochondria may be an effective anticancer treatment, and that using phytochemicals or combinations thereof offers new approaches in treating breast cancer that significantly reduce off-target effects on normal cells.
Collapse
Affiliation(s)
- Caroline Schuster
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.S.); (N.W.)
| | - Nicholas Wolpert
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.S.); (N.W.)
| | - Naima Moustaid-Moussa
- Nutritional Sciences Department, Texas Tech University, Lubbock, TX 79409, USA;
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Lauren S. Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.S.); (N.W.)
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
25
|
Ohishi T, Hayakawa S, Miyoshi N. Involvement of microRNA modifications in anticancer effects of major polyphenols from green tea, coffee, wine, and curry. Crit Rev Food Sci Nutr 2022; 63:7148-7179. [PMID: 35289676 DOI: 10.1080/10408398.2022.2038540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidemiological studies have shown that consumption of green tea, coffee, wine, and curry may contribute to a reduced risk of various cancers. However, there are some cancer site-specific differences in their effects; for example, the consumption of tea or wine may reduce bladder cancer risk, whereas coffee consumption may increase the risk. Animal and cell-based experiments have been used to elucidate the anticancer mechanisms of these compounds, with reactive oxygen species (ROS)-based mechanisms emerging as likely candidates. Chlorogenic acid (CGA), curcumin (CUR), epigallocatechin gallate (EGCG), and resveratrol (RSV) can act as antioxidants that activate AMP-activated protein kinase (AMPK) to downregulate ROS, and as prooxidants to generate ROS, leading to the downregulation of NF-κB. Polyphenols can modulate miRNA (miR) expression, with these dietary polyphenols shown to downregulate tumor-promoting miR-21. CUR, EGCG, and RSV can upregulate tumor-suppressing miR-16, 34a, 145, and 200c, but downregulate tumor-promoting miR-25a. CGA, EGCG, and RSV downregulate tumor-suppressing miR-20a, 93, and 106b. The effects of miRs may combine with ROS-mediated pathways, enhancing the anticancer effects of these polyphenols. More precise analysis is needed to determine how the different modulations of miRs by polyphenols relate to the cancer site-specific differences found in epidemiological studies related to the consumption of foods containing these polyphenols.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka, Japan
| | - Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Noriyuki Miyoshi
- Laboratory of Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
26
|
Murlanova K, Cohen N, Pinkus A, Vinnikova L, Pletnikov M, Kirby M, Gorelick J, Drori E, Pinhasov A. Antidepressant-like effects of a chlorogenic acid- and cynarine-enriched fraction from Dittrichia viscosa root extract. Sci Rep 2022; 12:3647. [PMID: 35256610 PMCID: PMC8901669 DOI: 10.1038/s41598-022-04840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022] Open
Abstract
Dittrichia viscosa is a perennial Mediterranean plant used in traditional medicine for “calming purposes”, pointing at a possible antidepressant activity of the plant. We conducted chromatographic and bioassay-guided fractionation of D. viscosa root extract to isolate a specific fraction (fraction “K”) with antidepressant-like characteristics in vivo and strong antioxidant properties in vitro. A single dose of “K” reduced immobility time in the forced swim test with a mouse model possessing a depressive-like phenotype. Neurochemical profiling for 5-hydroxytryptamine (5-HT) and its primary metabolite, 5-hydroxyindoleacetic acid (5-HIAA), in prefrontal cortex and hippocampus of “K”-treated mice showed reduction in 5-HIAA, indicative of either serotonin uptake transporter or monoamine oxidase-A inhibition, as well as slight increases in 5-HT content. These neurochemical alterations, as well as the behavioral changes observed, were comparable to the effects of paroxetine. “K” also protected PC12 cells in a H2O2 cytotoxicity assay, thus demonstrating antioxidant properties, yet paroxetine augmented oxidative damage and cell death. Identification of the main compounds in “K” by high-performance liquid chromatography-tandem mass spectrometry (HPLC–MS/MS) indicated that chlorogenic acid and cynarine comprised 87% of the total components. D. viscosa root extract appears to produce antidepressant and cytoprotective effects and may serve as an attractive alternative to standard therapies for depression.
Collapse
|
27
|
LIczbiński P, Bukowska B. Tea and coffee polyphenols and their biological properties based on the latest in vitro investigations. INDUSTRIAL CROPS AND PRODUCTS 2022; 175:114265. [PMID: 34815622 PMCID: PMC8601035 DOI: 10.1016/j.indcrop.2021.114265] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 06/01/2023]
Abstract
Tea and coffee contain numerous polyphenolic compounds that exhibit health-promoting properties for humans, including antioxidant and neuroprotective properties, and can also take part in the treatment of covid-19 and improve fertility. This review, presents the activity of polyphenols found in different types of tea and coffee and describes the effects of tea fermentation and coffee roasting on their polyphenol composition and antioxidant properties. Polyphenol oxidase activity is reduced in the fermentation process; therefore black tea contains significantly less polyphenolic compounds compared to green and white tea. Epigallocatechin-3-gallate - a polyphenol from tea - effectively has been shown to inhibit the activity of SARS-CoV-2 as it blocked binding of coronavirus 2 to human angiotensin converting enzyme 2, decreased the expression of inflammatory factors in the blood, including tumor necrosis factor-α and interleukin-6, and significantly increased the overall fertilization efficiency in animals. Coffee roasting process influences both the content of polyphenols and the oxidative activity. The lowest levels of active compounds such as caffeine, chlorogenic acid and coffee acids are identified in roasted coffee beans. On the other hand, light coffee and green coffee show the strongest cytotoxic potential and antioxidant properties, and thus the greatest ability to decrease apoptosis by stopping the cell cycle in the S phase. Proteins, such as components of milk, can strongly bind/interact with phenolic compounds (especially, the CGAs) contain in coffee, which may explain the negative influence of milk on its antioxidant properties. Coffee polyphenols have also antiproliferative and antiesterase activities, which may be important in prevention of cancer and neurodegenerative disorders, respectively. In this review, biological properties of tea and coffee polyphenols, observed mainly in in vitro studies have been described. Based on these findings, future directions of the research works on these compounds have been suggested.
