1
|
Dries E, Gilbert G, Roderick HL, Sipido KR. The ryanodine receptor microdomain in cardiomyocytes. Cell Calcium 2023; 114:102769. [PMID: 37390591 DOI: 10.1016/j.ceca.2023.102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
The ryanodine receptor type 2 (RyR) is a key player in Ca2+ handling during excitation-contraction coupling. During each heartbeat, RyR channels are responsible for linking the action potential with the contractile machinery of the cardiomyocyte by releasing Ca2+ from the sarcoplasmic reticulum. RyR function is fine-tuned by associated signalling molecules, arrangement in clusters and subcellular localization. These parameters together define RyR function within microdomains and are subject to disease remodelling. This review describes the latest findings on RyR microdomain organization, the alterations with disease which result in increased subcellular heterogeneity and emergence of microdomains with enhanced arrhythmogenic potential, and presents novel technologies that guide future research to study and target RyR channels within specific microdomains.
Collapse
Affiliation(s)
- Eef Dries
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
| | - Guillaume Gilbert
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Laboratoire ORPHY EA 4324, Université de Brest, Brest, France
| | - H Llewelyn Roderick
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Karin R Sipido
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Hamilton S, Terentyev D. ER stress and calcium-dependent arrhythmias. Front Physiol 2022; 13:1041940. [PMID: 36425292 PMCID: PMC9679650 DOI: 10.3389/fphys.2022.1041940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
The sarcoplasmic reticulum (SR) plays the key role in cardiac function as the major source of Ca2+ that activates cardiomyocyte contractile machinery. Disturbances in finely-tuned SR Ca2+ release by SR Ca2+ channel ryanodine receptor (RyR2) and SR Ca2+ reuptake by SR Ca2+-ATPase (SERCa2a) not only impair contraction, but also contribute to cardiac arrhythmia trigger and reentry. Besides being the main Ca2+ storage organelle, SR in cardiomyocytes performs all the functions of endoplasmic reticulum (ER) in other cell types including protein synthesis, folding and degradation. In recent years ER stress has become recognized as an important contributing factor in many cardiac pathologies, including deadly ventricular arrhythmias. This brief review will therefore focus on ER stress mechanisms in the heart and how these changes can lead to pro-arrhythmic defects in SR Ca2+ handling machinery.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States,*Correspondence: Shanna Hamilton,
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
3
|
Neuron-derived factors negatively modulate ryanodine receptor-mediated calcium release in cultured mouse astrocytes. Cell Calcium 2020; 92:102304. [PMID: 33065384 DOI: 10.1016/j.ceca.2020.102304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022]
Abstract
Changes in intracellular Ca2+ concentration ([Ca2+]i) produced by ryanodine receptor (RyR) agonist, caffeine (caf), and ionotropic agonists: N-methyl-d-aspartate (NMDA) receptor (NMDAR) agonist, NMDA and P2X7 receptor (P2X7R) agonist, 3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (BzATP) were measured in cultured mouse cortical astrocytes loaded with the fluorescent calcium indicator Fluo3-AM in a confocal laser scanning microscope. In mouse astrocytes cultured in standard medium (SM), treatment with caf increased [Ca2+]i, with a peak response occurring about 10 min after stimulus application. Peak responses to NMDA or BzATP were observed about <1 min and 4.5 min post stimulus, respectively. Co-treatment with NMDA or BzATP did not alter the peak response to caf in astrocytes cultured in SM, the absence of the effects being most likely due to asynchrony between the response to caf, NMDA and BzATP. Incubation of astrocytes with neuron-condition medium (NCM) for 24 h totally abolished the caf-evoked [Ca2+]i increase. In NCM-treated astrocytes, peak of [Ca2+]i rise evoked by NMDA was delayed to about 3.5 min, and that induced by BzATP occurred about three minutes earlier than in SM. The results show that neurons secrete factors that negatively modulate RyR-mediated Ca2+-induced Ca2+ release (CICR) in astrocytes and alter the time course of Ca2+ responses to ionotropic stimuli.
Collapse
|
4
|
Lotteau S, Ivarsson N, Yang Z, Restagno D, Colyer J, Hopkins P, Weightman A, Himori K, Yamada T, Bruton J, Steele D, Westerblad H, Calaghan S. A Mechanism for Statin-Induced Susceptibility to Myopathy. JACC Basic Transl Sci 2019; 4:509-523. [PMID: 31468006 PMCID: PMC6712048 DOI: 10.1016/j.jacbts.2019.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022]
Abstract
This study aimed to identify a mechanism for statin-induced myopathy that explains its prevalence and selectivity for skeletal muscle, and to understand its interaction with moderate exercise. Statin-associated adverse muscle symptoms reduce adherence to statin therapy; this limits the effectiveness of statins in reducing cardiovascular risk. The issue is further compounded by perceived interactions between statin treatment and exercise. This study examined muscles from individuals taking statins and rats treated with statins for 4 weeks. In skeletal muscle, statin treatment caused dissociation of the stabilizing protein FK506 binding protein (FKBP12) from the sarcoplasmic reticulum (SR) calcium (Ca2+) release channel, the ryanodine receptor 1, which was associated with pro-apoptotic signaling and reactive nitrogen species/reactive oxygen species (RNS/ROS)-dependent spontaneous SR Ca2+ release events (Ca2+ sparks). Statin treatment had no effect on Ca2+ spark frequency in cardiac myocytes. Despite potentially deleterious effects of statins on skeletal muscle, there was no impact on force production or SR Ca2+ release in electrically stimulated muscle fibers. Statin-treated rats with access to a running wheel ran further than control rats; this exercise normalized FKBP12 binding to ryanodine receptor 1, preventing the increase in Ca2+ sparks and pro-apoptotic signaling. Statin-mediated RNS/ROS-dependent destabilization of SR Ca2+ handling has the potential to initiate skeletal (but not cardiac) myopathy in susceptible individuals. Importantly, although exercise increases RNS/ROS, it did not trigger deleterious statin effects on skeletal muscle. Indeed, our results indicate that moderate exercise might benefit individuals who take statins.
