1
|
Heal DJ, Gosden J, Smith SL. A critical assessment of the abuse, dependence and associated safety risks of naturally occurring and synthetic cannabinoids. Front Psychiatry 2024; 15:1322434. [PMID: 38915848 PMCID: PMC11194422 DOI: 10.3389/fpsyt.2024.1322434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Various countries and US States have legalized cannabis, and the use of the psychoactive1 and non-psychoactive cannabinoids is steadily increasing. In this review, we have collated evidence from published non-clinical and clinical sources to evaluate the abuse, dependence and associated safety risks of the individual cannabinoids present in cannabis. As context, we also evaluated various synthetic cannabinoids. The evidence shows that delta-9 tetrahydrocannabinol (Δ9-THC) and other psychoactive cannabinoids in cannabis have moderate reinforcing effects. Although they rapidly induce pharmacological tolerance, the withdrawal syndrome produced by the psychoactive cannabinoids in cannabis is of moderate severity and lasts from 2 to 6 days. The evidence overwhelmingly shows that non-psychoactive cannabinoids do not produce intoxicating, cognitive or rewarding properties in humans. There has been much speculation whether cannabidiol (CBD) influences the psychoactive and potentially harmful effects of Δ9-THC. Although most non-clinical and clinical investigations have shown that CBD does not attenuate the CNS effects of Δ9-THC or synthetic psychoactive cannabinoids, there is sufficient uncertainty to warrant further research. Based on the analysis, our assessment is cannabis has moderate levels of abuse and dependence risk. While the risks and harms are substantially lower than those posed by many illegal and legal substances of abuse, including tobacco and alcohol, they are far from negligible. In contrast, potent synthetic cannabinoid (CB1/CB2) receptor agonists are more reinforcing and highly intoxicating and pose a substantial risk for abuse and harm. 1 "Psychoactive" is defined as a substance that when taken or administered affects mental processes, e.g., perception, consciousness, cognition or mood and emotions.
Collapse
Affiliation(s)
- David J. Heal
- DevelRx Limited, Nottingham, United Kingdom
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | | | | |
Collapse
|
2
|
Lafzi A, Demirci T, Yüce N, Annaç E, Çiçek M, Şişman T. A study on the possible neurotoxic effects of CUMYL-4CN-BINACA in Sprague Dawley rats. Leg Med (Tokyo) 2024; 67:102389. [PMID: 38185093 DOI: 10.1016/j.legalmed.2023.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
Substances such as Δ9-tetrahydrocannabinol (THC) and cannabidiol cross the blood-brain barrier. Detecting the damage of these substances in the brain provides important data in drug abuse studies. The aim of the study is to define the neurotoxicity of a novel synthetic cannabinoid (CUMYL-4CN-BINACA) in the Sprague-Dawley rats. Histopathological, immunohistochemical, behavioral, and biochemical examinations were performed to determine the acute and subacute toxicity of the cannabinoid. Three cannabinoid doses were administered for 2 days in the acute exposure groups and 14 days in the subacute exposure groups. Observations were made for 14 days and various changes such as mortality, injury, and illness were recorded daily. No mortality was determined. Serious pathological changes such as neurodegeneration, focal plague formation, vacuolation, edema, congestion, and fibrosis were observed in the cerebral cortex and hippocampus of the brain in a dose-dependent manner. Brain tissue caspase-3 activity showed that the cannabinoid triggered apoptosis in the rat brain. The detected cellular oxidative stress (higher lipid peroxidation and lower antioxidant enzyme activity) also supported neurotoxicity. Significant behavioral abnormalities were also observed in the acute groups, while no behavioral changes were detected in the subacute groups. This study showed for the first time that CUMYL-4CN-BINACA adversely affects the rat brain. It can be estimated that the abuse of the cannabinoid may harm human health in the same way.