Collapse
Affiliation(s)
- Przemysław LIczbiński
- Department of Environmental Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Bożena Bukowska
- Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, University of Lodz, Lodz, Poland
| |
Collapse
|
28
|
LIczbiński P, Bukowska B. Tea and coffee polyphenols and their biological properties based on the latest in vitro investigations. INDUSTRIAL CROPS AND PRODUCTS 2022. [PMID: 34815622 DOI: 10.1016/j.indcrop.2021.114264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Tea and coffee contain numerous polyphenolic compounds that exhibit health-promoting properties for humans, including antioxidant and neuroprotective properties, and can also take part in the treatment of covid-19 and improve fertility. This review, presents the activity of polyphenols found in different types of tea and coffee and describes the effects of tea fermentation and coffee roasting on their polyphenol composition and antioxidant properties. Polyphenol oxidase activity is reduced in the fermentation process; therefore black tea contains significantly less polyphenolic compounds compared to green and white tea. Epigallocatechin-3-gallate - a polyphenol from tea - effectively has been shown to inhibit the activity of SARS-CoV-2 as it blocked binding of coronavirus 2 to human angiotensin converting enzyme 2, decreased the expression of inflammatory factors in the blood, including tumor necrosis factor-α and interleukin-6, and significantly increased the overall fertilization efficiency in animals. Coffee roasting process influences both the content of polyphenols and the oxidative activity. The lowest levels of active compounds such as caffeine, chlorogenic acid and coffee acids are identified in roasted coffee beans. On the other hand, light coffee and green coffee show the strongest cytotoxic potential and antioxidant properties, and thus the greatest ability to decrease apoptosis by stopping the cell cycle in the S phase. Proteins, such as components of milk, can strongly bind/interact with phenolic compounds (especially, the CGAs) contain in coffee, which may explain the negative influence of milk on its antioxidant properties. Coffee polyphenols have also antiproliferative and antiesterase activities, which may be important in prevention of cancer and neurodegenerative disorders, respectively. In this review, biological properties of tea and coffee polyphenols, observed mainly in in vitro studies have been described. Based on these findings, future directions of the research works on these compounds have been suggested.
Collapse
Affiliation(s)
- Przemysław LIczbiński
- Department of Environmental Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Bożena Bukowska
- Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, University of Lodz, Lodz, Poland
| |
Collapse
|
29
|
Anemopsis californica Attenuates Photoaging by Regulating MAPK, NRF2, and NFATc1 Signaling Pathways. Antioxidants (Basel) 2021; 10:antiox10121882. [PMID: 34942986 PMCID: PMC8698643 DOI: 10.3390/antiox10121882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
Long-term exposure of the skin to solar radiation causes chronic inflammation and oxidative stress, which accelerates collagen degradation. This contributes to the formation of wrinkles and dark spots, skin fragility, and even skin cancer. In this study, Anemopsis californica (AC), a herb from North America that is well known for treating microorganism infection and promoting wound healing, was investigated for its photoprotective effects. The biological effects of AC were studied on two in vitro models, namely, lipopolysaccharide (LPS)-induced macrophages and ultraviolet B (UVB)-irradiated dermal fibroblasts, to characterize its underlying molecular mechanisms. The results showed that AC decreased the mRNA levels of inflammatory mediators in sensitized macrophages, including cytokines, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX-2). Moreover, AC alleviated UVB-induced photoaging in dermal fibroblasts by restoring procollagen synthesis. This resulted from the regulation of excessive reactive oxygen species (ROS) by AC, which was mediated by the activation of the antioxidative system nuclear factor erythroid 2-related factor 2 (NRF2). AC also alleviated oxidative stress and inflammatory responses by inhibiting the phosphorylation of mitogen-activated protein kinase (MAPK) and interfering with the nuclear translocation of the immune regulator nuclear factor of activated T-cells 1 (NFATc1). In conclusion, the protective effects of AC on skin cellular components suggested that it has the potential for use in the development of drugs and cosmetics that protect the skin from UVB-induced chronic inflammation and aging.
Collapse
|
30
|
Khalil Alyahya H, Subash-Babu P, Mohammad Salamatullah A, Hayat K, Albader N, Alkaltham MS, Ahmed MA, Arzoo S, Bourhia M. Quantification of Chlorogenic Acid and Vanillin from Coffee Peel Extract and its Effect on α-Amylase Activity, Immunoregulation, Mitochondrial Oxidative Stress, and Tumor Suppressor Gene Expression Levels in H 2O 2-Induced Human Mesenchymal Stem Cells. Front Pharmacol 2021; 12:760242. [PMID: 34795590 PMCID: PMC8593645 DOI: 10.3389/fphar.2021.760242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Polyphenols and flavonoid-rich foods help in arresting reactive oxygen species development and protecting DNA from oxidative damage. Coffee peel (CP) preparations are consumed as beverages, and their total polyphenol or flavonoid content and their effect on oxidative stress-induced human mesenchymal stem cells (hMSCs) are poorly understood. Method: We prepared hot water extracts of CP (CPE) and quantified the amount of total polyphenol and flavonoid using HPLC analysis. In addition, CPE have been studied for their α-amylase inhibitory effect and beneficial effects in oxidative stress-induced hMSCs. Results: The obtained results show that the availability of chlorogenic acid, vanillin, and salicylic acid levels in CPE is more favorable for enhancing cell growth, nuclear integrity, and mitochondrial efficiency which is confirmed by propidium iodide staining and JC-1 staining. CPE treatment to hMSCs for 48 h reduced oxidative stress by decreasing mRNA expression levels of LPO and NOX-4 and in increasing antioxidant CYP1A, GSH, GSK-3β, and GPX mRNA expressions. Decreased pro-inflammatory (TNF-α, NF-κβ, IL-1β, TLR-4) and increased tumor suppressor genes (except Bcl-2) such as Cdkn2A, p53 expressions have been observed. Conclusions: The availability of CGA in CPs effectively reduced mitochondrial oxidative stress, reduced pro-inflammatory cytokines, and increased tumor suppressor genes.
Collapse
Affiliation(s)
- Heba Khalil Alyahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Pandurangan Subash-Babu
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Khizar Hayat
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nawal Albader
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Saeed Alkaltham
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Asif Ahmed
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shaista Arzoo
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Chemistry-Biochemistry, Environment, Nutrition and Health, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| |
Collapse
|
31
|
The Analysis of Chlorogenic Acid and Caffeine Content and Its Correlation with Coffee Bean Color under Different Roasting Degree and Sources of Coffee (Coffea arabica Typica). Processes (Basel) 2021. [DOI: 10.3390/pr9112040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Coffee is one of the main economic crops in the world and is now widely grown throughout Taiwan. The process of roasting coffee begins with the heating and smooth expansion of raw beans, which leads to changes in appearance and color while affecting the flavor and taste of coffee. So far, most coffee manufacturers have used visual inspection or colorimeter methods to identify differences in coffee quality. Moreover, there is no literature discussing the correlation of roasted bean color with caffeine and chlorogenic acid content. Therefore, the purpose of this experiment was to analyze the chlorogenic acid and caffeine content and their correlation with bean color under different roasting degrees and from different sources to establish basic data for the rapid identification of coffee quality in the future. In this experiment, the coffee Coffea arabica typica from Dongshan, Gukeng, and Sumatra’s Indonesian rainforest was used, and the beans were roasted into four degrees: raw bean, light, medium, and dark roast, to investigate the appearance of the coffee beans and its correlation with caffeine and chlorogenic acid content. The results showed that with a higher roasting degree, caffeine content increased gradually, except for Indonesian beans, but the chlorogenic acid content in all samples showed a declining trend with the increase in roasting degree. The correlation between the chlorogenic acid content and the color space value of the coffee bean color shows that L*, a*, and h° in both ground and unground coffee are highly correlated. The C* value of the ground and unground coffee showed a correlation coefficient of r = 0.159 ns and 0.299 ns, respectively. The correlation between the caffeine content and the color space value of the unground coffee bean shows that the a*, b*, and C* value is highly correlated with the caffeine content. The color space values of ground coffee beans show no correlation with caffeine.