Collapse
Key Words
- Ca2+, calcium
- FDB, flexor digitorum brevis
- FKBP12, FK506 binding protein (calstabin)
- GAS, gastrocnemius
- HADHA, hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase
- HMG CoA, 3-hydroxy-3-methylglutaryl coenzyme A
- L-NAME, N(ω)-nitro-L-arginine methyl ester
- NOS, nitric oxide synthase
- PGC1α, peroxisome proliferator-activated receptor γ co-activator 1α
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- RyR, ryanodine receptor
- SOD, superoxide dismutase
- SR, sarcoplasmic reticulum
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- calcium leak
- exercise
- myopathy
- ryanodine receptor
- statin
Collapse
Affiliation(s)
- Sabine Lotteau
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Niklas Ivarsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Zhaokang Yang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Damien Restagno
- VetAgro Sup, APCSe, Université de Lyon, Marcy l’Etoile, France
| | - John Colyer
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Philip Hopkins
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, United Kingdom
| | - Andrew Weightman
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, United Kingdom
| | - Koichi Himori
- Graduate School of Health Sciences, Sapporo Medical University, Chuo-ku, Sapporo, Japan
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Chuo-ku, Sapporo, Japan
| | - Joseph Bruton
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Derek Steele
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Calaghan
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
5
|
Eisner V, Picard M, Hajnóczky G. Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat Cell Biol 2018; 20:755-765. [PMID: 29950571 PMCID: PMC6716149 DOI: 10.1038/s41556-018-0133-0] [Citation(s) in RCA: 383] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022]
Abstract
Mitochondria sense and respond to many stressors and can support either cell survival or death through energy production and signaling pathways. Mitochondrial responses depend on fusion-fission dynamics that dilute and segregate damaged mitochondria. Mitochondrial motility and inter-organellar interactions, including with the endoplasmic reticulum, also function in cellular adaptation to stress. In this Review, we discuss how stressors influence these components, and how they contribute to the complex adaptive and pathological responses that lead to disease.
Collapse
Affiliation(s)
- Verónica Eisner
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin Picard
- Division of Behavioral Medicine, Departments of Psychiatry and Neurology, The Merritt Center, Columbia Translational Neuroscience Initiative, Columbia Aging Center, Columbia University Medical Center, New York, NY, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Dulhunty AF, Board PG, Beard NA, Casarotto MG. Physiology and Pharmacology of Ryanodine Receptor Calcium Release Channels. ADVANCES IN PHARMACOLOGY 2017; 79:287-324. [DOI: 10.1016/bs.apha.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Russo V, Rago A, Papa AA, Nigro G. Electrocardiographic Presentation, Cardiac Arrhythmias, and Their Management in β-Thalassemia Major Patients. Ann Noninvasive Electrocardiol 2016; 21:335-42. [PMID: 27324981 DOI: 10.1111/anec.12389] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Beta-thalassemia major (β-TM) is a genetic hemoglobin disorder characterized by an absent synthesis of globin chains that are essential for hemoglobin formation, causing chronic hemolytic anemia. Clinical management of thalassemia major consists in regular long-life red blood cell transfusions and iron chelation therapy to remove iron introduced in excess with transfusions. Iron deposition in combination with inflammatory and immunogenic factors is involved in the pathophysiology of cardiac dysfunction in these patients. Heart failure and arrhythmias, caused by myocardial siderosis, are the most important life-limiting complications of iron overload in beta-thalassemia patients. Cardiac complications are responsible for 71% of global death in the beta-thalassemia major patients. The aim of this review was to describe the most frequent electrocardiographic abnormalities and arrhythmias observed in β-TM patients, analyzing their prognostic impact and current treatment strategies.
Collapse
Affiliation(s)
- Vincenzo Russo
- Second University of Naples - Monaldi Hospital, Naples, Italy
| | - Anna Rago
- Second University of Naples - Monaldi Hospital, Naples, Italy
| | | | - Gerardo Nigro
- Second University of Naples - Monaldi Hospital, Naples, Italy
| |
Collapse
|
8
|
Pennell DJ, Udelson JE, Arai AE, Bozkurt B, Cohen AR, Galanello R, Hoffman TM, Kiernan MS, Lerakis S, Piga A, Porter JB, Walker JM, Wood J. Cardiovascular function and treatment in β-thalassemia major: a consensus statement from the American Heart Association. Circulation 2013; 128:281-308. [PMID: 23775258 DOI: 10.1161/cir.0b013e31829b2be6] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This aim of this statement is to report an expert consensus on the diagnosis and treatment of cardiac dysfunction in β-thalassemia major (TM). This consensus statement does not cover other hemoglobinopathies, including thalassemia intermedia and sickle cell anemia, in which a different spectrum of cardiovascular complications is typical. There are considerable uncertainties in this field, with a few randomized controlled trials relating to treatment of chronic myocardial siderosis but none relating to treatment of acute heart failure. The principles of diagnosis and treatment of cardiac iron loading in TM are directly relevant to other iron-overload conditions, including in particular Diamond-Blackfan anemia, sideroblastic anemia, and hereditary hemochromatosis. Heart failure is the most common cause of death in TM and primarily results from cardiac iron accumulation. The diagnosis of ventricular dysfunction in TM patients differs from that in nonanemic patients because of the cardiovascular adaptation to chronic anemia in non-cardiac-loaded TM patients, which includes resting tachycardia, low blood pressure, enlarged end-diastolic volume, high ejection fraction, and high cardiac output. Chronic anemia also leads to background symptomatology such as dyspnea, which can mask the clinical diagnosis of cardiac dysfunction. Central to early identification of cardiac iron overload in TM is the estimation of cardiac iron by cardiac T2* magnetic resonance. Cardiac T2* <10 ms is the most important predictor of development of heart failure. Serum ferritin and liver iron concentration are not adequate surrogates for cardiac iron measurement. Assessment of cardiac function by noninvasive techniques can also be valuable clinically, but serial measurements to establish trends are usually required because interpretation of single absolute values is complicated by the abnormal cardiovascular hemodynamics in TM and measurement imprecision. Acute decompensated heart failure is a medical emergency and requires urgent consultation with a center with expertise in its management. The first principle of management of acute heart failure is control of cardiac toxicity related to free iron by urgent commencement of a continuous, uninterrupted infusion of high-dose intravenous deferoxamine, augmented by oral deferiprone. Considerable care is required to not exacerbate cardiovascular problems from overuse of diuretics or inotropes because of the unusual loading conditions in TM. The current knowledge on the efficacy of removal of cardiac iron by the 3 commercially available iron chelators is summarized for cardiac iron overload without overt cardiac dysfunction. Evidence from well-conducted randomized controlled trials shows superior efficacy of deferiprone versus deferoxamine, the superiority of combined deferiprone with deferoxamine versus deferoxamine alone, and the equivalence of deferasirox versus deferoxamine.