Collapse
Affiliation(s)
- Ayşe Lafzi
- Department of Criminalistics, Graduate School of Natural and Applied Science, Atatürk University, 25240 Erzurum, Turkey.
| | - Tuba Demirci
- Department of Histology and Embryology, Medicine Faculty, Atatürk University, 25240 Erzurum, Turkey.
| | - Neslihan Yüce
- Department of Medical Biochemistry, Medicine Faculty, Atatürk University, 25240 Erzurum, Turkey.
| | - Ebru Annaç
- Department of Histology and Embryology, Medicine Faculty, Adıyaman University, 02040 Adıyaman, Turkey.
| | - Mustafa Çiçek
- Department of Medical Biology and Genetics, Medicine Faculty, Kahramanmaraş Sütçü İmam University, 46050 Kahramanmaraş, Turkey.
| | - Turgay Şişman
- Department of Criminalistics, Graduate School of Natural and Applied Science, Atatürk University, 25240 Erzurum, Turkey; Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, 25240 Erzurum, Turkey.
| |
Collapse
|
3
|
Zhou F, Wang X, Tan S, Shi Y, Xie B, Xiang P, Cong B, Ma C, Wen D. Differential cannabinoid-like effects and pharmacokinetics of ADB-BICA, ADB-BINACA, ADB-4en-PINACA and MDMB-4en-PINACA in mice: A comparative study. Addict Biol 2024; 29:e13372. [PMID: 38380735 PMCID: PMC10898835 DOI: 10.1111/adb.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 12/19/2023] [Indexed: 02/22/2024]
Abstract
Despite synthetic cannabinoids' (SCs) prevalent use among humans, these substances often lack comprehensive pharmacological data, primarily due to their rapid emergence in the market. This study aimed to discern differences and causal factors among four SCs (ADB-BICA, ADB-BINACA, ADB-4en-PINACA and MDMB-4en-PINACA), with respect to locomotor activity, body temperature and nociception threshold. Adult male C57BL/6 mice received intraperitoneal injections of varying doses (0.5, 0.1 and 0.02 mg/kg) of these compounds. Three substances (including ADB-BINACA, ADB-4en-PINACA and MDMB-4en-PINACA) demonstrated dose- and time-dependent hypolocomotive and hypothermic effects. Notably, 0.1 mg/kg MDMB-4en-PINACA exhibited analgesic properties. However, ADB-BICA did not cause any effects. MDMB-4en-PINACA manifested the most potent and sustained effects, followed by ADB-4en-PINACA, ADB-BINACA and ADB-BICA. Additionally, the cannabinoid receptor 1 (CB1R) antagonist AM251 suppressed the effects induced by acute administration of the substances. Analysis of molecular binding configurations revealed that the four SCs adopted a congruent C-shaped geometry, with shared linker binding pockets conducive to robust steric interaction with CB1R. Essential residues PHE268 , PHE200 and SER173 within CB1R were identified as pivotal contributors to enhancing receptor-ligand associations. During LC-MS/MS analysis, 0.5 mg/kg MDMB-4en-PINACA exhibited the highest plasma concentration and most prolonged detection window post-administration. The study of SCs' pharmacological and pharmacokinetic profiles is crucial for better understanding the main mechanisms of cannabinoid-like effects induced by SCs, interpreting clinical findings related to SC uses and enhancing SCs risk awareness.
Collapse
Affiliation(s)
- Fenghua Zhou
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Xiaoli Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Sujun Tan
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Yan Shi
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Judicial Expertise, Department of Forensic ToxicologyAcademy of Forensic Science, Ministry of JusticeShanghaiChina
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Ping Xiang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Judicial Expertise, Department of Forensic ToxicologyAcademy of Forensic Science, Ministry of JusticeShanghaiChina
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
- Key Laboratory of Neural and Vascular BiologyMinistry of EducationShijiazhuangHebei ProvinceChina
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
- Key Laboratory of Neural and Vascular BiologyMinistry of EducationShijiazhuangHebei ProvinceChina
| |
Collapse
|
4
|
Sayson LV, Ortiz DM, Lee HJ, Kim M, Custodio RJP, Yun J, Lee CH, Lee YS, Cha HJ, Cheong JH, Kim HJ. Deletion of Cryab increases the vulnerability of mice to the addiction-like effects of the cannabinoid JWH-018 via upregulation of striatal NF-κB expression. Front Pharmacol 2023; 14:1135929. [PMID: 37007015 PMCID: PMC10060981 DOI: 10.3389/fphar.2023.1135929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Synthetic cannabinoids have exhibited unpredictable abuse liabilities, especially self-administration (SA) responses in normal rodent models, despite seemingly inducing addiction-like effects in humans. Thus, an efficient pre-clinical model must be developed to determine cannabinoid abuse potential in animals and describe the mechanism that may mediate cannabinoid sensitivity. The Cryab knockout (KO) mice were recently discovered to be potentially sensitive to the addictive effects of psychoactive drugs. Herein, we examined the responses of Cryab KO mice to JWH-018 using SA, conditioned place preference, and electroencephalography. Additionally, the effects of repeated JWH-018 exposure on endocannabinoid- and dopamine-related genes in various addiction-associated brain regions were examined, along with protein expressions involving neuroinflammation and synaptic plasticity. Cryab KO mice exhibited greater cannabinoid-induced SA responses and place preference, along with divergent gamma wave alterations, compared to wild-type (WT) mice, implying their higher sensitivity to cannabinoids. Endocannabinoid- or dopamine-related mRNA expressions and accumbal dopamine concentrations after repeated JWH-018 exposure were not significantly different between the WT and Cryab KO mice. Further analyses revealed that repeated JWH-018 administration led to possibly greater neuroinflammation in Cryab KO mice, which may arise from upregulated NF-κB, accompanied by higher expressions of synaptic plasticity markers, which might have contributed to the development of cannabinoid addiction-related behavior in Cryab KO mice. These findings signify that increased neuroinflammation via NF-κB may mediate the enhanced addiction-like responses of Cryab KO mice to cannabinoids. Altogether, Cryab KO mice may be a potential model for cannabinoid abuse susceptibility.
