1
|
Zhou L, Liu Z, Ma Y, Fang F, Qian X, Pan Y, Zhang Y, Wang X, Zhao J, Liu S. The elemental variance between the "rice" and "non-rice" portions of Maifanitum and its health risk assessment. J Trace Elem Med Biol 2024; 86:127550. [PMID: 39454470 DOI: 10.1016/j.jtemb.2024.127550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Maifanitum, a mineral used in Chinese medicine, was first documented during the Song Dynasty (960-1279). Historical records suggest its multifaceted therapeutic properties, including detoxification and stasis resolution, necrosis removal and tissue regeneration, diuretic and calculi dissolution and prolonging life. The concentration of elements in Maifanitum may vary depending on its origin, different parts, which can affect its effectiveness in different fields of applications. Therefore, the analysis of elements in Maifanitum and the subsequent health risk assessment have been conducted. This provides an important basis for the quality control and application safety of Maifanitum. METHOD The analytical techniques employed in this study are inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES), utilized for the quantitative assessment of 60 elements (Refer to Appendix 1) within Maifanitum samples. Based on the test results, chemometric methods are employed to evaluate the characteristics and differences in elemental concentration from different sources and locations. Additionally, a preliminary health risk assessment is conducted for Maifanitum from different origins and various parts. RESULTS We have established a fingerprint of the elements within Maifanitum, demonstrating a commendable level of similarity. The findings from hierarchical cluster analysis(HCA) corroborated with those from principal component analysis (PCA), collectively unveiling a systematic profile of elemental disparities between Maifanitum samples of diverse origins and applications. It also revealed that there are differences in the concentration of Al, Ga, Be, Hf, Na, Sn, Ti, Zr, Gd, Tb, Sr, Pb, Ce, Ba and other elements in different parts of Maifanitum. While Cd, As, and Cu levels in all samples were within the permissible limits as defined by the Chinese Pharmacopeia, Pb concentrations in the majority of samples were found to surpass these standards, albeit slightly in the ''non-rice'' fraction. The assessment of both beneficial and deleterious elements indicates that the ''non-rice'' fraction of Maifanitum possesses superior quality attributes. Moreover, the overall concentration of rare earth elements in Maifanitum is substantially below the established lower threshold for daily human consumption, with no immediate evidence suggesting any adverse health risks. CONCLUSION This study provides a basis for the quality control and safety evaluation of Maifanitum in clinical use.
Collapse
Affiliation(s)
- Liu Zhou
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
| | - Zheng Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China.
| | - Yulu Ma
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fang Fang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xilong Qian
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
| | - Yanqiong Pan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China; Taikang Xianlin Drum Tower Hospital, Nanjing 210046, China
| | - Ying Zhang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
| | - Xiuxiu Wang
- Chemistry and Biomedicine Innovation Center (Chem BIC), School of Chemistry and Chemical Engineering Nanjing University, Nanjing 210023, China
| | - Jing Zhao
- Chemistry and Biomedicine Innovation Center (Chem BIC), School of Chemistry and Chemical Engineering Nanjing University, Nanjing 210023, China
| | - Shengjin Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China.
| |
Collapse
|
2
|
Getachew TB, Kassa AH, Megersa AG. Phenotypic characterization of donkey population in South Omo Zone, Southern Ethiopia. Heliyon 2023; 9:e18662. [PMID: 37560634 PMCID: PMC10407209 DOI: 10.1016/j.heliyon.2023.e18662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
The study conducted in South Omo Zone, Southern Ethiopia with the aim of investigation within population diversification and characterization morphologically that helps to fill the gap of molecular characterization on this population. The data was collected from 500 adult donkeys from both sexes. Quantitative data was subjected to SAS GLM procedures by fitting districts and sex as the main effects. Qualitative data was subjected to a chi-square test with the district as the main effect. Color graph of donkey was done using Microsoft Excel, 2010. For both qualitative and quantitative data, the significance test was conducted at 5% of the level of error, and Tukey multiple range tests were used to separate the significance levels for the two types of data. CANDISC was used to calculate Mahalanobis distances, DISCRIM was used to cluster observations into predetermined groups, and STEPDISC was used to determine the quantitative characteristics that better differentiate populations. Roan coat color cover highest number compare with other coat color of donkey population. Quantitative traits of donkey has variation (P < 0.05) both in study areas and sex of donkeys. Overtly, except height at wither and height at the back Hammer donkey has mostly better metric value than the rest districts of the study areas. Moreover, CANDISC show variation on Hammer and Dasenech districts of donkey population. Furthermore, the longest (6.32) Mahalanobis distance observed in between Hammer and Dasenech donkey population. The Hammer and Dasenech donkey population is where the study fills in population variation the most. This can be because to management or genetics. Therefore, additional research might be required. Furthermore, morphometric measures show that donkey sex is similar, with the exception of heart girth circumference. This can be the result of poor selection, where superior male donkeys are sold for a higher price. Therefore, sound breeding programs should be used to reverse it.