Collapse
|
9
|
Kumar V, Calamaras TD, Haeussler D, Colucci WS, Cohen RA, McComb ME, Pimentel D, Bachschmid MM. Cardiovascular redox and ox stress proteomics. Antioxid Redox Signal 2012; 17:1528-59. [PMID: 22607061 PMCID: PMC3448941 DOI: 10.1089/ars.2012.4706] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SIGNIFICANCE Oxidative post-translational modifications (OPTMs) have been demonstrated as contributing to cardiovascular physiology and pathophysiology. These modifications have been identified using antibodies as well as advanced proteomic methods, and the functional importance of each is beginning to be understood using transgenic and gene deletion animal models. Given that OPTMs are involved in cardiovascular pathology, the use of these modifications as biomarkers and predictors of disease has significant therapeutic potential. Adequate understanding of the chemistry of the OPTMs is necessary to determine what may occur in vivo and which modifications would best serve as biomarkers. RECENT ADVANCES By using mass spectrometry, advanced labeling techniques, and antibody identification, OPTMs have become accessible to a larger proportion of the scientific community. Advancements in instrumentation, database search algorithms, and processing speed have allowed MS to fully expand on the proteome of OPTMs. In addition, the role of enzymatically reversible OPTMs has been further clarified in preclinical models. CRITICAL ISSUES The identification of OPTMs suffers from limitations in analytic detection based on the methodology, instrumentation, sample complexity, and bioinformatics. Currently, each type of OPTM requires a specific strategy for identification, and generalized approaches result in an incomplete assessment. FUTURE DIRECTIONS Novel types of highly sensitive MS instrumentation that allow for improved separation and detection of modified proteins and peptides have been crucial in the discovery of OPTMs and biomarkers. To further advance the identification of relevant OPTMs in advanced search algorithms, standardized methods for sample processing and depository of MS data will be required.
Collapse
Affiliation(s)
- Vikas Kumar
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Chiu PY, Wong SM, Leung HY, Leong PK, Chen N, Zhou L, Zuo Z, Lam PY, Ko KM. Acute treatment with Danshen-Gegen decoction protects the myocardium against ischemia/reperfusion injury via the redox-sensitive PKCɛ/mK(ATP) pathway in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:916-925. [PMID: 21855786 DOI: 10.1016/j.phymed.2011.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 03/21/2011] [Indexed: 05/31/2023]
Abstract
Danshen-Gegen (DG) decoction, an herbal formulation comprising Radix Salvia Miltiorrhiza and Radix Puerariae Lobatae, is prescribed for the treatment of coronary heart disease in Chinese medicine. Experimental and clinical studies have demonstrated that DG decoction can reduce the extent of atherosclerosis. In the present study, using an ex vivo rat model of myocardial ischemia/reperfusion (I/R) injury, we investigated the myocardial preconditioning effect of an aqueous DG extract prepared from an optimized weight-to-weight ratio of Danshen and Gegen. Short-term treatment with DG extract at a daily dose of 1 g/kg and 2 g/kg for 3 days protected against myocardial I/R injury in rats. The cardioprotection afforded by DG pretreatment was paralleled by enhancements in mitochondrial antioxidant status and membrane structural integrity, as well as a decrease in the sensitivity of mitochondria to Ca²⁺-stimulated permeability transition in vitro, particularly under I/R conditions. Short-term treatment with the DG extract also enhanced the translocation of PKCɛ from the cytosol to mitochondria in rat myocardium, and this translocation was inhibited by α-tocopherol co-treatment with DG extract in rats. Short-term DG treatment may precondition the myocardium via a redox-sensitive PKCɛ/mK(ATP) pathway, with resultant inhibition of the mitochondrial permeability transition through the opening of mitochondrial K(ATP) channels. Our results suggest that clinical studies examining the effectiveness of DG extract given prophylactically in affording protection against myocardial I/R injury would be warranted.
Collapse
Affiliation(s)
- Po Yee Chiu
- Section of Biochemistry and Cell Biology, Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
It is well established that contracting muscles produce both reactive oxygen and nitrogen species. Although the sources of oxidant production during exercise continue to be debated, growing evidence suggests that mitochondria are not the dominant source. Regardless of the sources of oxidants in contracting muscles, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Further, oxidants regulate numerous cell signaling pathways and modulate the expression of many genes. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species result in contractile dysfunction and fatigue. Ongoing research continues to explore the redox-sensitive targets in muscle that are responsible for both redox regulation of muscle adaptation and oxidant-mediated muscle fatigue.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.
