1
|
Callan A, Jha S, Valdez L, Tsin A. Cellular and Molecular Mechanisms of Neuronal Degeneration in Early-Stage Diabetic Retinopathy. Curr Vasc Pharmacol 2024; 22:301-315. [PMID: 38693745 DOI: 10.2174/0115701611272737240426050930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Studies on the early retinal changes in Diabetic Retinopathy (DR) have demonstrated that neurodegeneration precedes vascular abnormalities like microaneurysms or intraretinal hemorrhages. Therefore, there is a growing field of study to analyze the cellular and molecular pathways involved to allow for the development of novel therapeutics to prevent the onset or delay the progression of DR. Molecular Mechanisms: Oxidative stress and mitochondrial dysfunction contribute to neurodegeneration through pathways involving polyol, hexosamine, advanced glycation end products, and protein kinase C. Potential interventions targeting these pathways include aldose reductase inhibitors and protein kinase C inhibitors. Neurotrophic factor imbalances, notably brain-derived neurotrophic factor and nerve growth factor, also play a role in early neurodegeneration, and supplementation of these neurotrophic factors show promise in mitigating neurodegeneration. Cellular Mechanisms: Major cellular mechanisms of neurodegeneration include caspase-mediated apoptosis, glial cell reactivity, and glutamate excitotoxicity. Therefore, inhibitors of these pathways are potential therapeutic avenues. Vascular Component: The nitric oxide pathway, critical for neurovascular coupling, is disrupted in DR due to increased reactive oxygen species. Vascular Endothelial Growth Factor (VEGF), a long-known angiogenic factor, has demonstrated both damaging and neuroprotective effects, prompting a careful consideration of long-term anti-VEGF therapy. CONCLUSION Current DR treatments primarily address vascular symptoms but fall short of preventing or halting the disease. Insights into the mechanisms of retinal neurodegeneration in the setting of diabetes mellitus not only enhance our understanding of DR but also pave the way for future therapeutic interventions aimed at preventing disease progression and preserving vision.
Collapse
Affiliation(s)
- Andrew Callan
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, USA
| | - Sonal Jha
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, USA
| | - Laura Valdez
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, USA
| | - Andrew Tsin
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, USA
| |
Collapse
|
2
|
Yu X, Teng Q, Bao K, Chudhary M, Qi H, Zhou W, Che H, Liu J, Ren X, Kong L. Thioredoxin 1 overexpression attenuated diabetes-induced endoplasmic reticulum stress in Müller cells via apoptosis signal-regulating kinase 1. J Cell Biochem 2023; 124:421-433. [PMID: 36780445 DOI: 10.1002/jcb.30378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023]
Abstract
As one of the common and serious chronic complications of diabetes mellitus (DM), the related mechanism of diabetic retinopathy (DR) has not been fully understood. Müller cell reactive gliosis is one of the early pathophysiological features of DR. Therefore, exploring the manner to reduce diabetes-induced Müller cell damage is essential to delay DR. Thioredoxin 1 (Trx1), one of the ubiquitous redox enzymes, plays a vital role in redox homeostasis via protein-protein interactions, including apoptosis signal-regulating kinase 1 (ASK1). Previous studies have shown that upregulation of Trx by some drugs can attenuate endoplasmic reticulum stress (ERS) in DR, but the related mechanism was unclear. In this study, we used DM mouse and high glucose (HG)-cultured human Müller cells as models to clarify the effect of Trx1 on ERS and the underlying mechanism. The data showed that the diabetes-induced Müller cell damage was increased significantly. Moreover, the expression of ERS and reactive gliosis was also upregulated in diabetes in vivo and in vitro. However, it was reversed after Trx1 overexpression. Besides, ERS-related protein expression, reactive gliosis, and apoptosis were decreased after transfection with ASK1 small-interfering RNA in stable Trx1 overexpression Müller cells after HG treatment. Taken together, Trx1 could protect Müller cells from diabetes-induced damage, and the underlying mechanism was related to inhibited ERS via ASK1.
Collapse
Affiliation(s)
- Xuebin Yu
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Qiufeng Teng
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Kaimin Bao
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Maryam Chudhary
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Hui Qi
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Wenying Zhou
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Hongxin Che
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Junli Liu
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
- Henan Key Laboratory of Neural Regeneration, Henan International Joint Laboratory of Neurorestoratology for Senile Dementia, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiang Ren
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Li Kong
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
3
|
Aldosari DI, Malik A, Alhomida AS, Ola MS. Implications of Diabetes-Induced Altered Metabolites on Retinal Neurodegeneration. Front Neurosci 2022; 16:938029. [PMID: 35911994 PMCID: PMC9328693 DOI: 10.3389/fnins.2022.938029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the major complications of diabetic eye diseases, causing vision loss and blindness worldwide. The concept of diabetic retinopathy has evolved from microvascular disease into more complex neurovascular disorders. Early in the disease progression of diabetes, the neuronal and glial cells are compromised before any microvascular abnormalities clinically detected by the ophthalmoscopic examination. This implies understanding the pathophysiological mechanisms at the early stage of disease progression especially due to diabetes-induced metabolic alterations to damage the neural retina so that early intervention and treatments options can be identified to prevent and inhibit the progression of DR. Hyperglycemia has been widely considered the major contributor to the progression of the retinal damage, even though tight control of glucose does not seem to have a bigger effect on the incidence or progression of retinal damage that leads to DR. Emerging evidence suggests that besides diabetes-induced hyperglycemia, dyslipidemia and amino acid defects might be a major contributor to the progression of early neurovascular retinal damage. In this review, we have discussed recent advances in the alterations of key metabolites of carbohydrate, lipid, and amino acids and their implications for neurovascular damage in DR.
Collapse
|
4
|
Lem DW, Gierhart DL, Davey PG. A Systematic Review of Carotenoids in the Management of Diabetic Retinopathy. Nutrients 2021; 13:2441. [PMID: 34371951 PMCID: PMC8308772 DOI: 10.3390/nu13072441] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/21/2022] Open
Abstract
Diabetic retinopathy, which was primarily regarded as a microvascular disease, is the leading cause of irreversible blindness worldwide. With obesity at epidemic proportions, diabetes-related ocular problems are exponentially increasing in the developed world. Oxidative stress due to hyperglycemic states and its associated inflammation is one of the pathological mechanisms which leads to depletion of endogenous antioxidants in retina in a diabetic patient. This contributes to a cascade of events that finally leads to retinal neurodegeneration and irreversible vision loss. The xanthophylls lutein and zeaxanthin are known to promote retinal health, improve visual function in retinal diseases such as age-related macular degeneration that has oxidative damage central in its etiopathogenesis. Thus, it can be hypothesized that dietary supplements with xanthophylls that are potent antioxidants may regenerate the compromised antioxidant capacity as a consequence of the diabetic state, therefore ultimately promoting retinal health and visual improvement. We performed a comprehensive literature review of the National Library of Medicine and Web of Science databases, resulting in 341 publications meeting search criteria, of which, 18 were found eligible for inclusion in this review. Lutein and zeaxanthin demonstrated significant protection against capillary cell degeneration and hyperglycemia-induced changes in retinal vasculature. Observational studies indicate that depletion of xanthophyll carotenoids in the macula may represent a novel feature of DR, specifically in patients with type 2 or poorly managed type 1 diabetes. Meanwhile, early interventional trials with dietary carotenoid supplementation show promise in improving their levels in serum and macular pigments concomitant with benefits in visual performance. These findings provide a strong molecular basis and a line of evidence that suggests carotenoid vitamin therapy may offer enhanced neuroprotective effects with therapeutic potential to function as an adjunct nutraceutical strategy for management of diabetic retinopathy.