Collapse
Affiliation(s)
- Leandro Val Sayson
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Darlene Mae Ortiz
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Hyun Jun Lee
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry and Life Science, Sahmyook University, Seoul, Republic of Korea
| | - Raly James Perez Custodio
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors—IfADo, Dortmund, Germany
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Chae Hyeon Lee
- Medicinal Chemistry Laboratory, Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Hye Jin Cha
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam–do, Republic of Korea
| | - Jae Hoon Cheong
- Institute for New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
- *Correspondence: Jae Hoon Cheong, ; Hee Jin Kim,
| | - Hee Jin Kim
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
- *Correspondence: Jae Hoon Cheong, ; Hee Jin Kim,
| |
Collapse
|
5
|
Tirri M, Arfè R, Bilel S, Corli G, Marchetti B, Fantinati A, Vincenzi F, De-Giorgio F, Camuto C, Mazzarino M, Barbieri M, Gaudio RM, Varani K, Borea PA, Botrè F, Marti M. In Vivo Bio-Activation of JWH-175 to JWH-018: Pharmacodynamic and Pharmacokinetic Studies in Mice. Int J Mol Sci 2022; 23:ijms23148030. [PMID: 35887377 PMCID: PMC9318133 DOI: 10.3390/ijms23148030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
3-(1-Naphthalenylmethyl)-1-pentyl-1H-indole (JWH-175) is a synthetic cannabinoid illegally marketed for its psychoactive cannabis-like effects. This study aimed to investigate and compare in vitro and in vivo pharmacodynamic activity of JWH-175 with that of 1-naphthalenyl (1-pentyl-1H-indol-3-yl)-methanone (JWH-018), as well as evaluate the in vitro (human liver microsomes) and in vivo (urine and plasma of CD-1 male mice) metabolic profile of JWH-175. In vitro binding studies showed that JWH-175 is a cannabinoid receptor agonist less potent than JWH-018 on mouse and human CB1 and CB2 receptors. In agreement with in vitro data, JWH-175 reduced the fESPS in brain hippocampal slices of mice less effectively than JWH-018. Similarly, in vivo behavioral studies showed that JWH-175 impaired sensorimotor responses, reduced breath rate and motor activity, and increased pain threshold to mechanical stimuli less potently than JWH-018. Metabolic studies demonstrated that JWH-175 is rapidly bioactivated to JWH-018 in mice blood, suggesting that in vivo effects of JWH-175 are also due to JWH-018 formation. The pharmaco-toxicological profile of JWH-175 was characterized for the first time, proving its in vivo bio-activation to the more potent agonist JWH-018. Thus, it highlighted the great importance of investigating the in vivo metabolism of synthetic cannabinoids for both clinical toxicology and forensic purposes.