| | | | | | | |
Collapse
|
13
|
Dulhunty AF, Hewawasam R, Liu D, Casarotto MG, Board PG. Regulation of the cardiac muscle ryanodine receptor by glutathione transferases. Drug Metab Rev 2011; 43:236-52. [DOI: 10.3109/03602532.2010.549134] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Prosser BL, Ward CW, Lederer WJ. Subcellular Ca2+ signaling in the heart: the role of ryanodine receptor sensitivity. ACTA ACUST UNITED AC 2010; 136:135-42. [PMID: 20660656 PMCID: PMC2912070 DOI: 10.1085/jgp.201010406] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Benjamin L Prosser
- Center for Biomedical Engineering and Technology, BioMET, University of Maryland, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
15
|
Gonzalez DR, Treuer AV, Castellanos J, Dulce RA, Hare JM. Impaired S-nitrosylation of the ryanodine receptor caused by xanthine oxidase activity contributes to calcium leak in heart failure. J Biol Chem 2010; 285:28938-45. [PMID: 20643651 DOI: 10.1074/jbc.m110.154948] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
S-Nitrosylation is a ubiquitous post-translational modification that regulates diverse biologic processes. In skeletal muscle, hypernitrosylation of the ryanodine receptor (RyR) causes sarcoplasmic reticulum (SR) calcium leak, but whether abnormalities of cardiac RyR nitrosylation contribute to dysfunction of cardiac excitation-contraction coupling remains controversial. In this study, we tested the hypothesis that cardiac RyR2 is hyponitrosylated in heart failure, because of nitroso-redox imbalance. We evaluated excitation-contraction coupling and nitroso-redox balance in spontaneously hypertensive heart failure rats with dilated cardiomyopathy and age-matched Wistar-Kyoto rats. Spontaneously hypertensive heart failure myocytes were characterized by depressed contractility, increased diastolic Ca(2+) leak, hyponitrosylation of RyR2, and enhanced xanthine oxidase derived superoxide. Global S-nitrosylation was decreased in failing hearts compared with nonfailing. Xanthine oxidase inhibition restored global and RyR2 nitrosylation and reversed the diastolic SR Ca(2+) leak, improving Ca(2+) handling and contractility. Together these findings demonstrate that nitroso-redox imbalance causes RyR2 oxidation, hyponitrosylation, and SR Ca(2+) leak, a hallmark of cardiac dysfunction. The reversal of this phenotype by inhibition of xanthine oxidase has important pathophysiologic and therapeutic implications.
Collapse
Affiliation(s)
- Daniel R Gonzalez
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
16
|
Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE. Mitochondria and reactive oxygen species. Free Radic Biol Med 2009; 47:333-43. [PMID: 19427899 DOI: 10.1016/j.freeradbiomed.2009.05.004] [Citation(s) in RCA: 789] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 04/29/2009] [Accepted: 05/06/2009] [Indexed: 01/02/2023]
Abstract
Mitochondria are a quantitatively relevant source of reactive oxygen species (ROS) in the majority of cell types. Here we review the sources and metabolism of ROS in this organelle, including the conditions that regulate the production of these species, such as mild uncoupling, oxygen tension, respiratory inhibition, Ca2+ and K+ transport, and mitochondrial content and morphology. We discuss substrate-, tissue-, and organism-specific characteristics of mitochondrial oxidant generation. Several aspects of the physiological and pathological roles of mitochondrial ROS production are also addressed.
Collapse
Affiliation(s)
- Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
17
|
Belevych AE, Terentyev D, Viatchenko-Karpinski S, Terentyeva R, Sridhar A, Nishijima Y, Wilson LD, Cardounel AJ, Laurita KR, Carnes CA, Billman GE, Gyorke S. Redox modification of ryanodine receptors underlies calcium alternans in a canine model of sudden cardiac death. Cardiovasc Res 2009; 84:387-95. [PMID: 19617226 DOI: 10.1093/cvr/cvp246] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
AIMS Although cardiac alternans is a known predictor of lethal arrhythmias, its underlying causes remain largely undefined in disease settings. The potential role of, and mechanisms responsible for, beat-to-beat alternations in the amplitude of systolic Ca(2+) transients (Ca(2+) alternans) was investigated in a canine post-myocardial infarction (MI) model of sudden cardiac death (SCD). METHODS AND RESULTS Post-MI dogs had preserved left ventricular (LV) function and susceptibility to ventricular fibrillation (VF) during exercise. LV wedge preparations from VF dogs were more susceptible to action potential (AP) alternans and the frequency-dependence of Ca(2+) alternans was shifted towards slower rates in myocytes isolated from VF dogs relative to controls. In both groups of cells, cytosolic Ca(2+) transients ([Ca(2+)](c)) alternated in phase with changes in diastolic Ca(2+) in sarcoplasmic reticulum ([Ca(2+)](SR)), but the dependence of [Ca(2+)](c) amplitude on [Ca(2+)](SR) was steeper in VF cells. Abnormal ryanodine receptor (RyR) function in VF cells was indicated by increased fractional Ca(2+) release for a given amplitude of Ca(2+) current and elevated diastolic RyR-mediated SR Ca(2+) leak. SR Ca(2+) uptake activity did not differ between VF and control cells. VF myocytes had an increased rate of reactive oxygen species production and increased RyR oxidation. Treatment of VF myocytes with reducing agents normalized parameters of Ca(2+) handling and shifted the threshold of Ca(2+) alternans to higher frequencies. CONCLUSION Redox modulation of RyRs promotes generation of Ca(2+) alternans by enhancing the steepness of the Ca(2+) release-load relationship and thereby providing a substrate for post-MI arrhythmias.
Collapse
Affiliation(s)
- Andriy E Belevych
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, College of Medicine, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 2008; 88:1243-76. [PMID: 18923182 DOI: 10.1152/physrev.00031.2007] [Citation(s) in RCA: 1478] [Impact Index Per Article: 92.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The first suggestion that physical exercise results in free radical-mediated damage to tissues appeared in 1978, and the past three decades have resulted in a large growth of knowledge regarding exercise and oxidative stress. Although the sources of oxidant production during exercise continue to be debated, it is now well established that both resting and contracting skeletal muscles produce reactive oxygen species and reactive nitrogen species. Importantly, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Furthermore, oxidants can modulate a number of cell signaling pathways and regulate the expression of multiple genes in eukaryotic cells. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, DNA repair proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species promote contractile dysfunction resulting in muscle weakness and fatigue. Ongoing research continues to probe the mechanisms by which oxidants influence skeletal muscle contractile properties and to explore interventions capable of protecting muscle from oxidant-mediated dysfunction.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida 32611, USA.