Collapse
Affiliation(s)
- Drake W. Lem
- College of Optometry, Western University of Health Sciences, 309 E Second St, Pomona, CA 91766, USA;
| | | | - Pinakin Gunvant Davey
- College of Optometry, Western University of Health Sciences, 309 E Second St, Pomona, CA 91766, USA;
| |
Collapse
|
5
|
Cheung CMG, Pearce E, Fenner B, Sen P, Chong V, Sivaprasad S. Looking Ahead: Visual and Anatomical Endpoints in Future Trials of Diabetic Macular Ischemia. Ophthalmologica 2021; 244:451-464. [PMID: 33626529 DOI: 10.1159/000515406] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/23/2021] [Indexed: 11/19/2022]
Abstract
Diabetic macular ischemia (DMI) is a common complication of diabetic retinopathy that can lead to progressive and irreversible visual loss. Despite substantial clinical burden, there are no treatments for DMI, no validated clinical trial endpoints, and few clinical trials focusing on DMI. Therefore, generating consensus on validated endpoints that can be used in DMI for the development of effective interventions is vital. In this review, we discuss potential endpoints appropriate for use in clinical trials of DMI, and consider the data required to establish acceptable and meaningful endpoints. A combination of anatomical, functional, and patient-reported outcome measures will provide the most complete picture of changes that occur during the progression of DMI. Potential endpoint measures include change in size of the foveal avascular zone measured by optical coherence tomography angiography and change over time in best-corrected visual acuity. However, these endpoints must be supported by further research. We also recommend studies to investigate the natural history and progression of DMI. In addition to improving understanding of how patient demographics and comorbidities such as diabetic macular edema affect clinical trial endpoints, these studies would help to build the consensus definition of DMI that is currently missing from clinical practice and research.
Collapse
Affiliation(s)
- Chui Ming Gemmy Cheung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Elizabeth Pearce
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Beau Fenner
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Piyali Sen
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, United Kingdom
| | - Victor Chong
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Sobha Sivaprasad
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, United Kingdom
| |
Collapse
|
6
|
Fu Z, Sun Y, Cakir B, Tomita Y, Huang S, Wang Z, Liu CH, S. Cho S, Britton W, S. Kern T, Antonetti DA, Hellström A, E.H. Smith L. Targeting Neurovascular Interaction in Retinal Disorders. Int J Mol Sci 2020; 21:E1503. [PMID: 32098361 PMCID: PMC7073081 DOI: 10.3390/ijms21041503] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023] Open
Abstract
The tightly structured neural retina has a unique vascular network comprised of three interconnected plexuses in the inner retina (and choroid for outer retina), which provide oxygen and nutrients to neurons to maintain normal function. Clinical and experimental evidence suggests that neuronal metabolic needs control both normal retinal vascular development and pathological aberrant vascular growth. Particularly, photoreceptors, with the highest density of mitochondria in the body, regulate retinal vascular development by modulating angiogenic and inflammatory factors. Photoreceptor metabolic dysfunction, oxidative stress, and inflammation may cause adaptive but ultimately pathological retinal vascular responses, leading to blindness. Here we focus on the factors involved in neurovascular interactions, which are potential therapeutic targets to decrease energy demand and/or to increase energy production for neovascular retinal disorders.
Collapse
Affiliation(s)
- Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Bertan Cakir
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Yohei Tomita
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Shuo Huang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Zhongxiao Wang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Steve S. Cho
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - William Britton
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Timothy S. Kern
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Irvine, CA 92697, USA;
| | - David A. Antonetti
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Göteborg, Sweden;
| | - Lois E.H. Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| |
Collapse
|
7
|
Liu F, Saul AB, Pichavaram P, Xu Z, Rudraraju M, Somanath PR, Smith SB, Caldwell RB, Narayanan SP. Pharmacological Inhibition of Spermine Oxidase Reduces Neurodegeneration and Improves Retinal Function in Diabetic Mice. J Clin Med 2020; 9:E340. [PMID: 31991839 PMCID: PMC7074464 DOI: 10.3390/jcm9020340] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/21/2020] [Indexed: 01/15/2023] Open
Abstract
Diabetic retinopathy (DR) is a significant cause of blindness in working-age adults worldwide. Lack of effective strategies to prevent or reduce vision loss is a major problem. Since the degeneration of retinal neurons is an early event in the diabetic retina, studies to characterize the molecular mechanisms of diabetes-induced retinal neuronal damage and dysfunction are of high significance. We have demonstrated that spermine oxidase (SMOX), a mediator of polyamine oxidation is critically involved in causing neurovascular damage in the retina. The involvement of SMOX in diabetes-induced retinal neuronal damage is completely unknown. Utilizing the streptozotocin-induced mouse model of diabetes, the impact of the SMOX inhibitor, MDL 72527, on neuronal damage and dysfunction in the diabetic retina was investigated. Retinal function was assessed by electroretinography (ERG) and retinal architecture was evaluated using spectral domain-optical coherence tomography. Retinal cryosections were prepared for immunolabeling of inner retinal neurons and retinal lysates were used for Western blotting. We observed a marked decrease in retinal function in diabetic mice compared to the non-diabetic controls. Treatment with MDL 72527 significantly improved the ERG responses in diabetic retinas. Diabetes-induced retinal thinning was also inhibited by the MDL 72527 treatment. Our analysis further showed that diabetes-induced retinal ganglion cell damage and neurodegeneration were markedly attenuated by MDL 72527 treatment. These results strongly implicate SMOX in diabetes-induced retinal neurodegeneration and visual dysfunction.
Collapse
Affiliation(s)
- Fang Liu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (F.L.); (M.R.); (P.R.S.)
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (P.P.); (Z.X.); (S.B.S.); (R.B.C.)
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Alan B. Saul
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (P.P.); (Z.X.); (S.B.S.); (R.B.C.)
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Prahalathan Pichavaram
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (P.P.); (Z.X.); (S.B.S.); (R.B.C.)
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Zhimin Xu
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (P.P.); (Z.X.); (S.B.S.); (R.B.C.)
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Madhuri Rudraraju
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (F.L.); (M.R.); (P.R.S.)
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (P.P.); (Z.X.); (S.B.S.); (R.B.C.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (F.L.); (M.R.); (P.R.S.)
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Sylvia B. Smith
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (P.P.); (Z.X.); (S.B.S.); (R.B.C.)
