1
|
Xia Z, Cao Z, Surento W, Zhang L, Qiu L, Xu Q, Zhang L, Li L, Cao Y, Luo Y, Lu G, Qi R. Relationship between SLC6A2 gene polymorphisms and brain volume in Han Chinese adults who lost their sole child. BMC Psychiatry 2024; 24:11. [PMID: 38166870 PMCID: PMC10763183 DOI: 10.1186/s12888-023-05467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Norepinephrine transporter (NET) is encoded by the SLC6A2 gene and is a potential target for studying the pathogenesis of PTSD. To the best of our knowledge, no prior investigations have examined SLC6A2 polymorphism-related neuroimaging abnormalities in PTSD patients. METHODS In 218 Han Chinese adults who had lost their sole child, we investigated the association between the T-182 C SLC6A2 genotype and gray matter volume (GMV). Participants included 57 PTSD sufferers and 161 non-PTSD sufferers, and each group was further separated into three subgroups based on each participant's SLC6A2 genotype (TT, CT, and CC). All participants received magnetic resonance imaging (MRI) and clinical evaluation. To assess the effects of PTSD diagnosis, genotype, and genotype × diagnosis interaction on GMV, 2 × 3 full factorial designs were used. Pearson's correlations were used to examine the association between GMV and CAPS, HAMD, and HAMA. RESULTS The SLC6A2 genotype showed significant main effects on GMV of the left superior parietal gyrus (SPG) and the bilateral middle cingulate gyrus (MCG). Additionally, impacts of the SLC6A2 genotype-diagnosis interaction were discovered in the left superior frontal gyrus (SFG). The CAPS, HAMA, and HAMD scores, as well as the genotype main effect and diagnostic SLC6A2 interaction, did not significantly correlate with each other. CONCLUSION These findings indicate a modulatory effect that the SLC6A2 polymorphism exerts on the SPG and MCG, irrespective of PTSD diagnosis. We found evidence to suggest that the SLC6A2 genotype-diagnosis interaction on SFG may potentially contribute to PTSD pathogenesis in adults who lost their sole child.
Collapse
Affiliation(s)
- Zhuoman Xia
- Department of Medical Imaging, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Zhihong Cao
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, 75 Tongzhenguan Road, Wuxi, Wuxi, 214200, China
| | - Wesley Surento
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, Los Angeles, CA, 90292, USA
| | - Li Zhang
- Mental Health Institute, the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, National Technology Institute of Psychiatry, Central South University, Changsha, Hunan, 410011, China
| | - Lianli Qiu
- Department of Medical Imaging, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Longjiang Zhang
- Department of Medical Imaging, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Lingjiang Li
- Mental Health Institute, the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, National Technology Institute of Psychiatry, Central South University, Changsha, Hunan, 410011, China
| | - Yang Cao
- College of Arts & Science, Vanderbilt University, Nashville, TN, 37235, USA
| | - Yifeng Luo
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, 75 Tongzhenguan Road, Wuxi, Wuxi, 214200, China.
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China.
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China.
| |
Collapse
|
2
|
Nwokafor C, Serova LI, Tanelian A, Nahvi RJ, Sabban EL. Variable Response of Norepinephrine Transporter to Traumatic Stress and Relationship to Hyperarousal. Front Behav Neurosci 2021; 15:725091. [PMID: 34650410 PMCID: PMC8507558 DOI: 10.3389/fnbeh.2021.725091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
The noradrenergic systems play a key role in stress triggered disorders such as post-traumatic stress disorder (PTSD). We hypothesized that traumatic stress will alter expression of norepinephrine transporter (NET) in locus coeruleus (LC) and its target brain regions which could be related to hyperarousal. Male Sprague-Dawley rats were subjected to single prolonged stress (SPS) and several weeks later the LC was isolated. NET mRNA levels in LC, determined by RT-PCR, displayed variable response with high and low responsive subgroups. In different cohort, acoustic startle response (ASR) was measured 2 weeks after SPS and levels of NET mRNA and protein in LC determined. The high NET responsive subgroup had greater hyperarousal. Nevertheless, NET protein levels, as determined by western blots, were lower than unstressed controls in LC, ventral hippocampus and medial prefrontal cortex and displayed considerable variability. Hypermethylation of specific CpG region in promoter of SLC6A2 gene, encoding NET, was present in the low, but not high, NET mRNA responsive subgroup. Taken together, the results demonstrate variability in stress elicited changes in NET gene expression and involvement of epigenetic changes. This may underlie mechanisms of susceptibility and resilience to traumatic stress triggered neuropsychiatric symptoms, especially hyperarousal.