| | | |
Collapse
|
19
|
Terentyev D, Györke I, Belevych AE, Terentyeva R, Sridhar A, Nishijima Y, de Blanco EC, Khanna S, Sen CK, Cardounel AJ, Carnes CA, Györke S. Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure. Circ Res 2008; 103:1466-72. [PMID: 19008475 DOI: 10.1161/circresaha.108.184457] [Citation(s) in RCA: 288] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abnormal cardiac ryanodine receptor (RyR2) function is recognized as an important factor in the pathogenesis of heart failure (HF). However, the specific molecular causes underlying RyR2 defects in HF remain poorly understood. In the present study, we used a canine model of chronic HF to test the hypothesis that the HF-related alterations in RyR2 function are caused by posttranslational modification by reactive oxygen species generated in the failing heart. Experimental approaches included imaging of cytosolic ([Ca(2+)](c)) and sarcoplasmic reticulum (SR) luminal Ca(2+) ([Ca(2+)]SR) in isolated intact and permeabilized ventricular myocytes and single RyR2 channel recording using the planar lipid bilayer technique. The ratio of reduced to oxidized glutathione, as well as the level of free thiols on RyR2 decreased markedly in failing versus control hearts consistent with increased oxidative stress in HF. RyR2-mediated SR Ca(2+) leak was significantly enhanced in permeabilized myocytes, resulting in reduced [Ca(2+)](SR) in HF compared to control cells. Both SR Ca(2+) leak and [Ca(2+)](SR) were partially normalized by treating HF myocytes with reducing agents. Conversely, oxidizing agents accelerated SR Ca(2+) leak and decreased [Ca(2+)](SR) in cells from normal hearts. Moreover, exposure to antioxidants significantly improved intracellular Ca(2+)-handling parameters in intact HF myocytes. Single RyR2 channel activity was significantly higher in HF versus control because of increased sensitivity to activation by luminal Ca(2+) and was partially normalized by reducing agents through restoring luminal Ca(2+) sensitivity oxidation of control RyR2s enhanced their luminal Ca(2+) sensitivity, thus reproducing the HF phenotype. These findings suggest that redox modification contributes to abnormal function of RyR2s in HF, presenting a potential therapeutic target for treating HF.
Collapse
Affiliation(s)
- Dmitry Terentyev
- Departments of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jalilian C, Gallant EM, Board PG, Dulhunty AF. Redox potential and the response of cardiac ryanodine receptors to CLIC-2, a member of the glutathione S-transferase structural family. Antioxid Redox Signal 2008; 10:1675-86. [PMID: 18522493 DOI: 10.1089/ars.2007.1994] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The type 2 chloride intracellular channel, CLIC-2, is a member of the glutathione S-transferase structural family and a suppressor of cardiac ryanodine receptor (RyR2) Ca2+ channels located in the membrane of the sarcoplasmic reticulum (SR). Modulators of RyR2 activity can alter cardiac contraction. Since both CLIC-2 and RyR2 are modified by redox reactions, we speculated that the action of CLIC-2 on RyR2 may depend on redox potential. We used a GSH:GSSG buffer system to produce mild changes in redox potential to influence redox sensors in RyR2 and CLIC-2. RyR2 activity was modified only when both luminal and cytoplasmic solutions contained the GSH:GSSG buffer and the effects were reversed by removing the buffer from one of the solutions. Channel activity increased with an oxidizing redox potential and decreased when the potential was more reducing. Addition of cytoplasmic CLIC-2 inhibited RyR2 with oxidizing redox potentials, but activated RyR2 under reducing conditions. The results suggested that both RyR2 and CLIC-2 contain redox sensors. Since cardiac ischemia involves a destructive Ca2+ overload that is partly due to oxidation-induced increase in RyR2 activity, we speculate that the properties of CLIC-2 place it in an ideal position to limit ischemia-induced cellular damage in cardiac muscle.
Collapse
Affiliation(s)
- Chris Jalilian
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, ACT, Australia
| | | | | | | |
Collapse
|
21
|
Bull R, Finkelstein JP, Gálvez J, Sánchez G, Donoso P, Behrens MI, Hidalgo C. Ischemia enhances activation by Ca2+ and redox modification of ryanodine receptor channels from rat brain cortex. J Neurosci 2008; 28:9463-72. [PMID: 18799678 PMCID: PMC6671122 DOI: 10.1523/jneurosci.2286-08.2008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/07/2008] [Accepted: 08/04/2008] [Indexed: 01/22/2023] Open
Abstract
Cerebral ischemia stimulates Ca2+ influx and thus increases neuronal intracellular free [Ca2+]. Using a rat model of cerebral ischemia without recirculation, we tested whether ischemia enhances the activation by Ca2+ of ryanodine receptor (RyR) channels, a requisite feature of RyR-mediated Ca2+-induced Ca2+ release (CICR). To this aim, we evaluated how single RyR channels from endoplasmic reticulum vesicles, fused into planar lipid bilayers, responded to cytoplasmic [Ca2+] changes. Endoplasmic reticulum vesicles were isolated from the cortex of rat brains incubated without blood flow for 5 min at 37 degrees C (ischemic) or at 4 degrees C (control). Ischemic brains displayed increased oxidative intracellular conditions, as evidenced by a lower ratio (approximately 130:1) of reduced/oxidized glutathione than controls (approximately 200:1). Single RyR channels from ischemic or control brains displayed the same three responses to Ca2+ reported previously, characterized by low, moderate, or high maximal activity. Relative to controls, RyR channels from ischemic brains displayed with increased frequency the high activity response and with lower frequency the low activity response. Both control and ischemic cortical vesicles contained the RyR2 and RyR3 isoforms in a 3:1 proportion, with undetectable amounts of RyR1. Ischemia reduced [3H]ryanodine binding and total RyR protein content by 35%, and increased at least twofold endogenous RyR2 S-nitrosylation and S-glutathionylation without affecting the corresponding RyR3 endogenous levels. In vitro RyR S-glutathionylation but not S-nitrosylation favored the emergence of high activity channels. We propose that ischemia, by enhancing RyR2 S-glutathionylation, allows RyR2 to sustain CICR; the resulting amplification of Ca2+ entry signals may contribute to cortical neuronal death.