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ruth B. Caldwell
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (P.P.); (Z.X.); (S.B.S.); (R.B.C.)
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (F.L.); (M.R.); (P.R.S.)
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (P.P.); (Z.X.); (S.B.S.); (R.B.C.)
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
8
|
Morales-Calixto E, Velázquez-Flores MÁ, Sánchez-Chávez G, Ruiz Esparza-Garrido R, Salceda R. Glycine receptor is differentially expressed in the rat retina at early stages of streptozotocin-induced diabetes. Neurosci Lett 2019; 712:134506. [DOI: 10.1016/j.neulet.2019.134506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/21/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
|
9
|
Retinal Sensitivity Loss Correlates with Deep Capillary Plexus Impairment in Diabetic Macular Ischemia. J Ophthalmol 2019; 2019:7589841. [PMID: 31737359 PMCID: PMC6815547 DOI: 10.1155/2019/7589841] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/05/2019] [Indexed: 11/17/2022] Open
Abstract
Purpose To assess retinal sensitivity and retinal morphologic changes of capillary nonperfused areas in diabetic macular ischemia. Methods Observational cross-sectional study. Patients were examined at IRCCS—Bietti Foundation, Rome, Italy. Fourteen consecutive diabetic eyes showing outer retinal changes on spectral domain optical coherence tomography B-scan were included. Ten eyes of ten diabetic patients with normal outer retinal structure on SD-OCT were included as controls. All eyes underwent optical coherence tomography angiography (OCTA) and MP1 microperimetry. To explore the outer retina findings and localized areas of capillary nonperfusion at the superficial and deep capillary plexus, we used the Spectralis HRA + OCTA (Heidelberg Engineering, Heidelberg, Germany). The B-scans as either normal or having outer retinal disruption and the enface images at the level of the superficial and/or deep capillary plexus were evaluated to identify areas of capillary nonperfusion. Results Fourteen eyes of 12 consecutive type 2 diabetic patients with outer retinal disruption on SD-OCT showed that areas of capillary nonperfusion of the deep capillary plexus were colocalized to areas of reduced retinal sensitivity. Conclusions On optical coherence tomography angiography, areas of capillary nonperfusion of deep capillary plexus due to macular ischemia are associated with photoreceptor structural abnormalities and retinal sensitivity loss on microperimetry. This highlights that the health status of deep capillary plexus and not only the choroid is important to the oxygen requirements of the photoreceptors in patients with diabetic macular ischemia. Also, the anatomical and functional consequences of these findings might help to explore the efficacy of new therapy into the macular area in clinical practice.
Collapse
|
10
|
Dupas B, Minvielle W, Bonnin S, Couturier A, Erginay A, Massin P, Gaudric A, Tadayoni R. Association Between Vessel Density and Visual Acuity in Patients With Diabetic Retinopathy and Poorly Controlled Type 1 Diabetes. JAMA Ophthalmol 2019; 136:721-728. [PMID: 29800967 DOI: 10.1001/jamaophthalmol.2018.1319] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Capillary dropout is a hallmark of diabetic retinopathy, but its role in visual loss remains unclear. Objective To examine how macular vessel density is correlated with visual acuity (VA) in patients younger than 40 years who have type 1 diabetes without macular edema but who have diabetic retinopathy requiring panretinal photocoagulation. Design, Settings, and Participants Retrospective cohort study of VA and optical coherence tomography angiography data collected from consecutive patients during a single visit to Lariboisière Hospital, a tertiary referral center in Paris, France. The cohort included 22 eyes of 22 patients with type 1 diabetes without macular edema but with bilateral rapidly progressive diabetic retinopathy that was treated with panretinal photocoagulation between August 15, 2015, and December 30, 2016. Eyes were classified into 2 groups by VA: normal (logMAR, 0; Snellen equivalent, 20/20) and decreased (logMAR, >0; Snellen equivalent, <20/20). The control group included 12 eyes from age-matched healthy participants with normal vision. Main Outcomes and Measures Visual acuity and mean vessel density in 4 retinal vascular plexuses: the superficial vascular plexus and the deep capillary complex, which comprises the intermediate capillary plexus and the deep capillary plexus. Results Of the 22 participants, 11 (50%) were men, mean (SD) age was 30 (6) years, and mean (SD) hemoglobin A1c level was 8.9% (1.6%). Of the 22 eyes with diabetic retinopathy, 13 (59%) had normal VA and 9 (41%) had decreased VA (mean [SD]: logMAR, 0.12 [0.04]; Snellen equivalent, 20/25). Mean [SE] vessel density was lower for eyes with diabetic retinopathy and normal VA compared with the control group in the superficial vascular plexus (44.1% [0.9%] vs 49.1% [0.9%]; difference, -5.0% [1.3%]; 95% CI, -7.5% to -2.4%; P < .001), in the deep capillary complex (44.3% [1.2%] vs 50.6% [1.3%]; difference, -6.3% [1.8%]; 95% CI, -9.9% to -2.7%; P = .001), in the intermediate capillary plexus (43.8% [1.2%] vs 49.3% [1.2%]; difference, -5.5% [1.7%]; 95% CI, -9.0% to -2.0%; P = .003), and in the deep capillary plexus (24.5% [1.0%] vs 30.5% [1.0%]; difference, -6.1% [1.4%]; 95% CI, -8.9% to -3.2%; P < .001). Mean vessel density was lower in eyes with diabetic retinopathy and decreased VA compared with eyes with diabetic retinopathy and normal VA; the mean (SE) loss was more pronounced in the deep capillary complex (34.6% [1.5%] vs 44.3% [1.2%]; difference, -9.6% [1.9%]; 95% CI, -13.6% to -5.7%; P < .001), especially in the deep capillary plexus (15.2% [1.2%] vs 24.5% [1.0%]; difference, -9.3% [1.5%]; 95% CI, -12.4% to -6.1%; P < .001), than in the superficial vascular plexus (39.6% [1.1%] vs 44.1% [0.9%]; difference, -4.5% [1.4%]; 95% CI, -7.3% to -1.7%; P = .002). Conclusions and Relevance These data suggest that in patients with type 1 diabetes without macular edema but with severe nonproliferative or proliferative diabetic retinopathy, decreased VA may be associated with the degree of capillary loss in the deep capillary complex.