Collapse
|
32
|
Zaeri S, Karami F, Assadi M. Propranolol-loaded electrospun nanofibrous wound dressing: From fabrication and characterization to preliminary wound healing evaluation. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1279-1291. [PMID: 35083016 PMCID: PMC8751740 DOI: 10.22038/ijbms.2021.57770.12857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/08/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The wound healing potential of beta-blocker drugs such as propranolol (PNL) has recently attracted attention. To date, incorporation of PNL into electrospun nanofibrous wound dressing mats has not been tested as a novel topical drug delivery system. Presently, electrospun nanofibrous mats loaded with PNL were fabricated, and their physicochemical properties and wound healing activities were evaluated. MATERIALS AND METHODS Polyvinyl alcohol solutions containing 0, 2% or 4% (wt/vol) PNL were electrospun into mats, and the physicochemical properties and PNL release were evaluated. In vitro biocompatibility of selected PNL-loaded mats was tested in human foreskin fibroblasts and wound healing capability was evaluated in mouse skin wounds. RESULTS The 4% PNL mat had thin fibers (160 nm), convincing porosity (79.5%), and good hydrophilicity (swelling: 89.1%, water contact angle: 42.1°) with little degradability (14.2%). The release of PNL was not in bursts and was best explained by the Korsmeyer-Peppas equation (R2 = 0.96, n = 0.40), suggesting Fickian release. The viability of fibroblasts was 173% on day 5 of incubation with 4% PNL mats, indicating good mat biocompatibility. In vivo treatment for 14 days with 4% PNL mats resulted in wounds with a surface area of only 9% of the original wound area. These wounds had better histopathologic characteristics and were associated with less oxidative stress. CONCLUSION The wound dressing fabricated with 4% PNL showed good potential for wound healing because of a favorable drug release profile from the nanofiber scaffold, and can be considered eligible for further clinical research.
Collapse
Affiliation(s)
- Sasan Zaeri
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fatemeh Karami
- Department of Pharmacology, School of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus
| | - Majid Assadi
- Nuclear Medicine and Molecular Imaging Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
33
|
Al-Harbi LN, Pandurangan SB, Al-Dossari AM, Shamlan G, Salamatullah AM, Alshatwi AA, Alotiby AA. Beta vulgaris rubra L. (Beetroot) Peel Methanol Extract Reduces Oxidative Stress and Stimulates Cell Proliferation via Increasing VEGF Expression in H 2O 2 Induced Oxidative Stressed Human Umbilical Vein Endothelial Cells. Genes (Basel) 2021; 12:genes12091380. [PMID: 34573361 PMCID: PMC8466581 DOI: 10.3390/genes12091380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
The antioxidant capacity of polyphenols and flavonoids present in dietary agents aids in arresting the development of reactive oxygen species (ROS) and protecting endothelial smooth muscle cells from oxidative stress/induced necrosis. Beetroot (Beta vulgaris var. rubra L.; BVr) is a commonly consumed vegetable representing a rich source of antioxidants. Beetroot peel’s bioactive compounds and their role in human umbilical vein endothelial cells (HUVECs) are still under-researched. In the present study, beetroot peel methanol extract (BPME) was prepared, and its effect on the bio-efficacy, nuclear integrity, mitochondrial membrane potential and vascular cell growth, and immunoregulation-related gene expression levels in HUVECs with induced oxidative stress were analysed. Gas chromatography–mass spectroscopy (GC-MS) results confirmed that BPME contains 5-hydroxymethylfurfural (32.6%), methyl pyruvate (15.13%), furfural (9.98%), and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-Pyran-4-one (12.4%). BPME extract effectively enhanced cell proliferation and was confirmed by MTT assay; the nuclear integrity was confirmed by propidium iodide (PI) staining assay; the mitochondrial membrane potential (Δψm) was confirmed by JC-1 staining assay. Annexin V assay confirmed that BPME-treated HUVECs showed 99% viable cells, but only 39.8% viability was shown in HUVECs treated with H2O2 alone. In addition, BPME treatment of HUVECs for 48 h reduced mRNA expression of lipid peroxide (LPO) and increased NOS-3, Nrf-2, GSK-3β, GPX, endothelial nitric oxide synthase (eNOS) and vascular cell growth factor (VEGF) mRNA expression levels. We found that BPME treatment decreased proinflammatory (nuclear factor-κβ (F-κβ), tissue necrosis factor-α (TNF-α), toll-like receptor-4 (TLR-4), interleukin-1β (IL-1β)) and vascular inflammation (intracellular adhesion molecule (ICAM), vascular cell adhesion molecule (VCAM), EDN1, IL-1β)-related mRNA expressions. In conclusion, beetroot peel treatment effectively increased vascular smooth cell growth factors and microtubule development, whereas it decreased vascular inflammatory regulators. BPME may be beneficial for vascular smooth cell regeneration, tissue repair and anti-ageing potential.
Collapse
Affiliation(s)
- Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
- Correspondence:
| | - Subash-Babu Pandurangan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Alhanouf Mohammed Al-Dossari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Ali A Alshatwi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Amna Abdullah Alotiby
- Department of Haematology and Immunology, Faculty of Medicine, Umm Alqura University, Makkah 24237, Saudi Arabia;
| |
Collapse
|
34
|
Phenolic Extract from Aralia nudicaulis L. Rhizomes Inhibits Cellular Oxidative Stresses. Molecules 2021; 26:molecules26154458. [PMID: 34361611 PMCID: PMC8347711 DOI: 10.3390/molecules26154458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
UV-B and IR-A radiation are important inducers of biological changes in skin involving ROS generation. The overloading of antioxidant defense mechanisms by ROS production could lead to photoaging and photocarcinogenesis processes. Various traditional usages are reported for Aralia nudicaulis L. extracts, including treatment of dermatological disorders. Antioxidant and anti-inflammatory properties have already been reported for other Aralia species possibly due to the presence of phenolic compounds. However, the phenolic composition and the potential activity of A. nudicaulis rhizomes extract against oxidative stress and UV/IR damages have not been investigated. The main aims of this study were to prepare a fraction enriched in phenolic compounds (FEPC) from A. nudicaulis rhizomes, to identify its major phenolic compounds and to assess its potential for protective effects against oxidative stress induced by UV-B, IR-A or inflammation. A quantitative LC-MS study of FEPC shows that chlorogenic, caffeic and protocatechuic acids are the main phenolic compounds present, with concentrations of 15.6%, 15.3% and 4.8% of the total composition, respectively. With a validated analytical method, those compounds were quantified over different stages of the growing period. As for biological potential, first this extract demonstrates antioxidant and anti-inflammatory activities. Furthermore, ROS generation induced by IR-A and UV-B were strongly inhibited by A. nudicaulis extract, suggesting that Aralia nudicaulis L. rhizome extract could protect dermal cells against oxidative stress induced by UV-B and IR-A.