Collapse
Affiliation(s)
- Chiso Nwokafor
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Lidia I Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Arax Tanelian
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Roxanna J Nahvi
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
3
|
Disentangling the association between PTSD symptom heterogeneity and alcohol use disorder: Results from the 2019-2020 National Health and Resilience in Veterans Study. J Psychiatr Res 2021; 142:179-187. [PMID: 34359013 DOI: 10.1016/j.jpsychires.2021.07.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/06/2021] [Accepted: 07/31/2021] [Indexed: 12/25/2022]
Abstract
Veterans are at increased risk of comorbid posttraumatic stress disorder (PTSD) and alcohol use disorder (AUD) relative to civilians. Few studies have explored the association between distinct PTSD symptoms and AUD in veterans, and existing findings are highly discrepant. This study aimed to address this gap and equivocal association by evaluating which PTSD symptom clusters are most associated with AUD in a veteran sample using the 7-factor 'hybrid' model of PTSD. Data were analyzed from the 2019-2020 National Health and Resilience in Veterans Study (NHRVS), a nationally representative survey of 4069 U.S. veterans. Veterans completed self-report measures to assess current PTSD symptoms and AUD. Multivariable logistic regression and relative importance analyses were conducted to examine associations between the 7-factor model of PTSD symptoms and AUD. Adjusting for sociodemographic, military, trauma factors, and depressive symptoms, scores on the dysphoric arousal (20.7% relative variance explained [RVE]) and externalizing behaviors (19.0% RVE) symptom clusters were most strongly associated with AUD in the full sample, while externalizing behaviors (47.7% RVE), anxious arousal (23.9% RVE), and dysphoric arousal (12.4%) accounted for the majority of explained variance in veterans who screened positive for PTSD. Results of this nationally representative study of U.S. veterans highlight the importance of externalizing behaviors and arousal symptoms of PTSD as potential drivers of AUD in this population. The 7-factor hybrid model of PTSD provides a more nuanced understanding of PTSD-AUD associations, and may help inform risk assessment and more personalized treatment approaches for veterans with and at-risk for AUD.
Collapse
|
4
|
Chitrala KN, Nagarkatti P, Nagarkatti M. Computational analysis of deleterious single nucleotide polymorphisms in catechol O-Methyltransferase conferring risk to post-traumatic stress disorder. J Psychiatr Res 2021; 138:207-218. [PMID: 33865170 PMCID: PMC8969201 DOI: 10.1016/j.jpsychires.2021.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Post-traumatic stress disorder (PTSD) is one of the prevalent neurological disorder which is drawing increased attention over the past few decades. Major risk factors for PTSD can be categorized into environmental and genetic factors. Among the genetic risk factors, polymorphisms in the catechol-O-methyltransferase (COMT) gene is known to be associated with the risk for PTSD. In the present study, we analysed the impact of deleterious single nucleotide polymorphisms (SNPs) in the COMT gene conferring risk to PTSD using computational based approaches followed by molecular dynamic simulations. The data on COMT gene associated with PTSD were collected from several databases including Online Mendelian Inheritance in Man (OMIM) search. Datasets related to SNP were downloaded from the dbSNP database. To study the structural and dynamic effects of COMT wild type and mutant forms, we performed molecular dynamics simulations (MD simulations) at a time scale of 300 ns. Results from screening the SNPs using the computational tools SIFT and Polyphen-2 demonstrated that the SNP rs4680 (V158M) in COMT has a deleterious effect with phenotype in PTSD. Results from the MD simulations showed that there is some major fluctuations in the structural features including root mean square deviation (RMSD), radius of gyration (Rg), root mean square fluctuation (RMSF) and secondary structural elements including α-helices, sheets and turns between wild-type (WT) and mutant forms of COMT protein. In conclusion, our study provides novel insights into the deleterious effects and impact of V158M mutation on COMT protein structure which plays a key role in PTSD.