Collapse
Affiliation(s)
- Bénédicte Dupas
- Department of Ophthalmology, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, University Sorbonne Paris Cité, Paris, France
| | - Wilfried Minvielle
- Department of Ophthalmology, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, University Sorbonne Paris Cité, Paris, France
| | - Sophie Bonnin
- Department of Ophthalmology, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, University Sorbonne Paris Cité, Paris, France
| | - Aude Couturier
- Department of Ophthalmology, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, University Sorbonne Paris Cité, Paris, France
| | - Ali Erginay
- Department of Ophthalmology, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, University Sorbonne Paris Cité, Paris, France
| | - Pascale Massin
- Department of Ophthalmology, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, University Sorbonne Paris Cité, Paris, France
| | - Alain Gaudric
- Department of Ophthalmology, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, University Sorbonne Paris Cité, Paris, France
| | - Ramin Tadayoni
- Department of Ophthalmology, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, University Sorbonne Paris Cité, Paris, France
| |
Collapse
|
11
|
Narayanan SP, Shosha E, D Palani C. Spermine oxidase: A promising therapeutic target for neurodegeneration in diabetic retinopathy. Pharmacol Res 2019; 147:104299. [PMID: 31207342 PMCID: PMC7011157 DOI: 10.1016/j.phrs.2019.104299] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/23/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022]
Abstract
Diabetic Retinopathy (DR), is a significant public health issue and the leading cause of blindness in working-aged adults worldwide. The vision loss associated with DR affects patients' quality of life and has negative social and psychological effects. In the past, diabetic retinopathy was considered as a vascular disease; however, it is now recognized to be a neuro-vascular disease of the retina. Current therapies for DR, such as laser photocoagulation and anti-VEGF therapy, treat advanced stages of the disease, particularly the vasculopathy and have adverse side effects. Unavailability of effective treatments to prevent the incidence or progression of DR is a major clinical problem. There is a great need for therapeutic interventions capable of preventing retinal damage in DR patients. A growing body of evidence shows that neurodegeneration is an early event in DR pathogenesis. Therefore, studies of the underlying mechanisms that lead to neurodegeneration are essential for identifying new therapeutic targets in the early stages of DR. Deregulation of the polyamine metabolism is implicated in various neurodegenerative diseases, cancer, renal failure, and diabetes. Spermine Oxidase (SMOX) is a highly inducible enzyme, and its dysregulation can alter polyamine homeostasis. The oxidative products of polyamine metabolism are capable of inducing cell damage and death. The current review provides insight into the SMOX-regulated molecular mechanisms of cellular damage and dysfunction, and its potential as a therapeutic target for diabetic retinopathy. Structural and functional changes in the diabetic retina and the mechanisms leading to neuronal damage (excitotoxicity, loss of neurotrophic factors, oxidative stress, mitochondrial dysfunction etc.) are also summarized in this review. Furthermore, existing therapies and new approaches to neuroprotection are discussed.
Collapse
Affiliation(s)
- S Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States; Augusta University Culver Vision Discovery Institute, Augusta, GA, United States; Vascular Biology Center, Augusta University, Augusta, GA, United States; VA Medical Center, Augusta, GA, United States.
| | - Esraa Shosha
- Augusta University Culver Vision Discovery Institute, Augusta, GA, United States; Vascular Biology Center, Augusta University, Augusta, GA, United States; Clinical Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Chithra D Palani
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States; Augusta University Culver Vision Discovery Institute, Augusta, GA, United States; Vascular Biology Center, Augusta University, Augusta, GA, United States
| |
Collapse
|
12
|
Bek T. Translational research in retinal vascular disease. An approach. Acta Ophthalmol 2019; 97:441-450. [PMID: 30801973 DOI: 10.1111/aos.14045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/12/2019] [Indexed: 12/24/2022]
Abstract
The clinical presentation of the most frequent vision threatening retinal diseases is dominated by lesions indicating that disturbances in retinal blood flow are involved in the pathogenesis of these diseases. The present review describes the experience from a translational strategy pursued to investigate retinal vascular diseases with diabetic retinopathy as the main object. The normal regulation of retinal blood flow is investigated in porcine retinal vessels in vitro and ex vivo. Subsequently, the in vitro findings are translated to clinical studies in normal persons in vivo, and it is investigated whether the mechanisms are disturbed in retinal vascular disease. This is followed by clinical intervention studies on these diseases. The approach has been used to investigate pressure autoregulation, metabolic autoregulation and vasomotion in retinal vessels. The investigations have shown that retinal vascular tone can be regulated by receptor-specific agonists and antagonists to vasoactive compounds such as purines, prostaglandins and nitric oxide synthesis and that the vasoactive effects can be modulated by the concentration and the mode of administration of these compounds. Additionally, it has been shown that retinal precapillary arterioles and capillaries not visible by ophthalmoscopy may play an important role for the pathophysiology of retinal vascular disease and its treatment. Future studies should focus on investigating normal and pathological regulation of retinal blood flow in these smaller vessels.
Collapse
Affiliation(s)
- Toke Bek
- Department of Ophthalmology Aarhus University Hospital Aarhus C DK‐8000 Denmark
| |
Collapse
|
13
|
Subirada PV, Paz MC, Ridano ME, Lorenc VE, Fader CM, Chiabrando GA, Sánchez MC. Effect of Autophagy Modulators on Vascular, Glial, and Neuronal Alterations in the Oxygen-Induced Retinopathy Mouse Model. Front Cell Neurosci 2019; 13:279. [PMID: 31297049 PMCID: PMC6608561 DOI: 10.3389/fncel.2019.00279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/11/2019] [Indexed: 12/25/2022] Open
Abstract
Hypoxia is one of the main insults in proliferative retinopathies, leading to neovascularization and neurodegeneration. To maintain homeostasis, neurons require efficient degradation and recycling systems. Autophagy participates in retinal cell death, but it is also a cell survival mechanism. Here, we analyzed the role of autophagy at the three characteristic time periods in the oxygen-induced retinopathy (OIR) mouse model and determined if its modulation can improve vascular and non-vascular alterations. Experiments were performed with chloroquine (CQ) in order to monitor autophagosome accumulation by lysosomal blockade. Post natal day (P)17 OIR mouse retinas showed a significant increase in autophagy flux. In particular, an intense LC3B and p62 staining was observed in inner layers of the retina, mainly proliferating endothelial cells. After a single intraocular injection of Rapamycin at P12 OIR, a decreased neovascular area and vascular endothelial growth factor (VEGF) protein expression were observed at P17 OIR. In addition, whereas the increased expression of glial fibrillary acidic protein (GFAP) was reversed at P26 OIR, the functional alterations persisted. Using a similar therapeutic schedule, we analyzed the effect of anti-VEGF therapy on autophagy flux. Like Rapamycin, VEGF inhibitor treatment not only reduced the amount of neovascular tufts, but also activated autophagy flux at P17 OIR, mainly in ganglion cell layer and inner nuclear layer. Finally, the effects of the disruption of autophagy by Spautin-1, were evaluated at vascular, glial, and neuronal levels. After a single dose of Spautin-1, Western blot analysis showed a significant decrease in LC3B II and p62 protein expression at P13 OIR, returning both autophagy markers to OIR control levels at P17. In addition, neither gliosis nor functional alterations were attenuated. In line with these results, TUNEL staining showed a slight increase in the number of positive cells in the outer nuclear layer at P17 OIR. Overall, our results demonstrate that all treatments of induction or inhibition of the autophagic flux reduced neovascular area but were unable to completely reverse the neuronal damage. Besides, compared to current treatments, rapamycin provides a more promising therapeutic strategy as it reduces both neovascular tufts and persistent gliosis.