Collapse
Affiliation(s)
- Ricardo Bull
- Centro de Estudios Moleculares de la Célula, Fondo de Investigación Avanzada en Areas Prioritarias, Universidad de Chile, Santiago 7, Chile.
| | | | | | | | | | | | | |
Collapse
|
22
|
Hidalgo C, Donoso P. Crosstalk between calcium and redox signaling: from molecular mechanisms to health implications. Antioxid Redox Signal 2008; 10:1275-312. [PMID: 18377233 DOI: 10.1089/ars.2007.1886] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Studies done many years ago established unequivocally the key role of calcium as a universal second messenger. In contrast, the second messenger roles of reactive oxygen and nitrogen species have emerged only recently. Therefore, their contributions to physiological cell signaling pathways have not yet become universally accepted, and many biological researchers still regard them only as cellular noxious agents. Furthermore, it is becoming increasingly apparent that there are significant interactions between calcium and redox species, and that these interactions modify a variety of proteins that participate in signaling transduction pathways and in other fundamental cellular functions that determine cell life or death. This review article addresses first the central aspects of calcium and redox signaling pathways in animal cells, and continues with the molecular mechanisms that underlie crosstalk between calcium and redox signals under a number of physiological or pathological conditions. To conclude, the review focuses on conditions that, by promoting cellular oxidative stress, lead to the generation of abnormal calcium signals, and how this calcium imbalance may cause a variety of human diseases including, in particular, degenerative diseases of the central nervous system and cardiac pathologies.
Collapse
Affiliation(s)
- Cecilia Hidalgo
- Centro FONDAP de Estudios Moleculares de la Célula and Programa de Biología Molecular y Celular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | |
Collapse
|
23
|
Local production of O2- by NAD(P)H oxidase in the sarcoplasmic reticulum of coronary arterial myocytes: cADPR-mediated Ca2+ regulation. Cell Signal 2007; 20:637-44. [PMID: 18207366 DOI: 10.1016/j.cellsig.2007.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 11/21/2007] [Accepted: 11/22/2007] [Indexed: 11/24/2022]
Abstract
The present study was designed to determine whether the sarcoplasmic reticulum (SR) could locally produce superoxide (O2-) via NAD(P)H oxidase (NOX) in coronary arterial myocytes (CAMs) and to address whether cADPR-RyR/Ca2+ signaling pathway regulates this local O2- production from the SR. Using confocal microscopic imaging analysis in intact single CAMs, a cell-permeable indicator CM-H2DCFDA for dynamic changes in intracellular ROS (in green color) and a highly selective ER-Tracker Red dye for tracking of the SR were found co-localized. A quantitative analysis based on the intensity of different spectra demonstrated a local O2- production derived from the SR. M(1)-receptor agonist, oxotremorine (Oxo) and a Ca2+ ionophore, A23187, time-dependently increased this O2- production colocalized with the SR. NOX inhibitors, diphenylene iodonium (DPI) and apocynin (Apo), or superoxide dismutase (SOD) and catalase, and Nox4 (a major intracellular NOX subunit) siRNA all substantially blocked this local production of O2-, demonstrating an involvement of NOX. This SR-derived O2- production was also abolished by the inhibitors of cyclic ADP-ribose (cADPR)-mediated Ca2+ signaling, such as nicotinamide (Nicot, 6 mM), ryanodine (Rya, 50 muM) or 8-Br-cADPR (30 microM). However, IP3 antagonist, 2-APB (50 microM) had no effect. In CAMs transfected with siRNA of ADP-ribosyl cyclase or RyR, this SR O2- production was attenuated. Electron spin resonance (ESR) spectromic assay in purified SR also demonstrated the production of O2- that was dependent on NOX activity and Ca2+ concentrations. These results provide direct evidence that O2- could be locally produced via NOX on the SR and that this local O2- producing system is controlled by cADPR-RyR/Ca2+ signaling pathway.
Collapse
|
24
|
Abstract
AbstractThe CuZn superoxide dismutase (SOD1), a member of a group of isoenzymes involved in the scavenger of superoxide anions, is a dimeric carbohydrate free protein, mainly localized in the cytosol. The reactive oxygen species (ROS) are involved in many pathophysiological events correlated with mutagenesis, cancer, degenerative processes and aging. In the first part of this mini-review the well known role of SOD1 and ROS are briefly summarized. Following, a potential novel biological action that SOD1 could exert is described, based on the recent researches demonstrating the secretion of this enzyme in many cellular lines. Moreover, the role of impaired mutant SOD1 secretion, associated with cytoplasmic toxic inclusion, which occurs in familial amyotrophic lateral sclerosis (ALS), is summarized. In addition, a depolarization-dependent release of SOD1 in pituitary GH3 cells and in rat synaptosomes through a calcium and SNARE-dependent mechanism is reported.
Collapse
|
25
|
Wood JC, Otto-Duessel M, Gonzalez I, Aguilar MI, Shimada H, Nick H, Nelson M, Moats R. Deferasirox and deferiprone remove cardiac iron in the iron-overloaded gerbil. Transl Res 2006; 148:272-80. [PMID: 17145573 PMCID: PMC2896322 DOI: 10.1016/j.trsl.2006.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 03/28/2006] [Accepted: 05/05/2006] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Deferasirox effectively controls liver iron concentration; however, little is known regarding its ability to remove stored cardiac iron. Deferiprone seems to have increased cardiac efficacy compared with traditional deferoxamine therapy. Therefore, the relative efficacy of deferasirox and deferiprone were compared in removing cardiac iron from iron-loaded gerbils. METHODS Twenty-nine 8- to 10-week-old female gerbils underwent 10 weekly iron dextran injections of 200 mg/kg/week. Prechelation iron levels were assessed in 5 animals, and the remainder received deferasirox 100 mg/kg/D po QD (n = 8), deferiprone 375 mg/kg/D po divided TID (n = 8), or sham chelation (n = 8), 5 days/week for 12 weeks. RESULTS Deferasirox reduced cardiac iron content 20.5%. No changes occurred in cardiac weight, myocyte hypertrophy, fibrosis, or weight-to-dry weight ratio. Deferasirox treatment reduced liver iron content 51%. Deferiprone produced comparable reductions in cardiac iron content (18.6% reduction). Deferiprone-treated hearts had greater mass (16.5% increase) and increased myocyte hypertrophy. Deferiprone decreased liver iron content 24.9% but was associated with an increase in liver weight and water content. CONCLUSION Deferasirox and deferiprone were equally effective in removing stored cardiac iron in a gerbil animal model, but deferasirox removed more hepatic iron for a given cardiac iron burden.