Collapse
Affiliation(s)
- Kumaraswamy Naidu Chitrala
- Dept. of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA; Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| | - Prakash Nagarkatti
- Dept. of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| | - Mitzi Nagarkatti
- Dept. of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| |
Collapse
|
5
|
Korem N, Duek O, Xu K, Harpaz-Rotem I, Pietrzak RH. Cannabinoid Receptor 1 rs1049353 Variant, Childhood Abuse, and the Heterogeneity of PTSD Symptoms: Results From the National Health and Resilience in Veterans Study. ACTA ACUST UNITED AC 2021; 5:24705470211011075. [PMID: 33997583 PMCID: PMC8107935 DOI: 10.1177/24705470211011075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 11/15/2022]
Abstract
Background Accumulating evidence implicates the endocannabinoid system, including
variants in the cannabinoid-1 receptor gene (CNR1), in the
pathophysiology of posttraumatic stress disorder (PTSD). The synonymous
G1359A variant (rs1049353) in the CNR1 gene has been linked
to PTSD in individuals exposed to childhood abuse. In this study, the
effects of the rs1049353 genotype and childhood abuse on overall PTSD
symptoms, as well as PTSD symptom clusters were examined in order to examine
how this interaction relates to the phenotypic expression of this
disorder. Method Data were analyzed from 1,372 Caucasian U.S. veterans who participated in the
National Health and Resilience in Veterans Study. Multivariable analyses
were conducted to evaluate the association between rs1049353 genotype,
childhood abuse, and their interaction in relation to PTSD symptoms. Results A significant interaction between rs1049353 genotype and childhood abuse was
observed, with A allele carriers with histories of childhood abuse reporting
greater severity of PTSD symptoms, most notably anxious arousal, relative to
G/G homozygotes. Significant main effects of childhood abuse on overall PTSD
symptoms, and re-experiencing, emotional numbing, and dysphoric arousal
symptom clusters, as well as of A allele carrier status on anxious arousal
symptoms were observed. Conclusions Results of this study replicate prior work and suggest that the
rs1049353-by-childhood abuse interaction is particularly associated with the
manifestation of anxious arousal symptoms of PTSD. Taken together, these
findings underscore the importance of considering the phenotypic
heterogeneity of PTSD in gene-environment studies of this multifaceted
disorder.
Collapse
Affiliation(s)
- Nachshon Korem
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Or Duek
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ke Xu
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ilan Harpaz-Rotem
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Robert H Pietrzak
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
6
|
Wilson MA, Liberzon I, Lindsey ML, Lokshina Y, Risbrough VB, Sah R, Wood SK, Williamson JB, Spinale FG. Common pathways and communication between the brain and heart: connecting post-traumatic stress disorder and heart failure. Stress 2019; 22:530-547. [PMID: 31161843 PMCID: PMC6690762 DOI: 10.1080/10253890.2019.1621283] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Psychiatric illnesses and cardiovascular disease (CVD) contribute to significant overall morbidity, mortality, and health care costs, and are predicted to reach epidemic proportions with the aging population. Within the Veterans Administration (VA) health care system, psychiatric illnesses such as post-traumatic stress disorder (PTSD) and CVD such as heart failure (HF), are leading causes of hospital admissions, prolonged hospital stays, and resource utilization. Numerous studies have demonstrated associations between PTSD symptoms and CVD endpoints, particularly in the Veteran population. Not only does PTSD increase the risk of HF, but this relationship is bi-directional. Accordingly, a VA-sponsored conference entitled "Cardiovascular Comorbidities in PTSD: The Brain-Heart Consortium" was convened to explore potential relationships and common biological pathways between PTSD and HF. The conference was framed around the hypothesis that specific common systems are dysregulated in both PTSD and HF, resulting in a synergistic acceleration and amplification of both disease processes. The conference was not intended to identify all independent pathways that give rise to PTSD and HF, but rather identify shared systems, pathways, and biological mediators that would be modifiable in both disease processes. The results from this conference identified specific endocrine, autonomic, immune, structural, genetic, and physiological changes that may contribute to shared PTSD-CVD pathophysiology and could represent unique opportunities to develop therapies for both PTSD and HF. Some recommendations from the group for future research opportunities are provided.