Collapse
Affiliation(s)
- Micaela Tirri
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Raffaella Arfè
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Sabrine Bilel
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Giorgia Corli
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Beatrice Marchetti
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Fabrizio Vincenzi
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Fabio De-Giorgio
- Section of Legal Medicine, Department of Health Care Surveillance and Bioetics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- A. Gemelli University Polyclinic Foundation IRCCS, 00168 Rome, Italy
| | - Cristian Camuto
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
| | - Monica Mazzarino
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
| | - Mario Barbieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Rosa Maria Gaudio
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
- University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Katia Varani
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Pier Andrea Borea
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Francesco Botrè
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
- Institute of Sport Science, University of Lausanne (ISSUL), Synathlon, CH-1015 Lausanne, Switzerland
| | - Matteo Marti
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
- University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 00186 Rome, Italy
- Correspondence:
| |
Collapse
|
6
|
Tettey JNA, Crean C, Rodrigues J, Angeline Yap TW, Lee Wendy Lim J, Shirley Lee HZ, Ching M. United Nations Office on Drugs and Crime: Recommended methods for the Identification and Analysis of Synthetic Cannabinoid Receptor Agonists in Seized Materials. Forensic Sci Int Synerg 2021; 3:100129. [PMID: 33665591 PMCID: PMC7902557 DOI: 10.1016/j.fsisyn.2020.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Justice N A Tettey
- Laboratory and Scientific Services, United Nations Office on Drugs and Crime, Vienna, Austria
| | - Conor Crean
- United Nations Office on Drugs and Crime, Vienna, Austria
| | - Joao Rodrigues
- United Nations Office on Drugs and Crime, Vienna, Austria
| | | | | | | | - Mei Ching
- Health Sciences Authority, Singapore
| |
Collapse
|
7
|
Δ 9-tetrahydrocannabinol: Drug discrimination abuse liability testing in female Lister Hooded rats: Trials, tribulations and triumphs. J Pharmacol Toxicol Methods 2020; 106:106937. [PMID: 33096236 DOI: 10.1016/j.vascn.2020.106937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The assessment of the abuse potential of CNS-active drugs is a regulatory requirement. Drug discrimination is one of the nonclinical tests that contribute to this assessment by providing information on a drug's potential to induce a discriminative stimulus comparable to that of a known drug of abuse. AIM The objective was to validate drug discrimination in the rat for the purpose of supporting regulatory submissions for novel drugs with potential cannabinoid-like activity. METHODS Ten female Lister hooded rats were trained to discriminate no-drug from Δ9-THC (1.5 mg/kg, IP) under a FR10 schedule of reinforcement. Once trained, a Δ9-THC dose-response curve was obtained using doses of 0.25, 0.75, 1.5, and 3 mg/kg, IP. This was followed by evaluation of amphetamine (0.3 mg/kg, SC); morphine (3 mg/kg, IP); midazolam (2.5 mg/kg, PO); and the synthetic cannabinoids WIN55,212-2 (0.75 to 2 mg/kg, IP), CP-47,497 (0.5 to 2 mg/kg, IP), and JWH-018 (1 mg/kg, IP) for their discriminative stimulus similarity to Δ9-THC. RESULTS Pharmacological specificity was demonstrated by achieving the anticipated dose-response curve for Δ9-THC, and a vehicle-like response for the non-cannabinoid drugs. Although full generalisation was obtained for JWH-018, in contrast to published literature, WIN55,212-2 and CP-47,497 failed to generalise to Δ9-THC. DISCUSSION Based on the literature review performed in light of the results obtained, contrasting and unpredictable behavioural responses produced by cannabinoids in animals and humans raises the question of the reliability and relevance of including drug discrimination and self-administration studies within an abuse potential assessment for novel cannabinoid-like drugs.