Collapse
Affiliation(s)
| | - Abebe Hailu Kassa
- Ethiopian Biodiversity Institute, Addis Ababa, P.O.BOX. 30726, Ethiopia
| | | |
Collapse
|
3
|
Murtaza B, Li X, Dong L, Javed MT, Xu L, Saleemi MK, Li G, Jin B, Cui H, Ali A, Wang L, Xu Y. Microbial and enzymatic battle with food contaminant zearalenone (ZEN). Appl Microbiol Biotechnol 2022; 106:4353-4365. [PMID: 35705747 DOI: 10.1007/s00253-022-12009-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Zearalenone (ZEN) contamination of various foods and feeds is an important global problem. In some animals and humans, ZEN causes significant health issues in addition to massive economic losses, annually. Therefore, removal or degradation of the ZEN in foods and feeds is required to be done. The conventional physical and chemical methods have some serious issues including poor efficiency, decrease in nutritional value, palatability of feed, and use of costly equipment. Research examined microbes from diverse media for their ability to degrade zearalenone and other toxins, and the findings of several investigations revealed that enzymes produced from microbes play a significant role in the degradation of mycotoxins. In established bacterial hosts, genetically engineered technique was used to enhance heterologously produced degrading enzymes. Then, the bio-degradation of ZEN by the use of micro-organisms or their enzymes is much more advantageous and is close to nature and ecofriendly. Furthermore, an effort is made to put forward the work done by different scientists on the biodegradation of ZEN by the use of fungi, yeast, bacteria, and/or their enzymes to degrade the ZEN to non-toxic products. KEY POINTS: •Evolved microbial strains degraded ZEA more quickly •Different degrading properties were studied.
Collapse
Affiliation(s)
- Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China.,Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | - Liming Dong
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | | | - Le Xu
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | | | - Gen Li
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Bowen Jin
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Huijing Cui
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Ashiq Ali
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China.,Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China. .,Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China.
| |
Collapse
|
4
|
Brito VD, Achimón F, Zunino MP, Zygadlo JA, Pizzolitto RP. Fungal diversity and mycotoxins detected in maize stored in silo-bags: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2640-2650. [PMID: 35076089 DOI: 10.1002/jsfa.11756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/01/2021] [Accepted: 01/08/2021] [Indexed: 06/14/2023]
Abstract
Silo-bags are hermetic storage systems that inhibit fungal growth because of their atmosphere with low humidity, as well as low pH and O2 concentrations, and a high CO2 concentration. If a silo-bag with stored maize loses its hermetic nature, it favors the development of fungi and the production of mycotoxins. To the best of our knowledge, this is the first review on the diversity of fungal species and mycotoxins that were reported in maize stored under the environmental conditions provided by silo-bags. The genera Penicillium, Aspergillus and Fusarium were found more frequently, whereas Acremonium spp., Alternaria sp., Candida sp., Cladosporium sp., Debaryomyces spp., Epiconum sp., Eupenicillium spp., Eurotium sp., Eurotium amstelodami, Hyphopichia spp., Hyphopichia burtonii, Moniliella sp., Wallemia sp. and genera within the orden Mucorales were reported less recurrently. Despite finding a great fungal diversity, all of the studies focused their investigations on a small group of toxins: fumonisins (FBs), aflatoxins (AFs), deoxynivalenol (DON), zearalenone (ZEA), patulin (PAT), toxin T2 (T2) and ochratoxin (OT). Of the FBs, fumonisin B1 and fumonisin B2 presented higher incidence percentages, followed by fumonisin B3 . Of the AFs, the only one reported was aflatoxin B1. The mycotoxins DON, ZEA and OT were found with lower incidences, whereas PAT and T2 were not detected. Good management practices of the silo-bags are necessary to achieve a hermetically sealed environment, without exchange of gases and water with the external environment during the storage period. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vanessa D Brito