Collapse
Affiliation(s)
- Marlene A. Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine and Research Service, Columbia VA Health Care System, Columbia SC
- Corresponding author information: Marlene A. Wilson, Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia SC 29208, Research Service, Columbia VA Health Care System, Columbia SC 29209, ; 803-216-3507
| | - Israel Liberzon
- Department of Psychiatry, Texas A&M College of Medicine, Bryan, TX
| | - Merry L. Lindsey
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, and Research Service, Omaha VA Medical Center, Omaha NE
| | - Yana Lokshina
- Department of Psychiatry, Texas A&M College of Medicine, Bryan, TX
| | - Victoria B. Risbrough
- VA Center of Excellence for Stress and Mental Health, La Jolla CA, Dept. of Psychiatry, University of California San Diego
| | - Renu Sah
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Susan K. Wood
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine and Research Service, Columbia VA Health Care System, Columbia SC
| | - John B. Williamson
- Department of Neurology, University of Florida College of Medicine, Gainesville FL
| | - Francis G. Spinale
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine and Research Service, Columbia VA Health Care System., Columbia SC
| |
Collapse
|
7
|
Lemche E. Early Life Stress and Epigenetics in Late-onset Alzheimer's Dementia: A Systematic Review. Curr Genomics 2018; 19:522-602. [PMID: 30386171 PMCID: PMC6194433 DOI: 10.2174/1389202919666171229145156] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/27/2017] [Accepted: 12/12/2017] [Indexed: 11/22/2022] Open
Abstract
Involvement of life stress in Late-Onset Alzheimer's Disease (LOAD) has been evinced in longitudinal cohort epidemiological studies, and endocrinologic evidence suggests involvements of catecholamine and corticosteroid systems in LOAD. Early Life Stress (ELS) rodent models have successfully demonstrated sequelae of maternal separation resulting in LOAD-analogous pathology, thereby supporting a role of insulin receptor signalling pertaining to GSK-3beta facilitated tau hyper-phosphorylation and amyloidogenic processing. Discussed are relevant ELS studies, and findings from three mitogen-activated protein kinase pathways (JNK/SAPK pathway, ERK pathway, p38/MAPK pathway) relevant for mediating environmental stresses. Further considered were the roles of autophagy impairment, neuroinflammation, and brain insulin resistance. For the meta-analytic evaluation, 224 candidate gene loci were extracted from reviews of animal studies of LOAD pathophysiological mechanisms, of which 60 had no positive results in human LOAD association studies. These loci were combined with 89 gene loci confirmed as LOAD risk genes in previous GWAS and WES. Of the 313 risk gene loci evaluated, there were 35 human reports on epigenomic modifications in terms of methylation or histone acetylation. 64 microRNA gene regulation mechanisms were published for the compiled loci. Genomic association studies support close relations of both noradrenergic and glucocorticoid systems with LOAD. For HPA involvement, a CRHR1 haplotype with MAPT was described, but further association of only HSD11B1 with LOAD found; however, association of FKBP1 and NC3R1 polymorphisms was documented in support of stress influence to LOAD. In the brain insulin system, IGF2R, INSR, INSRR, and plasticity regulator ARC, were associated with LOAD. Pertaining to compromised myelin stability in LOAD, relevant associations were found for BIN1, RELN, SORL1, SORCS1, CNP, MAG, and MOG. Regarding epigenetic modifications, both methylation variability and de-acetylation were reported for LOAD. The majority of up-to-date epigenomic findings include reported modifications in the well-known LOAD core pathology loci MAPT, BACE1, APP (with FOS, EGR1), PSEN1, PSEN2, and highlight a central role of BDNF. Pertaining to ELS, relevant loci are FKBP5, EGR1, GSK3B; critical roles of inflammation are indicated by CRP, TNFA, NFKB1 modifications; for cholesterol biosynthesis, DHCR24; for myelin stability BIN1, SORL1, CNP; pertaining to (epi)genetic mechanisms, hTERT, MBD2, DNMT1, MTHFR2. Findings on gene regulation were accumulated for BACE1, MAPK signalling, TLR4, BDNF, insulin signalling, with most reports for miR-132 and miR-27. Unclear in epigenomic studies remains the role of noradrenergic signalling, previously demonstrated by neuropathological findings of childhood nucleus caeruleus degeneration for LOAD tauopathy.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