Collapse
Affiliation(s)
- Paula V Subirada
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - María C Paz
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Magali E Ridano
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Valeria E Lorenc
- Nanomedicine and Vision Group, Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral, Consejo Nacional de Investigaciones en Ciencia y Tecnología (CONICET), Pilar, Argentina
| | - Claudio M Fader
- Facultad de Odontología Mendoza, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Gustavo A Chiabrando
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - María C Sánchez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| |
Collapse
|
14
|
Yang XF, Huang YX, Lan M, Zhang TR, Zhou J. Protective Effects of Leukemia Inhibitory Factor on Retinal Vasculature and Cells in Streptozotocin-induced Diabetic Mice. Chin Med J (Engl) 2019; 131:75-81. [PMID: 29271384 PMCID: PMC5754962 DOI: 10.4103/0366-6999.221263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Leukemia inhibitory factor (LIF) has been reported to possess various pharmacological effects, including displaying vascular and neuroprotective properties, during retinal disease. The aim of this study was to investigate the vascular and structural changes in the retina of diabetic mice and to explore whether LIF prevents experimental diabetes-induced retinal injury in the early stages. METHODS Diabetes was induced in C57Bl/6J mice with streptozotocin (STZ) injections. Successful diabetic animal models were randomly separated into two groups: the diabetic group (n = 15) and the LIF-treated group (n = 15). Normal C57BL/6 mice served as the normal control group (n = 14). Recombinant human LIF was intravitreally injected 8 weeks after the diabetic model was successfully established. Retinas were collected and evaluated using histological and immunohistochemical techniques, and flat-mounted retinas and Western blotting were performed at 18 weeks after the induction of diabetes and 2 days after the intravitreal injection of LIF. The analysis of variance test were used. RESULTS Histological analysis showed that there were fewer retinal ganglion cells (RGCs) and the inner nuclear layer (INL) became thinner in the diabetic model group (RGC 21.8 ± 4.0 and INL 120.2 ± 4.6 μm) compared with the normal control group (RGC 29.0 ± 6.7, t = -3.02, P = 0.007; INL 150.7 ± 10.6 μm, t = -8.88, P < 0.001, respectively). After LIF treatment, the number of RGCs (26.9 ± 5.3) was significantly increased (t = 3.39, P = 0.030) and the INL (134.5 ± 14.2 μm) was thicker compared to the diabetic group (t = 2.75, P = 0.013). In the anti-Brn-3a-labeled retinas, the number of RGCs in the LIF-treated group (3926.0 ± 143.9) was obviously increased compared to the diabetic group (3507.7 ± 286.1, t = 2.38, P = 0.030), while no significance was found between the LIF-treated group and the control group (4188.3 ± 114.7, t = -2.47, P = 0.069). Flat-mounted retinas demonstrated that a disorganized, dense distribution of the vessel was prominent in the diabetic model group. Vessel distribution in the LIF-treated mouse group was typical and the thickness was uniform. The levels of phosphosignal transducer and activator of transcription 3 activation were obviously higher in the LIF-injected retinas than those in the diabetic control group (t = 3.85, P = 0.019) and the normal control (t = -3.20, P = 0.019). CONCLUSION The present study provides evidence that LIF treatment protects the integrity of the vasculature and prevents retinal injury in the early stages of diabetic retinopathy in STZ-induced diabetic models.
Collapse
Affiliation(s)
- Xiu-Fen Yang
- Department of Ophthalmology, The Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ying-Xiang Huang
- Department of Ophthalmology, The Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ming Lan
- Institute of Laboratory Animals of Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Tao-Ran Zhang
- Department of Ophthalmology, The Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jie Zhou
- Department of Ophthalmology, The Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
15
|
Vähätupa M, Nättinen J, Jylhä A, Aapola U, Kataja M, Kööbi P, Järvinen TAH, Uusitalo H, Uusitalo-Järvinen H. SWATH-MS Proteomic Analysis of Oxygen-Induced Retinopathy Reveals Novel Potential Therapeutic Targets. Invest Ophthalmol Vis Sci 2019; 59:3294-3306. [PMID: 30025079 DOI: 10.1167/iovs.18-23831] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Oxygen-induced retinopathy (OIR) is the most widely used model for ischemic retinopathies such as retinopathy of prematurity (ROP), proliferative diabetic retinopathy (PDR), and retinal vein occlusion (RVO). The purpose of this study was to perform the most comprehensive characterization of OIR by a recently developed technique, sequential window acquisition of all theoretical mass spectra (SWATH-MS) proteomics. Methods Control and OIR retina samples collected from various time points were subjected to SWATH-MS and detailed data analysis. Immunohistochemistry from mouse retinas as well as neovascular membranes from human PDR and RVO patients were used for the detection of the localization of the proteins showing altered expression in the retina and to address their relevance to human ischemic retinopathies. Results We report the most extensive proteomic profiling of OIR to date by quantifying almost 3000 unique proteins and their expression differences between control and OIR retinas. Crystallins were the most prominent proteins induced by hypoxia in the retina, while angiogenesis related proteins such as Filamin A and nonmuscle myosin IIA stand out at the peak of angiogenesis. Majority of the changes in protein expression return to normal at P42, but there is evidence to suggest that proteins involved in neurotransmission remain at reduced level. Conclusions The results reveal new potential therapeutic targets to address hypoxia-induced pathological angiogenesis taking place in number of retinal diseases. The extensive proteomic profiling combined with pathway analysis also identifies novel molecular networks that could contribute to the pathogenesis of retinal diseases.
Collapse
Affiliation(s)
- Maria Vähätupa
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland
| | - Janika Nättinen
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,The Center for Proteomics and Personalized Medicine, Tampere, Finland
| | - Antti Jylhä
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,The Center for Proteomics and Personalized Medicine, Tampere, Finland
| | - Ulla Aapola
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,The Center for Proteomics and Personalized Medicine, Tampere, Finland
| | - Marko Kataja
- Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Peeter Kööbi
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Tero A H Järvinen
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,Department of Musculoskeletal Disorders, Tampere University Hospital, Tampere, Finland
| | - Hannu Uusitalo
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,The Center for Proteomics and Personalized Medicine, Tampere, Finland.,Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Hannele Uusitalo-Järvinen
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,Eye Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
16
|
Flavonoid Naringenin Attenuates Oxidative Stress, Apoptosis and Improves Neurotrophic Effects in the Diabetic Rat Retina. Nutrients 2017; 9:nu9101161. [PMID: 29064407 PMCID: PMC5691777 DOI: 10.3390/nu9101161] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the leading causes of decreased vision and blindness worldwide. Diabetes-induced oxidative stress is believed to be the key factor that initiates neuronal damage in the diabetic retina leading to DR. Experimental approaches to utilize dietary flavonoids, which possess both antidiabetic and antioxidant activities, might protect the retinal damage in diabetes. The aim of this study was to investigate the potential protective effects of naringenin in the retina of streptozotocin-induced diabetic rats. Diabetic rats were orally treated and untreated with naringenin (50 mg/kg/day) for five weeks and retinas were analyzed for markers of oxidative stress, apoptosis and neurotrophic factors. Systemic effects of naringenin treatments were also analyzed and compared with untreated groups. The results showed that elevated levels of thiobarbituric acid reactive substances (TBARs) and decreased level of glutathione (GSH) in diabetic rats were ameliorated with naringenin treatments. Moreover, decreased levels of neuroprotective factors (Brain derived neurotrophic factor (BDNF)), tropomyosin related kinase B (TrkB) and synaptophysin in diabetic retina were augmented with naringenin treatments. In addition, naringenin treatment ameliorated the levels of apoptosis regulatory proteins; B cell lymphoma 2 (Bcl-2), Bcl-2 associated X protein (Bax) and caspase-3 in the diabetic retina. Thus, the study demonstrates the beneficial effects of naringenin that possesses anti-diabetic, antioxidant and antiapoptotic properties, which may limit neurodegeneration by providing neurotrophic support to prevent retinal damage in diabetic retinopathy.