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fernanda Achimón
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María P Zunino
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Julio A Zygadlo
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Romina P Pizzolitto
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
5
|
Liu M, Zhao L, Gong G, Zhang L, Shi L, Dai J, Han Y, Wu Y, Khalil MM, Sun L. Invited review: Remediation strategies for mycotoxin control in feed. J Anim Sci Biotechnol 2022; 13:19. [PMID: 35090579 PMCID: PMC8796454 DOI: 10.1186/s40104-021-00661-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022] Open
Abstract
Mycotoxins are secondary metabolites of different species of fungi. Aflatoxin B1 (AFB1), deoxynivalenol (DON), zearalenone (ZEN) and fumonisin B1 (FB1) are the main mycotoxins contaminating animal feedstuffs. These mycotoxins can primarily induce hepatotoxicity, immunotoxicity, neurotoxicity and nephrotoxicity, consequently cause adverse effects on the health and performance of animals. Therefore, physical, chemical, biological and nutritional regulation approaches have been developed as primary strategies for the decontamination and detoxification of these mycotoxins in the feed industry. Meanwhile, each of these techniques has its drawbacks, including inefficient, costly, or impractically applied on large scale. This review summarized the advantages and disadvantages of the different remediation strategies, as well as updates of the research progress of these strategies for AFB1, DON, ZEN and FB1 control in the feed industry.
Collapse
Affiliation(s)
- Meng Liu
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ling Zhao
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Guoxin Gong
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lei Zhang
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lei Shi
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jiefan Dai
- Department of Agriculture of Sichuan Province, Chengdu, 610041, China
| | - Yanming Han
- Trouw Nutrition, Amersfoort, The Netherlands
| | - Yuanyuan Wu
- Trouw Nutrition, Amersfoort, The Netherlands
| | - Mahmoud Mohamed Khalil
- Animal Production Department, Faculty of Agriculture, Benha University, Banha, 13736, Egypt
| | - Lvhui Sun
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
6
|
González-Alvarez ME, McGuire BC, Keating AF. Obesity alters the ovarian proteomic response to zearalenone exposure†. Biol Reprod 2021; 105:278-289. [PMID: 33855340 PMCID: PMC8256104 DOI: 10.1093/biolre/ioab069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
Zearalenone (ZEN), a nonsteroidal estrogenic mycotoxin, is detrimental to female reproduction. Altered chemical biotransformation, depleted primordial follicles and a blunted genotoxicant response have been discovered in obese female ovaries, thus, this study investigated the hypothesis that obesity would enhance ovarian sensitivity to ZEN exposure. Seven-week-old female wild-type nonagouti KK.Cg-a/a mice (lean) and agouti lethal yellow KK.Cg-Ay/J mice (obese) received food and water ad libitum, and either saline or ZEN (40 μg/kg) per os for 15 days. Body and organ weights, and estrous cyclicity were recorded, and ovaries collected posteuthanasia for protein analysis. Body and liver weights were increased (P < 0.05) in the obese mice, but obesity did not affect (P > 0.05) heart, kidney, spleen, uterus, or ovary weight and there was no impact (P > 0.05) of ZEN exposure on body or organ weight in lean or obese mice. Obese mice had shorter proestrus (P < 0.05) and a tendency (P = 0.055) for longer metestrus/diestrus. ZEN exposure in obese mice increased estrus but shortened metestrus/diestrus length. Neither obesity nor ZEN exposure impacted (P > 0.05) circulating progesterone, or ovarian abundance of EPHX1, GSTP1, CYP2E1, ATM, BRCA1, DNMT1, HDAC1, H4K16ac, or H3K9me3. Lean mice exposed to ZEN had a minor increase in γH2AX abundance (P < 0.05). In lean and obese mice, LC-MS/MS identified alterations to proteins involved in chemical metabolism, DNA repair and reproduction. These data identify ZEN-induced adverse ovarian modes of action and suggest that obesity is additive to ZEN-induced ovotoxicity.