Collapse
Affiliation(s)
- John C Wood
- Division of Cardiology, Childrens Hospital of Los Angeles, CA 90027-0034, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hidalgo C. Cross talk between Ca2+ and redox signalling cascades in muscle and neurons through the combined activation of ryanodine receptors/Ca2+ release channels. Philos Trans R Soc Lond B Biol Sci 2006; 360:2237-46. [PMID: 16321793 PMCID: PMC1569589 DOI: 10.1098/rstb.2005.1759] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Calcium release mediated by the ryanodine receptors (RyR) Ca2+ release channels is required for muscle contraction and contributes to neuronal plasticity. In particular, Ca2+ activation of RyR-mediated Ca2+ release can amplify and propagate Ca2+ signals initially generated by Ca2+ entry into cells. Redox modulation of RyR function by a variety of non-physiological or endogenous redox molecules has been reported. The effects of RyR redox modification on Ca2+ release in skeletal muscle as well as the activation of signalling cascades and transcription factors in neurons will be reviewed here. Specifically, the different effects of S-nitrosylation or S-glutathionylation of RyR cysteines by endogenous redox-active agents on the properties of skeletal muscle RyRs will be discussed. Results will be presented indicating that these cysteine modifications change the activity of skeletal muscle RyRs, modify their behaviour towards both activators and inhibitors and affect their interactions with FKBP12 and calmodulin. In the hippocampus, sequential activation of ERK1/2 and CREB is a requisite for Ca2+-dependent gene expression associated with long-lasting synaptic plasticity. The effects of reactive oxygen/nitrogen species on RyR channels from neurons and RyR-mediated sequential activation of neuronal ERK1/2 and CREB produced by hydrogen peroxide and other stimuli will be discussed as well.
Collapse
Affiliation(s)
- Cecilia Hidalgo
- Universidad de Chile FONDAP Center of Molecular Studies of the Cell and Instituto de Ciencias Biomédicas, Facultad de Medicina Casilla 70005, Santiago 7, Chile.
| |
Collapse
|
27
|
Yi XY, Li VX, Zhang F, Yi F, Matson DR, Jiang MT, Li PL. Characteristics and actions of NAD(P)H oxidase on the sarcoplasmic reticulum of coronary artery smooth muscle. Am J Physiol Heart Circ Physiol 2006; 290:H1136-44. [PMID: 16227345 DOI: 10.1152/ajpheart.00296.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been reported that nonmitochondrial NAD(P)H oxidases make an important contribution to intracellular O2−· in vascular tissues and, thereby, the regulation of vascular function. Topological analyses have suggested that a well-known membrane-associated NAD(P)H oxidase may not release O2−· into the cytosol. It is imperative to clarify the source of intracellular O2−· associated with this enzyme and its physiological significance in vascular cells. The present study hypothesized that an NAD(P)H oxidase on the sarcoplasmic reticulum (SR) in coronary artery smooth muscle (CASM) regulates SR ryanodine receptor (RyR) activity by producing O2−· locally. Western blot analysis was used to detect NAD(P)H oxidase subunits in purified SR from CASM. Fluorescent spectrometric analysis demonstrated that incubation of SR with NADH time dependently produced O2−·, which could be substantially blocked by the specific NAD(P)H oxidase inhibitors diphenylene iodonium and apocynin and by SOD or its mimetic tiron. This SR NAD(P)H oxidase activity was also confirmed by HPLC analysis of conversion of NADH to NAD+. In experiments of lipid bilayer channel reconstitution, addition of NADH to the cis solution significantly increased the activity of RyR/Ca2+release channels from these SR preparations from CASM, with a maximal increase in channel open probability from 0.0044 ± 0.0005 to 0.0213 ± 0.0018; this effect of NADH was markedly blocked in the presence of SOD or tiron or the NAD(P)H oxidase inhibitors diphenylene iodonium, N-vanillylnonanamide, and apocynin. These results suggest that a local NAD(P)H oxidase system on SR from CASM regulates RyR/Ca2+channel activity and Ca2+release from SR by producing O2−·.
Collapse
Affiliation(s)
- Xiu-Yu Yi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Hu CM, Cheng YW, Liao JW, Cheng HW, Kang JJ. Induction of contracture and extracellular Ca2+ influx in cardiac muscle by sanguinarine: a study on cardiotoxicity of sanguinarine. J Biomed Sci 2005; 12:399-407. [PMID: 15920678 DOI: 10.1007/s11373-005-3007-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Accepted: 02/05/2005] [Indexed: 12/14/2022] Open
Abstract
In this study, the toxic effect of sanguinarine (SANG) on heart was studied with isolated cardiac muscle strip isolated from Wistar rat. SANG induced positive inotropic action followed by contracture on the left ventricle and both atria strips. In addition, SANG dose-dependently inhibited spontaneous beat of the right atrium. SANG-induced contracture was completely suppressed by pretreatment with La3+ or in a Ca2+ free Tyrode solution containing 2.5 mM EGTA. Incubating isolated cardiomyocytes with SANG enhanced the 45Ca2+ influx, which could be inhibited by pretreatment with La3+. However, the SANG-induced 45Ca2+ influx could not be inhibited by pretreatment with other Ca2+ channel blockers, such as nifedipine, verapamil, diltiazem, nickel and manganese, and amiloride. Although antioxidants can inhibit the SANG-induced lipid peroxidation, they could not prevent the SANG-induced contracture. N-acetylcysteine and dithiothreitol, the sulfhydryl reducing agents, were shown to be effective in preventing the SANG-induced contracture. These data suggested that the SANG-induced contracture is caused by the influx of extracellular Ca2+ through a La3+-sensitive Ca2+ channel.