Collapse
|
17
|
Sun Y, Liu CH, Wang Z, Meng SS, Burnim SB, SanGiovanni JP, Kamenecka TM, Solt LA, Chen J. RORα modulates semaphorin 3E transcription and neurovascular interaction in pathological retinal angiogenesis. FASEB J 2017. [PMID: 28646017 DOI: 10.1096/fj.201700172r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pathological proliferation of retinal blood vessels commonly causes vision impairment in proliferative retinopathies, including retinopathy of prematurity. Dysregulated crosstalk between the vasculature and retinal neurons is increasingly recognized as a major factor contributing to the pathogenesis of vascular diseases. Class 3 semaphorins (SEMA3s), a group of neuron-secreted axonal and vascular guidance factors, suppress pathological vascular growth in retinopathy. However, the upstream transcriptional regulators that mediate the function of SEMA3s in vascular growth are poorly understood. Here we showed that retinoic acid receptor-related orphan receptor α (RORα), a nuclear receptor and transcription factor, is a novel transcriptional regulator of SEMA3E-mediated neurovascular coupling in a mouse model of oxygen-induced proliferative retinopathy. We found that genetic deficiency of RORα substantially induced Sema3e expression in retinopathy. Both RORα and SEMA3E were expressed in retinal ganglion cells. RORα directly bound to a specific ROR response element on the promoter of Sema3e and negatively regulated Sema3e promoter-driven luciferase expression. Suppression of Sema3e using adeno-associated virus 2 carrying short hairpin RNA targeting Sema3e promoted disoriented pathological neovascularization and partially abolished the inhibitory vascular effects of RORα deficiency in retinopathy. Our findings suggest that RORα is a novel transcriptional regulator of SEMA3E-mediated neurovascular coupling in pathological retinal angiogenesis.-Sun, Y., Liu, C.-H., Wang, Z., Meng, S. S., Burnim, S. B., SanGiovanni, J. P., Kamenecka, T. M., Solt, L. A., Chen, J. RORα modulates semaphorin 3E transcription and neurovascular interaction in pathological retinal angiogenesis.
Collapse
Affiliation(s)
- Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Zhongxiao Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Steven S Meng
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Samuel B Burnim
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
| | - John Paul SanGiovanni
- Section of Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown School of Medicine, Washington, D.C., USA
| | - Theodore M Kamenecka
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
| | - Laura A Solt
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Jing Chen
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA;
| |
Collapse
|
18
|
Liu E, Craig JE, Burdon K. Diabetic macular oedema: clinical risk factors and emerging genetic influences. Clin Exp Optom 2017; 100:569-576. [PMID: 28556097 DOI: 10.1111/cxo.12552] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/20/2017] [Accepted: 03/02/2017] [Indexed: 12/18/2022] Open
Abstract
Diabetic macular oedema is the major cause of visual impairment in type 1 and type 2 diabetes. As type 2 diabetes becomes more prevalent worldwide, the prevalence of diabetic macular oedema is also expected to rise. Current management of diabetic macular oedema is challenging, expensive and not optimal in a subset of patients. Therefore, it is important to increase our understanding of the risk factors involved and develop preventative strategies. While clinical risk factors for diabetic macular oedema have been identified, few studies have addressed potential genetic risk factors. Epidemiology and family studies suggest genetic influences are of importance. In this review, we summarise known clinical risk factors, as well as discuss the small number of genetic studies that have been performed for diabetic macular oedema.
Collapse
Affiliation(s)
- Ebony Liu
- Department of Ophthalmology, Flinders Medical Centre, Flinders University, Adelaide, South Australia, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders Medical Centre, Flinders University, Adelaide, South Australia, Australia
| | - Kathryn Burdon
- Cancer, Immunology and Genetics, Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
19
|
Li ST, Wang XN, Du XH, Wu Q. Comparison of spectral-domain optical coherence tomography for intra-retinal layers thickness measurements between healthy and diabetic eyes among Chinese adults. PLoS One 2017; 12:e0177515. [PMID: 28493982 PMCID: PMC5426752 DOI: 10.1371/journal.pone.0177515] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/29/2017] [Indexed: 12/02/2022] Open
Abstract
PURPOSE To compare intra-retinal layer thickness measurements between eyes with no or mild diabetic retinopathy (DR) and age-matched controls using Spectralis spectral-domain optical coherence tomography (SD-OCT). METHODS Cross-sectional observational analysis study. High-resolution macular volume scans (30° * 25°) were obtained for 133 type 2 diabetes mellitus (T2DM) patients with no DR, 42 T2DM patients with mild DR and 115 healthy controls. The mean thickness was measured in all 9 Early Treatment Diabetic Retinopathy Study (ETDRS) sectors for 8 separate layers, inner retinal layer (IRL), outer retinal layer (ORL) and total retina (TR), after automated segmentation. The ETDRS grid consisted of three concentric circles of 1-, 3-, and 6-mm diameter. The superior, inferior, temporal, and nasal sectors of the 3- and 6-mm circles were respectively designated as S3, I3, T3, and N3 and S6, I6, T6, and N6. Linear regression analyses were conducted to evaluate the associations between the intra-retinal layer thicknesses, age, diabetes duration, fasting blood glucose and HbA1c. RESULTS The mean age and duration of T2DM were 61.1 and 13.7 years, respectively. Although no significant differences in the average TR and ORL volumes were observed among the groups, significant differences were found in the volume and sectorial thicknesses of the inner plexiform layer (IPL), outer plexiform layer (OPL) and IRL among the groups. In particular, the thicknesses of the IPL (S3, T3, S6, I6 and T6 sectors) and the IRL (S6 sector) were decreased in the no-DR group compared with the controls (P < 0.05). The thickness of the OPL (S3, N3, S6 and N6 sectors) was thinner in the no-DR group than in mild DR (P < 0.05). The average IPL thickness was significantly negatively correlated with age and the duration of diabetes. CONCLUSION The assessment of the intra-retinal layer thickness showed a significant decrease in the IPL and IRL thicknesses in Chinese adults with T2DM, even in the absence of visible microvascular signs of DR.