Collapse
Affiliation(s)
- M Estefanía González-Alvarez
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames IA, USA
| | - Bailey C McGuire
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames IA, USA
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames IA, USA
| |
Collapse
|
7
|
Lee JH, Yun W, Oh HJ, An JS, Kim YG, Lee CG, Cho JH. Effects of dietary silicate levels on growth performance, nutrient digestibility, fecal microflora, odorous gas emissions, blood characteristics, and foot and mouth disease antibodies in weaning to finishing pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The goal of this study was to investigate effects of different levels of silicate supplementation in weaning to finishing pigs. A total of 96 piglets [(Landrace × Yorkshire) × Duroc] with initial body weight of 11.30 ± 0.02 kg were used for 16 wk (six replicate pens with four pigs per pen). Dietary treatment consisted of 0% (CON), 0.1% (T1), 0.5% (T2), and 1.0% (T3) silicate in the basal diet. Inclusion of 0.1% dietary silicate increased (P < 0.05) body weight, average daily gain, and gain-to-feed ratio in 0–16 wk. In addition, inclusion of 0.1% dietary silicate increased (P < 0.05) crude protein digestibility in 8 and 16 wk, whereas it decreased (P < 0.05) Escherichia coli count and ammonia emissions throughout the study period. Additionally, inclusion of dietary silicate increased (linear, P < 0.05) white blood cell in 4 wk, whereas it increased (quadratic, P < 0.05) white blood cell counts in 8 and 16 wk. Blood urea nitrogen decreased (quadratic, P < 0.05), and lymphocyte and foot and mouth antibodies increased (quadratic, P < 0.05) when silicate level increased. In conclusion, supplementation of 0.1% silicate in the diet showed positive effects in weaning to finishing pigs.
Collapse
Affiliation(s)
- Ji Hwan Lee
- Department of Animal Science, Chungbuk National University, Cheongju-si 361-763, Republic of Korea
| | - Won Yun
- Department of Animal Science, Chungbuk National University, Cheongju-si 361-763, Republic of Korea
| | - Han Jin Oh
- Department of Animal Science, Chungbuk National University, Cheongju-si 361-763, Republic of Korea
| | - Ji Seon An
- Department of Animal Science, Chungbuk National University, Cheongju-si 361-763, Republic of Korea
| | - Young Gwang Kim
- Department of Animal Science, Chungbuk National University, Cheongju-si 361-763, Republic of Korea
| | | | - Jin Ho Cho
- Department of Animal Science, Chungbuk National University, Cheongju-si 361-763, Republic of Korea
| |
Collapse
|
8
|
Mycotoxin toxicity and residue in animal products: Prevalence, consumer exposure and reduction strategies - A review. Toxicon 2020; 177:96-108. [PMID: 31972175 DOI: 10.1016/j.toxicon.2020.01.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Mycotoxin residues are transferred from feed to animal products, yet, less attention has been paid to it in developing countries. There is a need to find alternative alleviation material for reducing the impact of mycotoxin. This review is meant to elucidate different additives that can reduce mycotoxin residue in animal products in the world, especially in developing countries. There is evidence of relationship between mycotoxin residue in breast milk of nursing mothers and mycotoxin exposure through crop and animal product (egg and milk) intake, especially in Asia, Africa, Middle East, Latin America, and some parts of Europe. Younger livestock tends to have more toxin residues in their tissue compared to older ones. Grazing animal are also exposed to mycotoxin intake which corresponds to high level of mycotoxins in their products including meat and milk. This review shows that phytogenic, probiotic, and prebiotic additives can decrease mycotoxin residues in milk, eggs, meat liver and other tissues of livestock. Specifically, bentonites, difructose anhydride III, yeast (Trichosporon mycotoxinivorans), Bacillus spp., or their biodegradable products can reduce mycotoxin residue in animal products. In addition, Ally isothiocyanates from mustard seed were able to mitigate mycotoxins in silo-simulated system. Evidence shows that there are now low-cost, accessible, and eco-friendly additives, which could alleviate the effect of mycotoxin in feed and food. In addition, there is need for aggressive public awareness and farmers' education on the prevalence, and danger caused by mycotoxins, as well as detoxification strategies that can reduce toxin absorption into animal products.