Collapse
|
8
|
The potential rewarding and reinforcing effects of the substituted benzofurans 2-EAPB and 5-EAPB in rodents. Eur J Pharmacol 2020; 885:173527. [DOI: 10.1016/j.ejphar.2020.173527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022]
|
9
|
Bilel S, Tirri M, Arfè R, Stopponi S, Soverchia L, Ciccocioppo R, Frisoni P, Strano-Rossi S, Miliano C, De-Giorgio F, Serpelloni G, Fantinati A, De Luca MA, Neri M, Marti M. Pharmacological and Behavioral Effects of the Synthetic Cannabinoid AKB48 in Rats. Front Neurosci 2019; 13:1163. [PMID: 31736697 PMCID: PMC6831561 DOI: 10.3389/fnins.2019.01163] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
AKB48 is a designer drug belonging to the indazole synthetic cannabinoids class, illegally sold as herbal blend, incense, or research chemicals for their psychoactive cannabis-like effects. In the present study, we investigated the in vivo pharmacological and behavioral effects of AKB48 in male rats and measured the pharmacodynamic effects of AKB48 and simultaneously determined its plasma pharmacokinetic. AKB48 at low doses preferentially stimulated dopamine release in the nucleus accumbens shell (0.25 mg/kg) and impaired visual sensorimotor responses (0.3 mg/kg) without affecting acoustic and tactile reflexes, which are reduced only to the highest dose tested (3 mg/kg). Increasing doses (0.5 mg/kg) of AKB48 impaired place preference and induced hypolocomotion in rats. At the highest dose (3 mg/kg), AKB48 induced hypothermia, analgesia, and catalepsy; inhibited the startle/pre-pulse inhibition test; and caused cardiorespiratory changes characterized by bradycardia and mild bradipnea and SpO2 reduction. All behavioral and neurochemical effects were fully prevented by the selective CB1 receptor antagonist/inverse agonist AM251. AKB48 plasma concentrations rose linearly with increasing dose and were correlated with changes in the somatosensory, hypothermic, analgesic, and cataleptic responses in rats. For the first time, this study shows the pharmacological and behavioral effects of AKB48 in rats, correlating them to the plasma levels of the synthetic cannabinoid. Chemical Compound Studied in This Article: AKB48 (PubChem CID: 57404063); AM251 (PubChem CID: 2125).
Collapse
Affiliation(s)
- Sabrine Bilel
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Raffaella Arfè
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy.,Section of Legal Medicine, Institute of Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Serena Stopponi
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Laura Soverchia
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Roberto Ciccocioppo
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Paolo Frisoni
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Sabina Strano-Rossi
- Section of Legal Medicine, Institute of Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristina Miliano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Fabio De-Giorgio
- Section of Legal Medicine, Institute of Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Serpelloni
- Department of Psychiatry in the College of Medicine, Drug Policy Institute, University of Florida, Gainesville, FL, United States
| | - Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Margherita Neri
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Matteo Marti
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy.,Department of Anti-Drug Policies, Presidency of the Council of Ministers, Collaborative Center for the Italian National Early Warning System, Ferrara, Italy
| |
Collapse
|
10
|
|
11
|
Affiliation(s)
- Mary Tresa Zanda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Liana Fattore
- Institute of Neuroscience-Cagliari, National Research Council of Italy, Cittadella Universitaria di Monserrato, Monserrato, Italy
| |
Collapse
|
12
|
Ma SX, Kwon SH, Seo JY, Hwang JY, Hong SI, Kim HC, Lee SY, Jang CG. Impairment of opiate-mediated behaviors by the selective TRPV1 antagonist SB366791. Addict Biol 2017; 22:1817-1828. [PMID: 27730727 DOI: 10.1111/adb.12460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 12/29/2022]
Abstract
Transient receptor potential vanilloid type 1 (TRPV1), the archetypal member of the vanilloid TRP family, was initially identified as the receptor for capsaicin, the pungent ingredient in hot chili peppers. We previously demonstrated that TRPV1 in the dorsal striatum significantly contributes to morphine reward by using the conditioned place preference paradigm in mice; however, it is unknown whether TRPV1 has the same effect in other reward models. In this study, we investigated the role of TRPV1 in morphine reward by using a self-administration paradigm in rats. We found that treatment with a selective TRPV1 antagonist, SB366791, significantly decreased morphine self-administration on a fixed-ratio 1 schedule or a progressive ratio schedule of reinforcement. In addition, treatment with another selective TRPV1 antagonist, AMG9810, not only significantly prevented morphine self-administration but also prevented morphine-induced c-fos expression in the nucleus accumbens. Furthermore, administration of SB366791 decreased an anxiolytic-like effect during the morphine abstinence period. Moreover, treatment with SB366791 significantly decreased morphine-priming reinstatement. Taken together, our findings suggest that blockade of TRPV1 receptors could provide an approach to limiting morphine addiction.