Collapse
|
35
|
Lv QZ, Long JT, Gong ZF, Nong KY, Liang XM, Qin T, Huang W, Yang L. Current State of Knowledge on the Antioxidant Effects and Mechanisms of Action of Polyphenolic Compounds. Nat Prod Commun 2021; 16:1934578X2110277. [DOI: 10.1177/1934578x211027745] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Quality-of-life improvements have resulted in increasing attention being paid to research on antiaging and antioxidation. Polyphenols are natural antioxidants with excellent biological activities, such as antioxidation and scavenging of free radicals and antiviral activity. Abundant availability and low toxicity of polyphenols have attracted the attention of researchers. In this paper, the antioxidant activities of flavonoids, phenolic acids, stilbenes and lignan polyphenols are analyzed, the corresponding antioxidant mechanisms are investigated, and the antioxidant effects of polyphenols are systematically reviewed. Thus, an effective reference based on the recent literature is compiled for the study of the antioxidant mechanisms of polyphenols that provides a significant theoretical basis for the development of products that are components of polyphenols.
Collapse
Affiliation(s)
- Qi-zhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, PR China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, PR China
| | - Jin-tao Long
- College of Biology & Pharmacy, Yulin Normal University, PR China
| | - Zi-feng Gong
- College of Biology & Pharmacy, Yulin Normal University, PR China
| | - Ke-yi Nong
- College of Biology & Pharmacy, Yulin Normal University, PR China
| | - Xiao-mei Liang
- College of Biology & Pharmacy, Yulin Normal University, PR China
| | - Ting Qin
- College of Biology & Pharmacy, Yulin Normal University, PR China
| | - Wei Huang
- College of Biology & Pharmacy, Yulin Normal University, PR China
| | - Lei Yang
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiangxi, China
| |
Collapse
|
36
|
Seyedian R, Isavi F, Najafiasl M, Zaeri S. Electrospun fibers loaded with Cordia myxa L. fruit extract: Fabrication, characterization, biocompatibility and efficacy in wound healing. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Synthesis, Structural, Morphological and Thermal Characterization of Five Different Silica-Polyethylene Glycol-Chlorogenic Acid Hybrid Materials. Polymers (Basel) 2021; 13:polym13101586. [PMID: 34069126 PMCID: PMC8156718 DOI: 10.3390/polym13101586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 11/26/2022] Open
Abstract
The present study investigated the structure, morphology, thermal behavior, and bacterial growth analysis of novel three-component hybrid materials synthesized by the sol-gel method. The inorganic silica matrix was weakly bonded to the network of two organic components: a well-known polymer such as polyethylene glycol (PEG, average molar mass of about 4000 g/mol), and an antioxidant constituted by chlorogenic acid (CGA). In particular, a first series was made by a 50 wt% PEG-based (CGA-free) silica hybrid along with two 50 wt% PEG-based hybrids containing 10 and 20 wt% of CGA (denoted as SP50, SP50C10 and SP50C20, respectively). A second series contained a fixed amount of CGA (20 wt%) in silica-based hybrids: one was the PEG-free material (SC20) and the other two contained 12 and 50 wt% of PEG, respectively (SP12C20 and SP50C20, respectively), being the latter already included in the first series. The X-ray diffraction (XRD) patterns and scanning electron microscope (SEM) images of freshly prepared materials confirmed that all the materials were amorphous and homogeneous regardless of the content of PEG or CGA. The thermogravimetric (TG) analysis revealed a higher water content was adsorbed into the two component hybrids (SP50 and SC20) because of the availability of a larger number of H-bonds to be formed with water with respect to those of silica/PEG/CGA (SPC), where silica matrix was involved in these bonds with both organic components. Conversely, the PEG-rich materials (SP50C10 and SP50C20, both with 50 wt% of the polymer) retained a lower content of water. Decomposition of PEG and CGA occurred in almost the same temperature interval regardless of the content of each organic component. The antibacterial properties of the SiO2/PEG/CGA hybrid materials were studied in pellets using either Escherichia coli and Enterococcus faecalis, respectively. Excellent antibacterial activity was found against both bacteria regardless of the amount of polymer in the hybrids.
Collapse
|
38
|
Kunchana K, Jarisarapurin W, Chularojmontri L, Wattanapitayakul SK. Potential Use of Amla ( Phyllanthus emblica L.) Fruit Extract to Protect Skin Keratinocytes from Inflammation and Apoptosis after UVB Irradiation. Antioxidants (Basel) 2021; 10:antiox10050703. [PMID: 33946757 PMCID: PMC8146754 DOI: 10.3390/antiox10050703] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/29/2022] Open
Abstract
Ultraviolet B (UVB) exposure is the primary risk factor for the deadliest type of skin cancer—melanoma. Incorporating natural antioxidants in skin protection products is currently a favored research theme. For this study, we selected Phyllanthus emblica L. fruit extract (PE) to assess its potential use in dermal protection against UVB-induced keratinocyte inflammation and apoptosis. High-performance liquid chromatography (HPLC) was used to investigate PE’s phytochemical constituents (ascorbic acid, ellagic acid, gallic acid, chlorogenic acid, and quercetin), while ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), total ROS, OH•, O2•−, and H2O2-scavenging activities were used to determine the antioxidant properties. PE significantly increased the cell viability (MTT assay) and reduced apoptosis (Hoechst staining) in HaCaT cells exposed to UVB (40 mJ/cm2). PE abolished oxidative stress by reducing the production of intracellular ROS, O2•− and H2O2 production. Catalase activity (but not superoxide dismutase or glutathione peroxidase activity) was enhanced in keratinocytes incubated with PE prior to UVB exposure. Western blot analysis suggested that PE inhibited cytochrome c release and inhibited the dysregulation of PI3K/Akt without any impact on p38 activation. PE attenuated the inflammatory response to UVB irradiation by inhibiting AP-1, NF-κB, and the mediator PGE2. Thus, PE is a candidate with great potential for use as an active ingredient in skin care products.