Collapse
|
9
|
Nadziakiewicza M, Kehoe S, Micek P. Physico-Chemical Properties of Clay Minerals and Their Use as a Health Promoting Feed Additive. Animals (Basel) 2019; 9:ani9100714. [PMID: 31548509 PMCID: PMC6827059 DOI: 10.3390/ani9100714] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 11/16/2022] Open
Abstract
The contamination of feeds with microbiological or toxicological agents can affect health, productivity and safety of livestock animals and their products. The treatment of feedstuffs to lower the content of undesired substances before feeding is expensive and labor intensive, therefore an alternative is to reduce their gastrointestinal absorption. Different feed additives are available, however the use of clays and clay minerals are ideal for this purpose due to their high specific surface area, adsorption capacity, low or null toxicity for the animal and low cost. A large number of clays available to producers have different structures that are dependent on their mining source, causing difficulty in proper categorization. For this reason properties of phyllosilicates with 1:1 layers (one sheet of SiO4 tetrahedra joined to one sheet of Al- or Mg-octahedra), 2:1 layers (one sheet of Al- or Mg-octahedra between two sheets of Si-tetrahedra), and 2:1:1 layers (a basic 2:1 structure with an interlayer brucite (with cations Mg2+ or Fe2+) or gibbsite (with cation Al3+) sheet) and tectosilicates are described. The role of clay minerals in animal production shows a reduction in diarrhea, better feed conversion ratio, and improved health of many livestock species due to their specific adsorption potential of many feed mycotoxins. Overall, there is growing interest in the use of clays due to their beneficial characteristics, absence of primary toxicity and success in research to reduce animal disease and improve animal production and safety of animal products.
Collapse
Affiliation(s)
- Małgorzata Nadziakiewicza
- Department of Animal Nutrition and Dietetics, University of Agriculture in Kraków, al. Mickiewicza 24/28, 30-059 Kraków, Poland.
| | - Sylvia Kehoe
- Department of Animal and Food Science, University of Wisconsin - River Falls, 410 S. 3rd Street, River Falls, WI 54022, USA.
| | - Piotr Micek
- Department of Animal Nutrition and Dietetics, University of Agriculture in Kraków, al. Mickiewicza 24/28, 30-059 Kraków, Poland.
| |
Collapse
|
10
|
|
11
|
Chang S, Su Y, Sun Y, Meng X, Shi B, Shan A. Response of the nuclear receptors PXR and CAR and their target gene mRNA expression in female piglets exposed to zearalenone. Toxicon 2018; 151:111-118. [PMID: 30017994 DOI: 10.1016/j.toxicon.2018.06.081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
A study was conducted to determine the effects of zearalenone (ZEN) on the mRNA expression of pregnane X receptor (PXR), constitutive and rostane receptor (CAR), and phase I and II enzymes as well as the toxicity in the liver of female weanling piglets. Thirty-two female weanling piglets (Duroc × Landrace × Large white, 12.27 ± 0.30 kg)were divided into four groups (n = 8 piglets/group) that were supplemented with 0 (control), 0.5, 1 or 2 mg/kg ZEN. The trial period lasted for 28 d. The results showed that the ZEN supplementation in the diets (0.5-2 mg/kg) had no effect on growth performance but dose-dependently increased serum aspartate aminotransferase, alanineaminotransferase, alkaline phosphatase, and γ-glutamyltransferase activities (P < 0.05). The ZEN residue in the liver (P < 0.01) was also linearly and dose-dependently increased. Furthermore, the mRNA expression of PXR, CAR, phase I enzymes (i.e., cyp2e1, cyp3a5, cyp2a6, cyp1a1, and cyp1a2), and phase II enzymes (i.e., gsta1, gsta2, ugt1a3) significantly increased linearly in a dose-dependent manner (P < 0.05). However, the spleen relative weight and the glutathione peroxidase activity in the liver (P < 0.05) linearly decreased as the dietary ZEN concentration increased; the mRNA expression of the nuclear receptors PXR and CAR is responsive to ZEN in female piglets, and ZEN increases the mRNA expression of their target genes. This finding shows that the nuclear receptor signaling system plays an important role in the defense against ZEN.