Collapse
Affiliation(s)
- Shi-Xun Ma
- Department of Pharmacology, School of Pharmacy; Sungkyunkwan University; Korea
| | - Seung-Hwan Kwon
- Department of Pharmacology, School of Pharmacy; Sungkyunkwan University; Korea
| | - Jee-Yeon Seo
- Department of Pharmacology, School of Pharmacy; Sungkyunkwan University; Korea
| | - Ji-Young Hwang
- Department of Pharmacology, School of Pharmacy; Sungkyunkwan University; Korea
| | - Sa-Ik Hong
- Department of Pharmacology, School of Pharmacy; Sungkyunkwan University; Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Neurotoxicology Program, College of Pharmacy; Kangwon National University; Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy; Sungkyunkwan University; Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy; Sungkyunkwan University; Korea
| |
Collapse
|
13
|
Ford BM, Tai S, Fantegrossi WE, Prather PL. Synthetic Pot: Not Your Grandfather's Marijuana. Trends Pharmacol Sci 2017; 38:257-276. [PMID: 28162792 PMCID: PMC5329767 DOI: 10.1016/j.tips.2016.12.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/08/2016] [Accepted: 12/13/2016] [Indexed: 01/05/2023]
Abstract
In the early 2000s in Europe and shortly thereafter in the USA, it was reported that 'legal' forms of marijuana were being sold under the name K2 and/or Spice. Active ingredients in K2/Spice products were determined to be synthetic cannabinoids (SCBs), producing psychotropic actions via CB1 cannabinoid receptors, similar to those of Δ9-tetrahydrocannabinol (Δ9-THC), the primary active constituent in marijuana. Often abused by adolescents and military personnel to elude detection in drug tests due to their lack of structural similarity to Δ9-THC, SCBs are falsely marketed as safe marijuana substitutes. Instead, SCBs are a highly structural diverse group of compounds, easily synthesized, which produce very dangerous adverse effects occurring by, as of yet, unknown mechanisms. Therefore, available evidence indicates that K2/Spice products are clearly not safe marijuana alternatives.
Collapse
Affiliation(s)
- Benjamin M Ford
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sherrica Tai
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul L Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
14
|
Botanas CJ, Yoon SS, de la Peña JB, Dela Peña IJ, Kim M, Woo T, Seo JW, Jang CG, Park KT, Lee YH, Lee YS, Kim HJ, Cheong JH. The Abuse Potential of α-Piperidinopropiophenone (PIPP) and α-Piperidinopentiothiophenone (PIVT), Two New Synthetic Cathinones with Piperidine Ring Substituent. Biomol Ther (Seoul) 2017; 25:122-129. [PMID: 28173643 PMCID: PMC5340536 DOI: 10.4062/biomolther.2016.241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/10/2016] [Accepted: 11/24/2016] [Indexed: 11/05/2022] Open
Abstract
A diversity of synthetic cathinones has flooded the recreational drug marketplace worldwide. This variety is often a response to legal control actions for one specific compound (e.g. methcathinone) which has resulted in the emergence of closely related replacement. Based on recent trends, the nitrogen atom is one of the sites in the cathinone molecule being explored by designer type modifications. In this study, we designed and synthesized two new synthetic cathinones, (1) α-piperidinopropiophenone (PIPP) and (2) α-piperidinopentiothiophenone (PIVT), which have piperidine ring substituent on their nitrogen atom. Thereafter, we evaluated whether these two compounds have an abuse potential through the conditioned place preference (CPP) in mice and self-administration (SA) in rats. We also investigated whether the substances can induce locomotor sensitization in mice following 7 days daily injection and challenge. qRT-PCR analyses were conducted to determine their effects on dopamine-related genes in the striatum. PIPP (10 and 30 mg/kg) induced CPP in mice, but not PIVT. However, both synthetic cathinones were not self-administered by the rats and did not induce locomotor sensitization in mice. qRT-PCR analyses showed that PIPP, but not PIVT, reduced dopamine transporter gene expression in the striatum. These data indicate that PIPP, but not PIVT, has rewarding effects, which may be attributed to its ability to affect dopamine transporter gene expression. Altogether, this study suggests that PIPP may have abuse potential. Careful monitoring of this type of cathinone and related drugs are advocated.