8
|
Sabban EL, Serova LI, Newman E, Aisenberg N, Akirav I. Changes in Gene Expression in the Locus Coeruleus-Amygdala Circuitry in Inhibitory Avoidance PTSD Model. Cell Mol Neurobiol 2018; 38:273-280. [PMID: 28889197 DOI: 10.1007/s10571-017-0548-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/02/2017] [Indexed: 12/28/2022]
Abstract
The locus coeruleus (LC)-amygdala circuit is implicated in playing a key role in responses to emotionally arousing stimuli and in the manifestation of post-traumatic stress disorder (PTSD). Here, we examined changes in gene expression of a number of important mediators of the LC-amygdala circuitry in the inhibition avoidance model of PTSD. After testing for basal acoustic startle response (ASR), rats were exposed to a severe footshock (1.5 mA for 10 s) in the inhibitory avoidance apparatus. They were given contextual situational reminders every 5 day for 25 days. Controls were treated identically but with the footshock inactivated. Animals were re-tested on second ASR and decapitated 1 h later. The shock group had enhanced hyperarousal and several changes in gene expression compared to controls. In the LC, mRNA levels of norepinephrine (NE) biosynthetic enzymes (TH, DBH), NE transporter (NET), NPY receptors (Y1R, Y2R), and CB1 receptor of endocannabinoid system were elevated. In the basolateral amygdala (BLA), there were marked reductions in gene expression for CB1, and especially Y1R, with rise for corticotropin-releasing hormone (CRH) system (CRH, CRH receptor 1), and no significant changes in the central amygdala. Our results suggest a fast forward mechanism in the LC-amygdala circuitry in the shock group.
Collapse
Affiliation(s)
- Esther L Sabban
- Department of Biochemistry and Molecular Biology, Basic Sciences Building, New York Medical College, Valhalla, NY, 10595, USA.
| | - Lidia I Serova
- Department of Biochemistry and Molecular Biology, Basic Sciences Building, New York Medical College, Valhalla, NY, 10595, USA
| | - Elizabeth Newman
- Department of Biochemistry and Molecular Biology, Basic Sciences Building, New York Medical College, Valhalla, NY, 10595, USA
| | - Nurit Aisenberg
- Department of Psychology, University of Haifa, 3498838, Haifa, Israel
| | - Irit Akirav
- Department of Psychology, University of Haifa, 3498838, Haifa, Israel
| |
Collapse
|
9
|
Maron E, Lan CC, Nutt D. Imaging and Genetic Approaches to Inform Biomarkers for Anxiety Disorders, Obsessive-Compulsive Disorders, and PSTD. Curr Top Behav Neurosci 2018; 40:219-292. [PMID: 29796838 DOI: 10.1007/7854_2018_49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Anxiety disorders are the most common mental health problem in the world and also claim the highest health care cost among various neuropsychiatric disorders. Anxiety disorders have a chronic and recurrent course and cause significantly negative impacts on patients' social, personal, and occupational functioning as well as quality of life. Despite their high prevalence rates, anxiety disorders have often been under-diagnosed or misdiagnosed, and consequently under-treated. Even with the correct diagnosis, anxiety disorders are known to be difficult to treat successfully. In order to implement better strategies in diagnosis, prognosis, treatment decision, and early prevention for anxiety disorders, tremendous efforts have been put into studies using genetic and neuroimaging techniques to advance our understandings of the underlying biological mechanisms. In addition to anxiety disorders including panic disorder, generalised anxiety disorder (GAD), specific phobias, social anxiety disorders (SAD), due to overlapping symptom dimensions, obsessive-compulsive disorder (OCD), and post-traumatic stress disorder (PTSD) (which were removed from the anxiety disorder category in DSM-5 to become separate categories) are also included for review of relevant genetic and neuroimaging findings. Although the number of genetic or neuroimaging studies focusing on anxiety disorders is relatively small compare to other psychiatric disorders such as psychotic disorders or mood disorders, various structural abnormalities in the grey or white matter, functional alterations of activity during resting-state or task conditions, molecular changes of neurotransmitter receptors or transporters, and genetic associations have all been reported. With continuing effort, further genetic and neuroimaging research may potentially lead to clinically useful biomarkers for the prevention, diagnosis, and management of these disorders.