Collapse
Affiliation(s)
- Khwandow Kunchana
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; (K.K.); (W.J.)
| | - Wattanased Jarisarapurin
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; (K.K.); (W.J.)
| | - Linda Chularojmontri
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Khlong Luang, Pathum Thani 12121, Thailand;
| | - Suvara K. Wattanapitayakul
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; (K.K.); (W.J.)
- Correspondence: ; Tel.: +66-2649-5385
| |
Collapse
|
39
|
Lukitasari M, Saifur Rohman M, Nugroho DA, Widodo N, Nugrahini NIP. Cardiovascular protection effect of chlorogenic acid: focus on the molecular mechanism. F1000Res 2021; 9:1462. [PMID: 33708382 PMCID: PMC7927207 DOI: 10.12688/f1000research.26236.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 01/08/2023] Open
Abstract
Vascular endothelial cells have a variety of functions such as the control of blood coagulation, vascular permeability, and tone regulation, as well as quiesce of immune cells. Endothelial dysfunction is a cardiovascular events predictor, which is considered the initial stage in atherosclerosis development. It is characterized by alterations in endothelium functions due to imbalanced vasodilators and vasoconstrictors, procoagulant and anticoagulant mediators, as well as growth inhibitor and promotor substances. Chlorogenic acid (CGA) is the primary polyphenol in coffee and some fruits. It has many health-promoting properties, especially in the cardiovascular system. Many studies investigated the efficacy and mechanism of this compound in vascular health. CGA has several vascular benefits such as anti-atherosclerosis, anti-thrombosis, and anti-hypertensive. This review focuses on the molecular mechanism of CGA in vascular health.
Collapse
Affiliation(s)
- Mifetika Lukitasari
- Department of Nursing, Faculty of Medicine, Brawijaya University, Malang, East java, +62, Indonesia
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Brawijaya University-Saiful Anwar General Hospital, Malang, East java, +62, Indonesia
| | - Dwi Adi Nugroho
- Department of Herbal Medicine, Cardiovascular research group, Faculty of Medicine, Brawijaya University, Malang, East java, +62, Indonesia
| | - Nashi Widodo
- Department of Biology, Faculty of Mathematics and Natural Science, Brawijaya University, Malang, East java, +62, Indonesia
| | - Nur Ida Panca Nugrahini
- Department Agricultural Product Technology, Brawijaya University, Malang, East java, +62, Indonesia
| |
Collapse
|
40
|
Boby N, Abbas MA, Lee EB, Im ZE, Hsu WH, Park SC. Protective Effect of Pyrus ussuriensis Maxim. Extract against Ethanol-Induced Gastritis in Rats. Antioxidants (Basel) 2021; 10:antiox10030439. [PMID: 33809380 PMCID: PMC8002011 DOI: 10.3390/antiox10030439] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pyrus ussuriensis Maxim (Korean pear) has been used for hundreds of years as a traditional herbal medicine for asthma, cough, and atopic dermatitis in Korea and China. Although it was originally shown to possess anti-inflammatory, antioxidant, and antiatopic properties, its gastroprotective effects have not been investigated. In the present study, we evaluated the protective effects of Pyrus ussuriensis Maxim extract (PUE) against ethanol-induced gastritis in rats. The bioactive compound profile of PUE was determined by gas chromatography mass spectroscopy (GC-MS) and high-performance liquid chromatography (HPLC). The gastroprotection of PUE at different doses (250 and 500 mg/kg body weight) prior to ethanol ingestion was evaluated using an in vivo gastritis rat model. Several endpoints were evaluated, including gastric mucosal lesions, cellular degeneration, intracellular damage, and immunohistochemical localization of leucocyte common antigen. The gastric mucosal injury and ulcer score were determined by evaluating the inflamed gastric mucosa and by histological examination. To identify the mechanisms of gastroprotection by PUE, antisecretory action and plasma prostaglandin E2 (PGE2), gastric mucosal cyclic adenosine monophosphate (cAMP), and histamine levels were measured. PUE exhibited significant antioxidant effects with IC50 values of 56.18 and 22.49 µg/mL for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′- azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) inhibition (%), respectively. In addition, GC/MS and HPLC analyses revealed several bioactive compounds of PUE. Pretreatment with PUE significantly (p < 0.05) decreased the ulcer index by preventing gastric mucosal lesions, erosion, and cellular degeneration. An immunohistochemical analysis revealed that PUE markedly attenuated leucocyte infiltration in a dose-dependent manner. The enhancement of PGE2 levels and attenuation of cAMP levels along with the inhibition of histamine release following PUE pretreatment was associated with the cytoprotective and healing effects of PUE. In contrast, the downregulation of the H+/K+ ATPase pathway as well as muscarinic receptor (M3R) and histamine receptor (H2R) inhibition was also involved in the gastroprotective effects of PUE; however, the expression of cholecystokinin-2 receptors (CCK2R) was unchanged. Finally, no signs of toxicity were observed following PUE treatment. Based on our results, we conclude that PUE represents an effective therapeutic option to reduce the risk of gastritis and warrants further study.
Collapse
Affiliation(s)
- Naila Boby
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (N.B.); (M.A.A.); (E.-B.L.)
| | - Muhammad Aleem Abbas
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (N.B.); (M.A.A.); (E.-B.L.)
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (N.B.); (M.A.A.); (E.-B.L.)
| | - Zi-Eum Im
- Institute of Forest Resources Development, Gyeongsangbuk-do, Andong-si, Gyeongsangbuk-do 36605, Korea;
| | - Walter H. Hsu
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (N.B.); (M.A.A.); (E.-B.L.)
- Correspondence: ; Tel.: +82-53-950-5964
| |
Collapse
|
41
|
Mallamaci R, Budriesi R, Clodoveo ML, Biotti G, Micucci M, Ragusa A, Curci F, Muraglia M, Corbo F, Franchini C. Olive Tree in Circular Economy as a Source of Secondary Metabolites Active for Human and Animal Health Beyond Oxidative Stress and Inflammation. Molecules 2021; 26:molecules26041072. [PMID: 33670606 PMCID: PMC7922482 DOI: 10.3390/molecules26041072] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022] Open
Abstract
Extra-virgin olive oil (EVOO) contains many bioactive compounds with multiple biological activities that make it one of the most important functional foods. Both the constituents of the lipid fraction and that of the unsaponifiable fraction show a clear action in reducing oxidative stress by acting on various body components, at concentrations established by the European Food Safety Authority's claims. In addition to the main product obtained by the mechanical pressing of the fruit, i.e., the EVOO, the residual by-products of the process also contain significant amounts of antioxidant molecules, thus potentially making the Olea europea L. an excellent example of the circular economy. In fact, the olive mill wastewaters, the leaves, the pomace, and the pits discharged from the EVOO production process are partially recycled in the nutraceutical and cosmeceutical fields also because of their antioxidant effect. This work presents an overview of the biological activities of these by-products, as shown by in vitro and in vivo assays, and also from clinical trials, as well as their main formulations currently available on the market.