Collapse
Affiliation(s)
- Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Seong Shoon Yoon
- Center for Safety Pharmacology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - June Bryan de la Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Irene Joy Dela Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Mikyung Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Taeseon Woo
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Joung-Wook Seo
- Center for Safety Pharmacology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyung-Tae Park
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Young Hun Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yong Sup Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
15
|
Järbe TUC, Raghav JG. Tripping with Synthetic Cannabinoids ("Spice"): Anecdotal and Experimental Observations in Animals and Man. Curr Top Behav Neurosci 2017; 32:263-281. [PMID: 27753006 DOI: 10.1007/7854_2016_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The phenomenon of consuming synthetic cannabinoids ("Spice") for recreational purposes is a fairly recent trend. However, consumption of cannabis dates back millennia, with numerous accounts written on the experience of its consumption, and thousands of scientific reports published on the effects of its constituents in laboratory animals and humans. Here, we focus on consolidating the scientific literature on the effects of "Spice" compounds in various behavioral assays, including assessing abuse liability, tolerance, dependence, withdrawal, and potential toxicity. In most cases, the behavioral effects of "Spice" compounds are compared with those of Δ9-tetrahydrocannabinol. Methodological aspects, such as modes of administration and other logistical issues, are also discussed. As the original "Spice" molecules never were intended for human consumption, scientifically based information about potential toxicity and short- and long-term behavioral effects are very limited. Consequently, preclinical behavioral studies with "Spice" compounds are still in a nascent stage. Research is needed to address the addiction potential and other effects, including propensity for producing tissue/organ toxicity, of these synthetic cannabimimetic "Spice" compounds.
Collapse
Affiliation(s)
- Torbjörn U C Järbe
- Department of Pharmaceutical Sciences, Center for Drug Discovery (CDD), Northeastern University, 116 Mugar Hall, 360 Huntington Ave, Boston, MA, 02115, USA.
| | - Jimit Girish Raghav
- Department of Pharmaceutical Sciences, Center for Drug Discovery (CDD), Northeastern University, 116 Mugar Hall, 360 Huntington Ave, Boston, MA, 02115, USA
| |
Collapse
|
16
|
Weinstein AM, Rosca P, Fattore L, London ED. Synthetic Cathinone and Cannabinoid Designer Drugs Pose a Major Risk for Public Health. Front Psychiatry 2017; 8:156. [PMID: 28878698 PMCID: PMC5572353 DOI: 10.3389/fpsyt.2017.00156] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/08/2017] [Indexed: 12/16/2022] Open
Abstract
As part of an increasing worldwide use of designer drugs, recent use of compounds containing cathinones and synthetic cannabinoids is especially prevalent. Here, we reviewed current literature on the prevalence, epidemiology, bio-behavioral effects, and detection of these compounds. Gender differences and clinical effects will also be examined. Chronic use of synthetic cathinone compounds can have major effects on the central nervous system and can induce acute psychosis, hypomania, paranoid ideation, and delusions, similar to the effects of other better-known amphetamine-type stimulants. Synthetic cannabinoid products have effects that are somewhat similar to those of natural cannabis but more potent and long-lasting than THC. Some of these compounds are potent and dangerous, having been linked to psychosis, mania, and suicidal ideation. Novel compounds are developed rapidly and new screening techniques are needed to detect them as well as a rigorous regulation and legislation reinforcement to prevent their distribution and use. Given the rapid increase in the use of synthetic cathinones and cannabinoid designer drugs, their potential for dependence and abuse, and harmful medical and psychiatric effects, there is a need for research and education in the areas of prevention and treatment.
Collapse
Affiliation(s)
- Aviv M Weinstein
- Department of Behavioral Science, Ariel University, Ariel, Israel
| | - Paola Rosca
- Department for the Treatment of Substance Abuse, Ministry of Health, Jerusalem, Israel
| | - Liana Fattore
- Institute of Neuroscience-Cagliari, National Research Council of Italy, Cagliari, Italy
| | - Edythe D London
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States.,Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, United States.,Brain Research Institute, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