Collapse
Affiliation(s)
- Siying Chang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Yang Su
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Yuchen Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Xiangyu Meng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
12
|
Zhang L, Sun X. Evaluation of maifanite and silage as amendments for green waste composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 77:435-446. [PMID: 29699726 DOI: 10.1016/j.wasman.2018.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/20/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Composting is a popular method for recycling organic solid wastes including agricultural and forestry residues. However, traditional composting method is time consuming, generates foul smells, and produces an immature product. The effects of maifanite (MF; at 0%, 8.5%, and 13.5%) and/or silage (SG; at 0%, 25%, and 45%) as amendments on an innovative, two-stage method for composting green waste (GW) were investigated. The combined addition of MF and SG greatly improved composting conditions, reduced composting time, and enhanced compost quality in terms of composting temperature, bulk density, water-holding capacity, void ratio, pH, cation exchange capacity, ammonia nitrogen content, dissolved organic carbon content, crude fibre degradation, microbial numbers, enzyme activities, nutrient contents, and phytotoxicity. The two-stage composting of GW with 8.5% MF and 45% SG generated the highest quality and the most mature compost product and did so in only 21 days. With the optimized composting, the degradation rate of cellulose and hemicellulose reached 46.3 and 82.3%, respectively, and the germination index of Chinese cabbage and lucerne was 153 and 172%, respectively, which were all far higher than values obtained with the control. The combined effects of MF and SG on GW composting have not been previously explored, and this study therefore provided new and practical information. The comprehensive analyses of compost properties during and at the end of the process provided insight into underlying mechanisms. The optimized two-stage composting method may be a viable and sustainable alternative for GW management in that it converts the waste into a useful product.
Collapse
Affiliation(s)
- Lu Zhang
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| | - Xiangyang Sun
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
13
|
Bai LL, Ming DX, Dong SR, Yang ZY, Wang WH, Zhang S, Piao XS, Liu L, Wang FL. Dietary maifanite supplementation did not affect the apparent total tract digestibility of calcium and phosphorus in growing pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:245-251. [PMID: 28728391 PMCID: PMC5767507 DOI: 10.5713/ajas.17.0080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/07/2017] [Accepted: 05/10/2017] [Indexed: 11/27/2022]
|
14
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Dall'Asta C, Dänicke S, Eriksen GS, Altieri A, Roldán-Torres R, Oswald IP. Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA J 2017; 15:e04851. [PMID: 32625539 PMCID: PMC7009830 DOI: 10.2903/j.efsa.2017.4851] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Zearalenone (ZEN), a mycotoxin primarily produced by Fusarium fungi, occurs predominantly in cereal grains. The European Commission asked EFSA for a scientific opinion on the risk to animal health related to ZEN and its modified forms in feed. Modified forms of ZEN occurring in feed include phase I metabolites α‐zearalenol (α‐ZEL), β‐zearalenol (β‐ZEL), α‐zearalanol (α‐ZAL), β‐zearalanol (β‐ZAL), zearalanone (ZAN) and phase II conjugates. ZEN has oestrogenic activity and the oestrogenic activity of the modified forms of ZEN differs considerably. For ZEN, the EFSA Panel on Contaminants in the Food Chain (CONTAM) established no observed adverse effect levels (NOAELs) for pig (piglets and gilts), poultry (chicken and fattening turkeys), sheep and fish (extrapolated from carp) and lowest observed effect level (LOAEL) for dogs. No reference points could be established for cattle, ducks, goats, horses, rabbits, mink and cats. For modified forms, no reference points could be established for any animal species and relative potency factors previously established from rodents by the CONTAM Panel in 2016 were used. The dietary exposure was estimated on 17,706 analytical results with high proportions of left‐censored data (ZEN about 60%, ZAN about 70%, others close to 100%). Samples for ZEN were collected between 2001 and 2015 in 25 different European countries, whereas samples for the modified forms were collected mostly between 2013 and 2015 from three Member States. Based on exposure estimates, the risk of adverse health effects of feed containing ZEN was considered extremely low for poultry and low for sheep, dog, pig and fish. The same conclusions also apply to the sum of ZEN and its modified forms.
Collapse
|
15
|
Effects of dietary calcium levels on growth performance and bone characteristics in pigs in grower-finisher-transitional phase. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2016.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Appropriateness to set a group health‐based guidance value for zearalenone and its modified forms. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4425] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|