Collapse
Affiliation(s)
- Rosanna Mallamaci
- Department of Bioscience, Biotechnology and Biopharmaceutics, University Aldo Moro Bari, 70125 Bari, Italy;
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology, Food Chemistry & Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; (R.B.); (G.B.); (M.M.)
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, University Aldo Moro Bari, 702125 Bari, Italy;
| | - Giulia Biotti
- Department of Pharmacy and Biotechnology, Food Chemistry & Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; (R.B.); (G.B.); (M.M.)
| | - Matteo Micucci
- Department of Pharmacy and Biotechnology, Food Chemistry & Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; (R.B.); (G.B.); (M.M.)
| | - Andrea Ragusa
- Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, 73100 Lecce, Italy;
| | - Francesca Curci
- Department of Pharmacy-Drug Sciences, University Aldo Moro Bari, 70125 Bari, Italy; (F.C.); (M.M.); (C.F.)
| | - Marilena Muraglia
- Department of Pharmacy-Drug Sciences, University Aldo Moro Bari, 70125 Bari, Italy; (F.C.); (M.M.); (C.F.)
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University Aldo Moro Bari, 70125 Bari, Italy; (F.C.); (M.M.); (C.F.)
- Correspondence: ; Tel.: +39-0805442746
| | - Carlo Franchini
- Department of Pharmacy-Drug Sciences, University Aldo Moro Bari, 70125 Bari, Italy; (F.C.); (M.M.); (C.F.)
| |
Collapse
|
42
|
Seyedian R, Shabankareh Fard E, Hashemi SS, Hasanzadeh H, Assadi M, Zaeri S. Diltiazem-loaded electrospun nanofibers as a new wound dressing: fabrication, characterization, and experimental wound healing. Pharm Dev Technol 2020; 26:167-180. [PMID: 33213235 DOI: 10.1080/10837450.2020.1852420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Calcium channel blockers such as diltiazem have recently been investigated for their wound-healing potential. The aims of this study were to fabricate diltiazem-loaded nanofibers for a new wound dressing and investigate their beneficial properties for wound healing. Nanofibers were electrospun using polyvinyl alcohol solution containing 0, 2 or 4% diltiazem. Fibers were characterized in terms of physicochemical properties, drug release and fibroblast viability, and in animal wound healing assays. Compared to other formulations, nanofibers containing 4% diltiazem showed thin fiber size (152.7 nm), high porosity (88.4%), high swelling (110.4%), low water contact angle (29.1°) and little weight loss (17.3%). Drug release from 4%-diltiazem nanofibers showed good fit to a Korsmeyer-Peppas model, suggesting a non-Fickian release mechanism (R 2 = 96%, n = 0.52). In vitro, 4%-diltiazem mats were not cytotoxic and enhanced fibroblast proliferation by 263% after 5 days of treatment compared to control. In vivo, wounds treated with this mat for 14 days showed the smallest size (14.7%) and better histopathologic characteristics compared to other wounds. The 4%-diltiazem mat also demonstrated significant antioxidant activity by reducing tissue MDA and nitrite levels by 63 and 59% compared to normal saline. The findings support the eligibility of this novel wound dressing for additional clinical research.
Collapse
Affiliation(s)
- Ramin Seyedian
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Elham Shabankareh Fard
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyede Sahar Hashemi
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hossein Hasanzadeh
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Majid Assadi
- Nuclear Medicine and Molecular Imaging Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sasan Zaeri
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
43
|
Her Y, Lee TK, Kim JD, Kim B, Sim H, Lee JC, Ahn JH, Park JH, Lee JW, Hong J, Kim SS, Won MH. Topical Application of Aronia melanocarpa Extract Rich in Chlorogenic Acid and Rutin Reduces UVB-Induced Skin Damage via Attenuating Collagen Disruption in Mice. Molecules 2020; 25:E4577. [PMID: 33036412 PMCID: PMC7582310 DOI: 10.3390/molecules25194577] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Aronia melanocarpa, a black chokeberry, contains high levels of phenolic acids and polyphenolic flavonoids and displays antioxidative and anti-inflammatory effects. Through high-performance liquid chromatography for extracts from Aronia melanocarpa, we discovered that the extract contained chlorogenic acid and rutin as major ingredients. In this study, we examined the protective effects of the extract against ultraviolet B- (UVB)-induced photodamage in the dorsal skin of institute of cancer research (ICR) mice. Their dorsal skin was exposed to UVB, thereafter; the extract was topically applied once a day for seven days. Photoprotective properties of the extract in the dorsal skin were investigated by clinical skin severity score for skin injury, hematoxylin and eosin staining for histopathology, Masson's trichrome staining for collagens. In addition, we examined change in collagen type I and III, and matrix metalloproteinase (MMP)-1 and MMP-3 by immunohistochemistry. In the UVB-exposed mice treated with the extract, UVB-induced epidermal damage was significantly ameliorated, showing that epidermal thickness was moderated. In these mice, immunoreactivities of collagen type I and III were significantly increased, whereas immunoreactivities of MMP-1 and 3 were significantly decreased compared with those in the UVB-exposed mice. These results indicate that treatment with Aronia melanocarpa extract attenuates UV-induced photodamage by attenuating UVB-induced collagen disruption: these findings might be a result of the chlorogenic acid and rutin contained in the extract. Based on the current results, we suggest that Aronia melanocarpa can be a useful material for developing photoprotective adjuvant.
Collapse
Affiliation(s)
- Young Her
- Department of Dermatology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Gangwon 24289, Korea;
| | - Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Korea;
| | - Jong Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.); (J.H.A.)
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.); (J.H.A.)
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.); (J.H.A.)
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.); (J.H.A.)
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan, Gyeongnam 50510, Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Korea;
| | - Ji-Won Lee
- Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Korea; (J.-W.L.); (J.H.)
| | - Junkee Hong
- Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Korea; (J.-W.L.); (J.H.)
| | - Sung-Su Kim
- Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Korea; (J.-W.L.); (J.H.)