Collapse
Affiliation(s)
- Chien Ming Hu
- Institute of Pharmaceutical Sciences, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
29
|
Hidalgo C, Donoso P, Carrasco MA. The ryanodine receptors Ca2+ release channels: cellular redox sensors? IUBMB Life 2005; 57:315-22. [PMID: 16036616 DOI: 10.1080/15216540500092328] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The release of Ca2+ from intracellular stores mediated by ryanodine receptors (RyR) Ca2+ release channels is essential for striated muscle contraction and contributes to diverse neuronal functions including synaptic plasticity. Through Ca2+-induced Ca2+-release, RyR can amplify and propagate Ca2+ signals initially generated by Ca2+ entry into cardiac muscle cells or neurons. In contrast, RyR activation in skeletal muscle is under membrane potential control and does not require Ca2+ entry. Non-physiological or endogenous redox molecules can change RyR function via modification of a few RyR cysteine residues. This critical review will address the functional effects of RyR redox modification on Ca2+ release in skeletal muscle and cardiac muscle as well as in the activation of signaling cascades and transcriptional regulators required for synaptic plasticity in neurons. Specifically, the effects of endogenous redox-active agents, which induce S-nitrosylation or S-glutathionylation of particular channel cysteine residues, on the properties of muscle RyRs will be discussed. The effects of endogenous redox RyR modifications on cardiac preconditioning will be analyzed as well. In the hippocampus, sequential activation of ERKs and CREB is a requisite for Ca2+-dependent gene expression associated with long lasting synaptic plasticity. Results showing that reactive oxygen/nitrogen species modify RyR channels from neurons and the RyR-mediated sequential activation of neuronal ERKs and CREB produced by hydrogen peroxide and other stimuli will be also discussed.
Collapse
Affiliation(s)
- Cecilia Hidalgo
- FONDAP Center of Molecular Studies of the Cell, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | | | |
Collapse
|
30
|
Aracena P, Tang W, Hamilton SL, Hidalgo C. Effects of S-glutathionylation and S-nitrosylation on calmodulin binding to triads and FKBP12 binding to type 1 calcium release channels. Antioxid Redox Signal 2005; 7:870-81. [PMID: 15998242 DOI: 10.1089/ars.2005.7.870] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study shows that the combination of glutathione (GSH) plus hydrogen peroxide (H2O2) promotes the S-glutathionylation of ryanodine receptor type 1 (RyR1) Ca2+ release channels, and confirms their joint S-glutathionylation and S-nitrosylation by S-nitrosoglutathione (GSNO). In addition, we show that 35S-labeled 12-kDa FK506-binding protein ([35S]FKBP12) bound with a Kd of 13.1 nM to RyR1 present in triads or heavy sarcoplasmic reticulum vesicles; RyR1 S-nitrosylation by NOR-3 or GSNO, but not S-glutathionylation, specifically increased by four- to fivefold this Kd value. RyR1 redox modifications also increased the Kd of [35S]calmodulin binding to triads without affecting Bmax. RyR1 S-glutathionylation (induced by GSH plus H2O2) or RyR1 S-nitrosylation (produced by NOR-3) increased by approximately six- or twofold, respectively, the Kd of apocalmodulin (apoCaM) or Ca2+-calmodulin (CaCaM) binding to triads. Likewise, the combined S-glutathionylation and S-nitrosylation of RyR1 induced by GSNO increased by fourfold the Kd of CaCaM binding to triads and abolished apoCaM binding. As both FKBP12 and CaCaM inhibit RyR1, decreased FKBP12 binding to RyR1 and/or decreased CaCaM binding to either RyR1 or dihydropyridine receptor in triad preparations may cause the reported enhanced activation of Ca2+-induced Ca2+ release kinetics mediated by S-glutathionylation/S-nitrosylation. We discuss possible consequences of these redox modifications on RyR1-mediated Ca2+ release in physiological or pathological conditions.
Collapse
Affiliation(s)
- Paula Aracena
- FONDAP Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Casilla 70005, Santiago 7, Chile
| | | | | | | |
Collapse
|
31
|
Lebedev AV, Ivanova MV, Ruuge EK. How do calcium ions induce free radical oxidation of hydroxy-1,4-naphthoquinone? Ca2+ stabilizes the naphthosemiquinone anion-radical of echinochrome A. Arch Biochem Biophys 2003; 413:191-8. [PMID: 12729616 DOI: 10.1016/s0003-9861(03)00111-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A surprising effect is the direct action of Ca(2+) on redox reactions of ortho-quinoid compounds. The effect of Ca(2+) on oxidation of the sea urchin pigment 6-ethyl-2,3,5,7,8-pentahydroxy-1,4-naphthoquinone (echinochrome A) has been studied by electron paramagnetic resonance (EPR) spectroscopy, by UV/VIS absorbance spectroscopy, and by measurement of oxygen consumption. Echinochrome A per se reacted with dioxygen only in an alkaline solution; 2,3-semiquinone anion-radical of echinochrome A and superoxide anion-radical were the intermediates of the oxidation. Addition of calcium ions sharply increased the rate of echinochrome A autooxidation at alkaline pH and provoked oxidation at neutral pH. To explain this phenomenon we have focused on changes of the acid-base properties of echinochrome A in the presence of calcium and on stabilization of 2,3-semiquinone anion-radical of echinochrome A by Ca(2+). Dissociation constants (pK(a1), pK(a2), and pK(a3)) of echinochrome A determined by potentiometric titration were 5.20, 6.78, and >10 in calcium-free solution and 5.00, 6.10, and 7.15 in the presence of Ca(2+). We have found that Ca(2+) forms an insoluble adduct with the 2,3-semiquinone anion-radical. Thus, the effect of redox-inert calcium on the free radical reactions could be explained (i) by additional deprotonation of echinochrome A and (ii) by formation of a Ca(2+)-naphtho-2,3-semiquinone complex (calcium semiquinonate). Additionally, we have shown that the dried red spines from Strongylocentrotus intermedius possess paramagnetic properties; the EPR signal of the natural spines was similar to that of calcium semiquinonate obtained in our artificial chemical system.
Collapse
Affiliation(s)
- Alexander V Lebedev
- Department of Biochemistry, Institute of Experimental Cardiology, Cardiology Research Center, 121552 Moscow, Russia.
| | | | | |
Collapse
|