Collapse
Affiliation(s)
- Shu-ting Li
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiang-ning Wang
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xin-hua Du
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Qiang Wu
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| |
Collapse
|
20
|
Do photoreceptor cells cause the development of retinal vascular disease? Vision Res 2017; 139:65-71. [PMID: 28438678 DOI: 10.1016/j.visres.2017.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
The retinal vasculature is affected in a number of clinically important retinopathies, including diabetic retinopathy. There has been a considerable amount of research into the pathogenesis of retinal microvascular diseases, but the potential contribution of the most abundant cell population in the retina, photoreceptor cells, has been largely overlooked. This review summarizes ongoing research suggesting that photoreceptor cells play a critical role in the development of retinal vascular disease in diabetic retinopathy and other retinopathies.
Collapse
|
21
|
Neelam K, Goenadi CJ, Lun K, Yip CC, Au Eong KG. Putative protective role of lutein and zeaxanthin in diabetic retinopathy. Br J Ophthalmol 2017; 101:551-558. [PMID: 28232380 DOI: 10.1136/bjophthalmol-2016-309814] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/21/2016] [Accepted: 01/21/2017] [Indexed: 01/02/2023]
Abstract
Diabetic retinopathy (DR) is one of the most important microvascular complications of diabetes and remains the leading cause of blindness in the working-age individuals. The exact aetiopathogenesis of DR remains elusive despite major advances in basic science and clinical research. Oxidative damage as one of the underlying causes for DR is increasingly being recognised. In humans, three hydroxycarotenoids, lutein (L), zeaxanthin (Z) and meso-zeaxanthin (MZ), accumulate at the central retina (to the exclusion of all other dietary carotenoids), where they are collectively known as macular pigment. These hydroxycarotenoids by nature of their biochemical structure and function help neutralise reactive oxygen species, and thereby, prevent oxidative damage to the retina (biological antioxidants). Apart from their key antioxidant function, evidence is emerging that these carotenoids may also exhibit neuroprotective and anti-inflammatory function in the retina. Since the preliminary identification of hydroxycarotenoid in the human macula by Wald in the 1940s, there has been astounding progress in our knowledge of the role of these carotenoids in promoting ocular health. While the Age-Related Eye Disease Study 2 has established a clinical benefit for L and Z supplements in patients with age-related macular degeneration, the role of these carotenoids in other retinal diseases potentially linked to oxidative damage remains unclear. In this article, we comprehensively review the literature germane to the putative protective role of two hydroxycarotenoids, L and Z, in the pathogenesis of DR.
Collapse
Affiliation(s)
- Kumari Neelam
- Department of Ophthalmology and Visual Sciences, Khoo Teck Puat Hospital, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore
| | - Catherina J Goenadi
- Department of Ophthalmology, National University Hospital, Singapore, Singapore
| | - Katherine Lun
- Department of Ophthalmology, National University Hospital, Singapore, Singapore
| | - Chee Chew Yip
- Department of Ophthalmology and Visual Sciences, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Kah-Guan Au Eong
- Department of Ophthalmology and Visual Sciences, Khoo Teck Puat Hospital, Singapore, Singapore.,Singapore International Eye Cataract Retina Centre, Mount Elizabeth Medical Centre, Singapore, Singapore.,International Eye Cataract Retina Centre, Farrer Park Medical Centre, Singapore, Singapore
| |
Collapse
|
22
|
Guzyk MM, Tykhomyrov AA, Nedzvetsky VS, Prischepa IV, Grinenko TV, Yanitska LV, Kuchmerovska TM. Poly(ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors Reduce Reactive Gliosis and Improve Angiostatin Levels in Retina of Diabetic Rats. Neurochem Res 2016; 41:2526-2537. [DOI: 10.1007/s11064-016-1964-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 01/06/2023]
|
23
|
Wert KJ, Mahajan VB, Zhang L, Yan Y, Li Y, Tosi J, Hsu CW, Nagasaki T, Janisch KM, Grant MB, Mahajan M, Bassuk AG, Tsang SH. Neuroretinal hypoxic signaling in a new preclinical murine model for proliferative diabetic retinopathy. Signal Transduct Target Ther 2016; 1. [PMID: 27195131 PMCID: PMC4868361 DOI: 10.1038/sigtrans.2016.5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Diabetic retinopathy (DR) affects approximately one-third of diabetic patients and, if left untreated, progresses to proliferative DR (PDR) with associated vitreous hemorrhage, retinal detachment, iris neovascularization, glaucoma and irreversible blindness. In vitreous samples of human patients with PDR, we found elevated levels of hypoxia inducible factor 1 alpha (HIF1α). HIFs are transcription factors that promote hypoxia adaptation and have important functional roles in a wide range of ischemic and inflammatory diseases. To recreate the human PDR phenotype for a preclinical animal model, we generated a mouse with neuroretinal-specific loss of the von Hippel Lindau tumor suppressor protein, a protein that targets HIF1α for ubiquitination. We found that the neuroretinal cells in these mice overexpressed HIF1α and developed severe, irreversible ischemic retinopathy that has features of human PDR. Rapid progression of retinopathy in these mutant mice should facilitate the evaluation of therapeutic agents for ischemic and inflammatory blinding disorders. In addition, this model system can be used to manipulate the modulation of the hypoxia signaling pathways, for the treatment of non-ocular ischemic and inflammatory disorders.
Collapse
Affiliation(s)
- Katherine J Wert
- Bernard and Shirlee Brown Glaucoma Laboratory and Barbara & Donald Jonas Laboratory of Regenerative Medicine, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA; Institute of Human Nutrition, Columbia University, New York, NY, USA
| | - Vinit B Mahajan
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA; Omics Laboratory, University of Iowa, Iowa City, IA, USA
| | - Lijuan Zhang
- Bernard and Shirlee Brown Glaucoma Laboratory and Barbara & Donald Jonas Laboratory of Regenerative Medicine, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Yuanqing Yan
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Yao Li
- Bernard and Shirlee Brown Glaucoma Laboratory and Barbara & Donald Jonas Laboratory of Regenerative Medicine, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Joaquin Tosi
- Bernard and Shirlee Brown Glaucoma Laboratory and Barbara & Donald Jonas Laboratory of Regenerative Medicine, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Chun Wei Hsu
- Bernard and Shirlee Brown Glaucoma Laboratory and Barbara & Donald Jonas Laboratory of Regenerative Medicine, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Takayuki Nagasaki
- Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Kerstin M Janisch
- Bernard and Shirlee Brown Glaucoma Laboratory and Barbara & Donald Jonas Laboratory of Regenerative Medicine, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Maria B Grant
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - MaryAnn Mahajan
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA; Omics Laboratory, University of Iowa, Iowa City, IA, USA
| | | | - Stephen H Tsang
- Bernard and Shirlee Brown Glaucoma Laboratory and Barbara & Donald Jonas Laboratory of Regenerative Medicine, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA; Institute of Human Nutrition, Columbia University, New York, NY, USA; New York Presbyterian Hospital/Columbia University Medical Center, New York, NY, USA; Department of Pathology and Cellular Biology, Columbia University, New York, NY, USA
| |
Collapse
|
24
|
Sun Y, Ju M, Lin Z, Fredrick TW, Evans LP, Tian KT, Saba NJ, Morss PC, Pu WT, Chen J, Stahl A, Joyal JS, Smith LEH. SOCS3 in retinal neurons and glial cells suppresses VEGF signaling to prevent pathological neovascular growth. Sci Signal 2015; 8:ra94. [PMID: 26396267 DOI: 10.1126/scisignal.aaa8695] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neurons and glial cells in the retina contribute to neovascularization, or the formation of abnormal new blood vessels, in proliferative retinopathy, a condition that can lead to vision loss or blindness. We identified a mechanism by which suppressor of cytokine signaling 3 (SOCS3) in neurons and glial cells prevents neovascularization. We found that Socs3 expression was increased in the retinal ganglion cell and inner nuclear layers after oxygen-induced retinopathy. Mice with Socs3 deficiency in neuronal and glial cells had substantially reduced vaso-obliterated retinal areas and increased pathological retinal neovascularization in response to oxygen-induced retinopathy, suggesting that loss of neuronal/glial SOCS3 increased both retinal vascular regrowth and pathological neovascularization. Furthermore, retinal expression of Vegfa (which encodes vascular endothelial growth factor A) was higher in these mice than in Socs3 flox/flox controls, indicating that neuronal and glial SOCS3 suppressed Vegfa expression during pathological conditions. Lack of neuronal and glial SOCS3 resulted in greater phosphorylation and activation of STAT3, which led to increased expression of its gene target Vegfa, and increased endothelial cell proliferation. In summary, SOCS3 in neurons and glial cells inhibited the STAT3-mediated secretion of VEGF from these cells, which suppresses endothelial cell activation, resulting in decreased endothelial cell proliferation and angiogenesis. These results suggest that neuronal and glial cell SOCS3 limits pathological retinal angiogenesis by suppressing VEGF signaling.