Collapse
Affiliation(s)
- Eduard Maron
- Neuropsychopharmacology Unit, Centre for Academic Psychiatry, Division of Brain Sciences, Imperial College London, London, UK.
- Department of Psychiatry, University of Tartu, Tartu, Estonia.
- Department of Psychiatry, North Estonia Medical Centre, Tallinn, Estonia.
| | - Chen-Chia Lan
- Neuropsychopharmacology Unit, Centre for Academic Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan
| | - David Nutt
- Neuropsychopharmacology Unit, Centre for Academic Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
10
|
The role of anxiety sensitivity in reactivity to trauma cues in treatment-seeking adults with substance use disorders. Compr Psychiatry 2017; 78:107-114. [PMID: 28822277 PMCID: PMC5600861 DOI: 10.1016/j.comppsych.2017.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/05/2017] [Accepted: 07/25/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Exposure to traumatic events and posttraumatic stress disorder (PTSD) are common among individuals with substance use disorders (SUDs). Although the presence of trauma exposure and/or PTSD among those with SUDs is associated with a range of negative outcomes, much remains to be understood about the factors contributing to these outcomes. Anxiety sensitivity (the tendency to respond fearfully to the signs and symptoms of anxiety) has been linked to greater PTSD symptoms and the use of substances to cope with PTSD symptoms, and is a promising factor for understanding the negative outcomes associated with co-occurring PTSD and SUDs. METHODS This study examined the association between anxiety sensitivity and trauma cue reactivity among 194 trauma-exposed patients with SUDs (27.3% met criteria for current PTSD). Participants completed ratings of negative affect and substance cravings prior to and after exposure to a personally-relevant trauma cue. RESULTS Results indicated that anxiety sensitivity was associated with greater emotional reactivity (but not craving reactivity) to the trauma cue; neither PTSD symptom severity nor PTSD diagnosis moderated these associations. PTSD symptom severity was associated with greater emotional and craving reactivity to the trauma cue. CONCLUSIONS Results highlight the potential utility of targeting anxiety sensitivity in treatments for trauma-exposed patients with SUDs with and without PTSD.
Collapse
|
11
|
Bandelow B, Baldwin D, Abelli M, Altamura C, Dell'Osso B, Domschke K, Fineberg NA, Grünblatt E, Jarema M, Maron E, Nutt D, Pini S, Vaghi MM, Wichniak A, Zai G, Riederer P. Biological markers for anxiety disorders, OCD and PTSD - a consensus statement. Part I: Neuroimaging and genetics. World J Biol Psychiatry 2016; 17:321-65. [PMID: 27403679 DOI: 10.1080/15622975.2016.1181783] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Biomarkers are defined as anatomical, biochemical or physiological traits that are specific to certain disorders or syndromes. The objective of this paper is to summarise the current knowledge of biomarkers for anxiety disorders, obsessive-compulsive disorder (OCD) and post-traumatic stress disorder (PTSD). METHODS Findings in biomarker research were reviewed by a task force of international experts in the field, consisting of members of the World Federation of Societies for Biological Psychiatry Task Force on Biological Markers and of the European College of Neuropsychopharmacology Anxiety Disorders Research Network. RESULTS The present article (Part I) summarises findings on potential biomarkers in neuroimaging studies, including structural brain morphology, functional magnetic resonance imaging and techniques for measuring metabolic changes, including positron emission tomography and others. Furthermore, this review reports on the clinical and molecular genetic findings of family, twin, linkage, association and genome-wide association studies. Part II of the review focuses on neurochemistry, neurophysiology and neurocognition. CONCLUSIONS Although at present, none of the putative biomarkers is sufficient and specific as a diagnostic tool, an abundance of high-quality research has accumulated that will improve our understanding of the neurobiological causes of anxiety disorders, OCD and PTSD.