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.); (J.H.A.)
| |
Collapse
|
44
|
Hayakawa S, Ohishi T, Miyoshi N, Oishi Y, Nakamura Y, Isemura M. Anti-Cancer Effects of Green Tea Epigallocatchin-3-Gallate and Coffee Chlorogenic Acid. Molecules 2020; 25:molecules25194553. [PMID: 33027981 PMCID: PMC7582793 DOI: 10.3390/molecules25194553] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Tea and coffee are consumed worldwide and epidemiological and clinical studies have shown their health beneficial effects, including anti-cancer effects. Epigallocatechin gallate (EGCG) and chlorogenic acid (CGA) are the major components of green tea polyphenols and coffee polyphenols, respectively, and believed to be responsible for most of these effects. Although a large number of cell-based and animal experiments have provided convincing evidence to support the anti-cancer effects of green tea, coffee, EGCG, and CGA, human studies are still controversial and some studies have suggested even an increased risk for certain types of cancers such as esophageal and gynecological cancers with green tea consumption and bladder and lung cancers with coffee consumption. The reason for these inconsistent results may have been arisen from various confounding factors. Cell-based and animal studies have proposed several mechanisms whereby EGCG and CGA exert their anti-cancer effects. These components appear to share the common mechanisms, among which one related to reactive oxygen species is perhaps the most attractive. Meanwhile, EGCG and CGA have also different target molecules which might explain the site-specific differences of anti-cancer effects found in human studies. Further studies will be necessary to clarify what is the mechanism to cause such differences between green tea and coffee.
Collapse
Affiliation(s)
- Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan;
- Correspondence: (S.H.); (M.I.); Tel.: +81-3-3822-2131 (S.H.); +81-54-264-5920 (M.I.)
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka 410-0301, Japan;
| | - Noriyuki Miyoshi
- School of Nutritional and Environmental Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan; (N.M.); (Y.N.)
| | - Yumiko Oishi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan;
| | - Yoriyuki Nakamura
- School of Nutritional and Environmental Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan; (N.M.); (Y.N.)
| | - Mamoru Isemura
- School of Nutritional and Environmental Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan; (N.M.); (Y.N.)
- Correspondence: (S.H.); (M.I.); Tel.: +81-3-3822-2131 (S.H.); +81-54-264-5920 (M.I.)
| |
Collapse
|
45
|
Hernandes LC, Machado ART, Tuttis K, Ribeiro DL, Aissa AF, Dévoz PP, Antunes LMG. Caffeic acid and chlorogenic acid cytotoxicity, genotoxicity and impact on global DNA methylation in human leukemic cell lines. Genet Mol Biol 2020; 43:e20190347. [PMID: 32644097 PMCID: PMC7350414 DOI: 10.1590/1678-4685-gmb-2019-0347] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
Dietary phenolic compounds such as caffeic and chlorogenic acid exert an antiproliferative effect and modulate the gene-specific DNA methylation status in human breast tumor cells, but it remains unclear whether they interfere with global DNA methylation in human leukemia cells. We examined whether caffeic and chlorogenic acid (1-250 µM) exert antitumor action in human promyelocytic leukemia cells (HL-60) and human acute T-cell leukemia cells (Jurkat). Caffeic and chlorogenic acid did not reduce cell viability in the two cell lines, as assessed using the neutral red uptake and MTT assays. These phenolic acids (1-100 μM) neither induced DNA damage (comet assay) nor increased the micronuclei frequency (micronucleus assay) in HL-60 and Jurkat cells, indicating that they were not genotoxic or mutagenic. Analysis of global DNA methylation levels using a 5-mC DNA ELISA kit revealed that chlorogenic acid at a non-cytotoxic concentration (100 μM) induced global DNA hypomethylation in Jurkat cells, but not in HL-60 cells, suggesting that it exerts a cell-specific effect. Caffeic acid did not change global DNA methylation. As other phenolic compounds, chlorogenic acid probably modulates DNA methylation by targeting DNA methyltransferases. The hypomethylating action of chlorogenic acid can be beneficial against hematological malignances whose pathogenic processes involve impairment of DNA methylation.
Collapse
Affiliation(s)
- Lívia Cristina Hernandes
- Universidade de São Paulo - USP, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Ribeirão Preto, SP, Brazil
| | - Ana Rita Thomazela Machado
- Universidade de São Paulo - USP, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Ribeirão Preto, SP, Brazil
| | - Katiuska Tuttis
- Universidade de São Paulo USP, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Diego Luís Ribeiro
- Universidade de São Paulo USP, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Alexandre Ferro Aissa
- Universidade de São Paulo - USP, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Ribeirão Preto, SP, Brazil
| | - Paula Pícoli Dévoz
- Universidade de São Paulo - USP, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Ribeirão Preto, SP, Brazil
| | - Lusânia Maria Greggi Antunes
- Universidade de São Paulo - USP, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Ribeirão Preto, SP, Brazil
| |
Collapse
|
46
|
Phenolic and Anthocyanin Compounds and Antioxidant Activity of Tamarillo ( Solanum betaceum Cav.). Antioxidants (Basel) 2020; 9:antiox9020169. [PMID: 32085645 PMCID: PMC7070485 DOI: 10.3390/antiox9020169] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 12/03/2022] Open
Abstract
This study examined phenolics and anthocyanins present in Amber, Laird’s Large and Mulligan cultivars of tamarillo that were cultivated in Whangarei, Northland of New Zealand. Samples were further separated by their tissue types, peel and pulp. Using LC-MS/MS, twelve polyphenols were quantified and six (ellagic acid, rutin, catechin, epicatechin, kaempferol-3-rutinoside and isorhamnetin-3-rutinoside) were detected for the first time in tamarillo. Mulligan cultivar showed the highest amounts of phenolic and anthocyanin compounds and the highest antioxidant activity. Phenolic compounds were mostly synthesized from shikimic acid route, and chlorogenic acid dominated the profile regardless of cultivar and tissue types. Anthocyanin profile was dominated by delphinidin-3-rutinoside in pulp. Higher amounts of anthocyanins were detected in this study, which may be explained by favourable growth conditions (high light intensity and low temperature) for anthocyanin biosynthesis in New Zealand. Higher antioxidant activity and total phenolic content in peels than in pulps were found when assessed by Cupric Ion-Reducing Antioxidant Capacity (CUPRAC), Ferric Reducing Ability of Plasma (FRAP) and Folin–Ciocalteu assays, and a positive correlation (r > 0.9, p ≤ 0.01) between the three assays was observed. Current findings endorse that tamarillo has a great bioactive potential to be developed further as a functional ingredient with considerable levels of antioxidant compounds and antioxidant activity.