17
|
Botanas CJ, Yoon SS, de la Peña JB, dela Peña IJ, Kim M, Woo T, Seo JW, Jang CG, Park KT, Lee YH, Lee YS, Kim HJ, Cheong JH. A novel synthetic cathinone, 2-(methylamino)-1-(naphthalen-2-yl) propan-1-one (BMAPN), produced rewarding effects and altered striatal dopamine-related gene expression in mice. Behav Brain Res 2017; 317:494-501. [DOI: 10.1016/j.bbr.2016.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/07/2016] [Accepted: 10/09/2016] [Indexed: 01/02/2023]
|
18
|
Yun J, Yoon KS, Lee TH, Lee H, Gu SM, Song YJ, Cha HJ, Han KM, Seo H, Shin J, Park HK, Kim HS, Kim YH. Synthetic cannabinoid, JWH-030, induces QT prolongation through hERG channel inhibition. Toxicol Res (Camb) 2016; 5:1663-1671. [PMID: 30090465 DOI: 10.1039/c6tx00259e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/05/2016] [Indexed: 02/04/2023] Open
Abstract
The problem of new psychoactive substance (NPS) abuse, which includes synthetic cannabinoids, is emerging globally, and the cardiotoxicity of these synthetic cannabinoids has not yet been evaluated extensively. In the present study, we investigated the effects of synthetic cannabinoids on the cytotoxicity, human Ether-à-go-go-related gene (hERG) channel, action potential duration (APD), and QT interval. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that JWH-030 was more cytotoxic than JWH-210, JWH-250, and RCS4 in H9c2 cells at 0.1 μM. In addition, the cytotoxicity was associated with its pro-apoptotic effects as evidenced by the increase in caspase-3 levels. We demonstrated that a cannabinoid receptor type 2 (CB2) antagonist, AM630, inhibited JWH-030-induced cytotoxicity, whereas a CB1 antagonist, rimonabant, did not. Furthermore, fluorescence polarization assay showed JWH-030 to block the hERG channel (half-maximal inhibitory concentration, IC50 was 88.36 μM). JWH-030 significantly reduced the APD at 90% repolarization (APD90) in rabbit Purkinje fibers and decreased the left ventricular end diastolic pressure (LVEDP) in Langendorff-perfused Sprague-Dawley (SD) rat hearts at 30 μM. In addition, the electrocardiogram (ECG) measurement revealed that the intravenous injection of JWH-030 (0.5 mg kg-1) prolonged the QT interval in SD rats. These results suggest that JWH-030 is cytotoxic and its cytotoxicity is mediated by its action on the CB2 receptor; it prolongs the QT interval by regulating ion current channels and APD.
Collapse
Affiliation(s)
- Jaesuk Yun
- National Institute of Drug and Safety Evaluation , Ministry of Food and Drug Safety , Osong , Cheongju , Republic of Korea . ; ; ; Tel: +82-43-719-5202
| | - Kyung Sik Yoon
- National Institute of Drug and Safety Evaluation , Ministry of Food and Drug Safety , Osong , Cheongju , Republic of Korea . ; ; ; Tel: +82-43-719-5202
| | - Tac-Hyung Lee
- National Institute of Drug and Safety Evaluation , Ministry of Food and Drug Safety , Osong , Cheongju , Republic of Korea . ; ; ; Tel: +82-43-719-5202
| | - Hyunjin Lee
- National Institute of Drug and Safety Evaluation , Ministry of Food and Drug Safety , Osong , Cheongju , Republic of Korea . ; ; ; Tel: +82-43-719-5202
| | - Sun Mi Gu
- National Institute of Drug and Safety Evaluation , Ministry of Food and Drug Safety , Osong , Cheongju , Republic of Korea . ; ; ; Tel: +82-43-719-5202
| | - Yun Jeong Song
- National Institute of Drug and Safety Evaluation , Ministry of Food and Drug Safety , Osong , Cheongju , Republic of Korea . ; ; ; Tel: +82-43-719-5202
| | - Hye Jin Cha
- National Institute of Drug and Safety Evaluation , Ministry of Food and Drug Safety , Osong , Cheongju , Republic of Korea . ; ; ; Tel: +82-43-719-5202
| | - Kyoung Moon Han
- National Institute of Drug and Safety Evaluation , Ministry of Food and Drug Safety , Osong , Cheongju , Republic of Korea . ; ; ; Tel: +82-43-719-5202
| | - Hyewon Seo
- National Institute of Drug and Safety Evaluation , Ministry of Food and Drug Safety , Osong , Cheongju , Republic of Korea . ; ; ; Tel: +82-43-719-5202
| | - Jisoon Shin
- National Institute of Drug and Safety Evaluation , Ministry of Food and Drug Safety , Osong , Cheongju , Republic of Korea . ; ; ; Tel: +82-43-719-5202
| | - Hye-Kyung Park
- National Institute of Drug and Safety Evaluation , Ministry of Food and Drug Safety , Osong , Cheongju , Republic of Korea . ; ; ; Tel: +82-43-719-5202
| | - Hyung Soo Kim
- National Institute of Drug and Safety Evaluation , Ministry of Food and Drug Safety , Osong , Cheongju , Republic of Korea . ; ; ; Tel: +82-43-719-5202
| | - Young-Hoon Kim
- National Institute of Drug and Safety Evaluation , Ministry of Food and Drug Safety , Osong , Cheongju , Republic of Korea . ; ; ; Tel: +82-43-719-5202
| |
Collapse
|