Collapse
Affiliation(s)
- Borwin Bandelow
- a Department of Psychiatry and Psychotherapy , University of Göttingen , Germany
| | - David Baldwin
- b Faculty of Medicine , University of Southampton , Southampton , UK
| | - Marianna Abelli
- c Department of Clinical and Experimental Medicine , Section of Psychiatry, University of Pisa , Italy
| | - Carlo Altamura
- d Department of Psychiatry , University of Milan; Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , Milan , Italy
| | - Bernardo Dell'Osso
- d Department of Psychiatry , University of Milan; Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , Milan , Italy
| | - Katharina Domschke
- e Department of Psychiatry, Psychosomatics and Psychotherapy , University of Wuerzburg , Germany
| | - Naomi A Fineberg
- f Hertfordshire Partnership University NHS Foundation Trust and University of Hertfordshire , Rosanne House, Parkway , Welwyn Garden City , UK
| | - Edna Grünblatt
- e Department of Psychiatry, Psychosomatics and Psychotherapy , University of Wuerzburg , Germany ;,g Neuroscience Center Zurich , University of Zurich and the ETH Zurich , Zürich , Switzerland ;,h Department of Child and Adolescent Psychiatry and Psychotherapy , Psychiatric Hospital, University of Zurich , Zürich , Switzerland ;,i Zurich Center for Integrative Human Physiology , University of Zurich , Switzerland
| | - Marek Jarema
- j Third Department of Psychiatry , Institute of Psychiatry and Neurology , Warszawa , Poland
| | - Eduard Maron
- k North Estonia Medical Centre, Department of Psychiatry , Tallinn , Estonia ;,l Department of Psychiatry , University of Tartu , Estonia ;,m Faculty of Medicine, Department of Medicine, Centre for Neuropsychopharmacology, Division of Brain Sciences , Imperial College London , UK
| | - David Nutt
- m Faculty of Medicine, Department of Medicine, Centre for Neuropsychopharmacology, Division of Brain Sciences , Imperial College London , UK
| | - Stefano Pini
- c Department of Clinical and Experimental Medicine , Section of Psychiatry, University of Pisa , Italy
| | - Matilde M Vaghi
- n Department of Psychology and Behavioural and Clinical Neuroscience Institute , University of Cambridge , UK
| | - Adam Wichniak
- j Third Department of Psychiatry , Institute of Psychiatry and Neurology , Warszawa , Poland
| | - Gwyneth Zai
- n Department of Psychology and Behavioural and Clinical Neuroscience Institute , University of Cambridge , UK ;,o Neurogenetics Section, Centre for Addiction & Mental Health , Toronto , Canada ;,p Frederick W. Thompson Anxiety Disorders Centre, Department of Psychiatry, Sunnybrook Health Sciences Centre , Toronto , Canada ;,q Institute of Medical Science and Department of Psychiatry, University of Toronto , Toronto , Canada
| | - Peter Riederer
- e Department of Psychiatry, Psychosomatics and Psychotherapy , University of Wuerzburg , Germany ;,g Neuroscience Center Zurich , University of Zurich and the ETH Zurich , Zürich , Switzerland ;,h Department of Child and Adolescent Psychiatry and Psychotherapy , Psychiatric Hospital, University of Zurich , Zürich , Switzerland
| |
Collapse
|
12
|
Noradrenergic dysregulation in the pathophysiology of PTSD. Exp Neurol 2016; 284:181-195. [PMID: 27222130 DOI: 10.1016/j.expneurol.2016.05.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/07/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022]
Abstract
A central role for noradrenergic dysregulation in the pathophysiology of post-traumatic stress disorder (PTSD) is increasingly suggested by both clinical and basic neuroscience research. Here, we integrate recent findings from clinical and animal research with the earlier literature. We first review the evidence for net upregulation of the noradrenergic system and its responsivity to stress in individuals with PTSD. Next, we trace the evidence that the α1 noradrenergic receptor antagonist prazosin decreases many of the symptoms of PTSD from initial clinical observations, to case series, to randomized controlled trials. Finally, we review the basic science work that has begun to explain the mechanism for this efficacy, as well as to explore its possible limitations and areas for further advancement. We suggest a view of the noradrenergic system as a central, modifiable link in a network of interconnected stress-response systems, which also includes the amygdala and its modulation by medial prefrontal cortex. Particular attention is paid to the evidence for bidirectional signaling between noradrenaline and corticotropin-releasing factor (CRF) in coordinating these interconnected systems. The multiple different ways in which the sensitivity and reactivity of the noradrenergic system may be altered in PTSD are highlighted, as is the evidence for possible heterogeneity in the pathophysiology of PTSD between different individuals who appear clinically similar. We conclude by noting the importance moving forward of improved measures of noradrenergic functioning in clinical populations, which will allow better recognition of clinical heterogeneity and further assessment of the functional implications of different aspects of noradrenergic dysregulation.