Collapse
|
47
|
Averilla JN, Oh J, Kim JS. Carbon Monoxide Partially Mediates Protective Effect of Resveratrol Against UVB-Induced Oxidative Stress in Human Keratinocytes. Antioxidants (Basel) 2019; 8:E432. [PMID: 31581413 PMCID: PMC6827139 DOI: 10.3390/antiox8100432] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 12/14/2022] Open
Abstract
Based on the antioxidative effect of resveratrol (RES) in mitigating reactive oxygen species (ROS) production through the induction of nuclear factor-erythroid 2-related factor-2 (Nrf2)/heme oxigenase-1 (HO-1) signaling pathway, we investigated whether the protective activity of RES against ROS-mediated cytotoxicity is mediated by intracellular carbon monoxide (CO), a product of HO-1 activity, in ultraviolet B (UVB)-irradiated human keratinocyte HaCaT cells. The cells were exposed to UVB radiation following treatment with RES and/or CO-releasing molecule-2 (CORM-2). RES and/or CORM-2 upregulated HO-1 protein expression, accompanied by a gradual reduction of UVB-induced intracellular ROS levels. CORM-2 reduced intracellular ROS in the presence of tin protoporphyrin IX, an HO-1 inhibitor, indicating that the cytoprotection observed was mediated by intracellular CO and not by HO-1 itself. Moreover, CORM-2 decreased RES-stimulated mitochondrial quantity and respiration and increased the cytosolic protein expressions of radical-scavenging superoxide dismutases, SOD1 and SOD2. Taken together, our observations suggest that RES and intracellular CO act independently, at least partly, in attenuating cellular oxidative stress by promoting antioxidant enzyme expressions and inhibiting mitochondrial respiration in UVB-exposed keratinocytes.
Collapse
Affiliation(s)
- Janice N Averilla
- School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu 41566, Korea.
| | - Jisun Oh
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea.
| | - Jong-Sang Kim
- School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu 41566, Korea.
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
48
|
Zhen AX, Piao MJ, Hyun YJ, Kang KA, Ryu YS, Cho SJ, Kang HK, Koh YS, Ahn MJ, Kim TH, Hyun JW. Purpurogallin Protects Keratinocytes from Damage and Apoptosis Induced by Ultraviolet B Radiation and Particulate Matter 2.5. Biomol Ther (Seoul) 2019; 27:395-403. [PMID: 30419635 PMCID: PMC6609104 DOI: 10.4062/biomolther.2018.151] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/13/2018] [Accepted: 10/06/2018] [Indexed: 11/24/2022] Open
Abstract
Purpurogallin, a natural phenol obtained from oak nutgalls, has been shown to possess antioxidant, anticancer, and anti-inflammatory effects. Recently, in addition to ultraviolet B (UVB) radiation that induces cell apoptosis via oxidative stress, particulate matter 2.5 (PM2.5) was shown to trigger excessive production of reactive oxygen species. In this study, we observed that UVB radiation and PM2.5 severely damaged human HaCaT keratinocytes, disrupting cellular DNA, lipids, and proteins and causing mitochondrial depolarization. Purpurogallin protected HaCaT cells from apoptosis induced by UVB radiation and/or PM2.5. Furthermore, purpurogallin effectively modulates the pro-apoptotic and anti-apoptotic proteins under UVB irradiation via caspase signaling pathways. Additionally, purpurogallin reduced apoptosis via MAPK signaling pathways, as demonstrated using MAPK-p38, ERK, and JNK inhibitors. These results indicate that purpurogallin possesses antioxidant effects and protects cells from damage and apoptosis induced by UVB radiation and PM2.5.
Collapse
Affiliation(s)
- Ao Xuan Zhen
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | - Mei Jing Piao
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | - Yu Jae Hyun
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | - Kyoung Ah Kang
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | - Yea Seong Ryu
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | - Suk Ju Cho
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | - Hee Kyoung Kang
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | - Young Sang Koh
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | - Mee Jung Ahn
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Tae Hoon Kim
- Department of Food Science and Biotechnology, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Jin Won Hyun
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| |
Collapse
|
49
|
Choi SI, Lee JS, Lee S, Cho BY, Choi SH, Han X, Sim WS, Kim YC, Lee BY, Kang IJ, Lee OH. Protective Effects and Mechanisms of Pourthiaea villosa (Thunb.) Decne. Extract on Hydrogen Peroxide-Induced Skin Aging in Human Dermal Fibroblasts. J Med Food 2019; 22:841-850. [PMID: 31094612 DOI: 10.1089/jmf.2018.4379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Skin aging is associated with increased reactive oxygen species (ROS) produced by human cells. These radicals are the main causes of skin aging, and skin cells have developed antioxidant enzymes for protection against ROS-induced damage. Antioxidants play critical roles to prevent ROS-induced aging symptoms. In this study, the antioxidant properties of Pourthiaea villosa (Thunb.) Decne. extract (PVDE) were studied. Human dermal fibroblast (HDF) cells were treated with PVDE to evaluate its antioxidant and antiaging activities and to investigate the underlying mechanisms. The identified compounds were polyols, and phenolic and flavonoid compounds from PVDE by UHPLC-LTQ-IT-MS/MS. PVDE exhibited significant antioxidant effects, as evaluated with reducing power, and ABTS and DPPH radical scavenging activity. Furthermore, PVDE treatment significantly increased antioxidant enzyme expressions and effectively blocked H2O2-induced matrix metalloproteinase activity through MAPK signaling pathways in HDFs. Therefore, these results showed that PVDE affords an advantage of being a functional natural material with antioxidant and antiaging effects for the skin.
Collapse
Affiliation(s)
- Sun-Il Choi
- 1Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Jong Seok Lee
- 2National Institute of Biological Resources, Incheon, Korea
| | - Sarah Lee
- 2National Institute of Biological Resources, Incheon, Korea
| | - Bong-Yeon Cho
- 1Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Seung-Hyun Choi
- 1Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Xionggao Han
- 1Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Wan-Sup Sim
- 1Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Young-Cheul Kim
- 3Department of Nutrition, University of Massachusetts, Amherst, Massachusetts
| | - Boo-Yong Lee
- 4Department of Food Science and Biotechnology, CHA University, Seongnam, Korea
| | - Il-Jun Kang
- 5Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
| | - Ok-Hwan Lee
- 1Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
50
|
Abstract
Chlorogenic acids (CGA) are the main antioxidant compounds in the Western diet, due to their high concentrations in coffee associated with the high consumption of the beverage. Until about 10 years ago, like many other phenolic compounds, CGA were thought to be poorly absorbed in the human digestive system. Along the years, large amounts of information on the absorption and metabolism of these compounds have been unveiled, and today, it is known that, on average, about one third of the consumed CGA from coffee is absorbed in the human gastrointestinal tract, although large inter-individual variation exists. Considering results from in vitro animal and human studies, it is possible to conclude that the antioxidant and anti-inflammatory effects of coffee CGA are responsible for, at least to a certain extent, the association between coffee consumption and lower incidence of various degenerative and non-degenerative diseases, in addition to higher longevity.
Collapse
|