Collapse
|
13
|
Lemche E, Chaban OS, Lemche AV. Neuroendocrinological and Epigenetic Mechanisms Subserving Autonomic Imbalance and HPA Dysfunction in the Metabolic Syndrome. Front Neurosci 2016; 10:142. [PMID: 27147943 PMCID: PMC4830841 DOI: 10.3389/fnins.2016.00142] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/21/2016] [Indexed: 12/18/2022] Open
Abstract
Impact of environmental stress upon pathophysiology of the metabolic syndrome (MetS) has been substantiated by epidemiological, psychophysiological, and endocrinological studies. This review discusses recent advances in the understanding of causative roles of nutritional factors, sympathomedullo-adrenal (SMA) and hypothalamic-pituitary adrenocortical (HPA) axes, and adipose tissue chronic low-grade inflammation processes in MetS. Disturbances in the neuroendocrine systems for leptin, melanocortin, and neuropeptide Y (NPY)/agouti-related protein systems have been found resulting directly in MetS-like conditions. The review identifies candidate risk genes from factors shown critical for the functioning of each of these neuroendocrine signaling cascades. In its meta-analytic part, recent studies in epigenetic modification (histone methylation, acetylation, phosphorylation, ubiquitination) and posttranscriptional gene regulation by microRNAs are evaluated. Several studies suggest modification mechanisms of early life stress (ELS) and diet-induced obesity (DIO) programming in the hypothalamic regions with populations of POMC-expressing neurons. Epigenetic modifications were found in cortisol (here HSD11B1 expression), melanocortin, leptin, NPY, and adiponectin genes. With respect to adiposity genes, epigenetic modifications were documented for fat mass gene cluster APOA1/C3/A4/A5, and the lipolysis gene LIPE. With regard to inflammatory, immune and subcellular metabolism, PPARG, NKBF1, TNFA, TCF7C2, and those genes expressing cytochrome P450 family enzymes involved in steroidogenesis and in hepatic lipoproteins were documented for epigenetic modifications.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Oleg S Chaban
- Section of Psychosomatic Medicine, Bogomolets National Medical University Kiev, Ukraine
| | - Alexandra V Lemche
- Department of Medical Science, Institute of Clinical Research Berlin, Germany
| |
Collapse
|
14
|
Kang HJ, Yoon S, Lyoo IK. Peripheral Biomarker Candidates of Posttraumatic Stress Disorder. Exp Neurobiol 2015; 24:186-96. [PMID: 26412967 PMCID: PMC4580745 DOI: 10.5607/en.2015.24.3.186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 12/11/2022] Open
Abstract
There is high variability in the manifestation of physical and mental health problems following exposure to trauma and disaster. Although most people may show a range of acute symptoms in the aftermath of traumatic events, chronic and persistent mental disorders may not be developed in all individuals who were exposed to traumatic events. The most common long-term pathological consequence after trauma exposure is posttraumatic stress disorder (PTSD). However, comorbid conditions including depression, anxiety disorder, substance use-related problems, and a variety of other symptoms may frequently be observed in individuals with trauma exposure. Post-traumatic syndrome (PTS) is defined collectively as vast psychosocial problems that could be experienced in response to traumatic events. It is important to predict who will continue to suffer from physical and mental health problems and who will recover following trauma exposure. However, given the heterogeneity and variability in symptom manifestations, it is difficult to find identify biomarkers which predict the development of PTSD. In this review, we will summarize the results of recent studies with regard to putative biomarkers of PTSD and suggest future research directions for biomarker discovery for PTSD.
Collapse
Affiliation(s)
- Hee Jin Kang
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea. ; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea. ; College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|