Collapse
Affiliation(s)
- Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Meihua Ju
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Zhiqiang Lin
- Department of Cardiology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115, USA
| | - Thomas W Fredrick
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Lucy P Evans
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Katherine T Tian
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Nicholas J Saba
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Peyton C Morss
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - William T Pu
- Department of Cardiology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115, USA. Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jing Chen
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Andreas Stahl
- University Eye Hospital Freiburg, Killianstr. 5, Freiburg 79106, Germany
| | - Jean-Sébastien Joyal
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Université de Montréal, Montréal, Québec H3T1C4, Canada
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Dorfman D, Aranda ML, Rosenstein RE. Enriched Environment Protects the Optic Nerve from Early Diabetes-Induced Damage in Adult Rats. PLoS One 2015; 10:e0136637. [PMID: 26312758 PMCID: PMC4552300 DOI: 10.1371/journal.pone.0136637] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/05/2015] [Indexed: 01/13/2023] Open
Abstract
Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Axoglial alterations of the distal (close to the chiasm) optic nerve (ON) could be the first structural change of the visual pathway in streptozotocin (STZ)-induced diabetes in rats. We analyzed the effect of environmental enrichment on axoglial alterations of the ON provoked by experimental diabetes. For this purpose, three days after vehicle or STZ injection, animals were housed in enriched environment (EE) or remained in a standard environment (SE) for 6 weeks. Anterograde transport, retinal morphology, optic nerve axons (toluidine blue staining and phosphorylated neurofilament heavy immunoreactivity), microglia/macrophages (ionized calcium binding adaptor molecule 1 (Iba-1) immunoreactivity), astrocyte reactivity (glial fibrillary acid protein-immunostaining), myelin (myelin basic protein immunoreactivity), ultrastructure, and brain derived neurotrophic factor (BDNF) levels were assessed in non-diabetic and diabetic animals housed in SE or EE. No differences in retinal morphology or retinal ganglion cell number were observed among groups. EE housing which did not affect the STZ-induced weight loss and hyperglycemia, prevented a decrease in the anterograde transport from the retina to the superior colliculus, ON axon number, and phosphorylated neurofilament heavy immunoreactivity. Moreover, EE housing prevented an increase in Iba-1 immunoreactivity, and astrocyte reactivity, as well as ultrastructural myelin alterations in the ON distal portion at early stages of diabetes. In addition, EE housing avoided a decrease in BDNF levels induced by experimental diabetes. These results suggest that EE induced neuroprotection in the diabetic visual pathway.
Collapse
Affiliation(s)
- Damián Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Marcos L. Aranda
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Ruth E. Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
26
|
Sánchez-Vallejo V, Benlloch-Navarro S, López-Pedrajas R, Romero FJ, Miranda M. Neuroprotective actions of progesterone in an in vivo model of retinitis pigmentosa. Pharmacol Res 2015; 99:276-88. [PMID: 26158501 DOI: 10.1016/j.phrs.2015.06.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 11/27/2022]
Abstract
Progesterone has been shown to have neuroprotective effects in experimental acute brain injury models, but little is known about the effects of steroid sex hormones in models of retinitis pigmentosa (RP). The aim of this study was to asses whether progesterone had a protective effect in one animal model of RP (the rd1 mice), and whether its action was due at least in part, to its ability to reduce free radical damage or to increase antioxidant defences. Rd1 and wild type (wt) mice received an oral administration of 100 mg/kg body/weight of progesterone on alternate days starting at postnatal day 7 (PN7) and were sacrificed at different postnatal days. Our results show that progesterone decreases cell death, as the number of TUNEL-positive cells were decreased in the ONL of the retina from treated rd1 mice. At PN15, treatment with progesterone increased values of ERG b-wave amplitude (p<0,5) when compared with untreated mice. Progesterone also decreased the observed gliosis in RP, though this effect was transient. Treatment with progesterone significantly reduced retinal glutamate concentrations at PN15 and PN17. To clarify the mechanism by which progesterone is able to decrease retinal glutamate concentration, we examined expression levels of glutamine synthase (GS). Our results showed a significant increase in GS in rd1 treated retinas at PN13. Treatment with progesterone, significantly increase not only GSH but also oxidized glutathione retinal concentrations, probably because progesterone is able to partially increase glutamate cysteine ligase c subunit (GCLC) at PN15 and PN17 (p<0,05). In summary, our results demonstrate that oral administration of progesterone appears to act on multiple levels to delay photoreceptor death in this model of RP.
Collapse
Affiliation(s)
- V Sánchez-Vallejo
- Departamento de Ciencias Biomédicas, Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Avda. Seminario s/n, 46113 Moncada, Valencia, Spain
| | - S Benlloch-Navarro
- Departamento de Ciencias Biomédicas, Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Avda. Seminario s/n, 46113 Moncada, Valencia, Spain
| | - R López-Pedrajas
- Departamento de Ciencias Biomédicas, Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Avda. Seminario s/n, 46113 Moncada, Valencia, Spain
| | - F J Romero
- Facultad de Medicina, Universidad Católica de Valencia 'San Vicente Mártir', Valencia, Spain
| | - M Miranda
- Departamento de Ciencias Biomédicas, Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Avda. Seminario s/n, 46113 Moncada, Valencia, Spain.
| |
Collapse
|
27
|
Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res 2015; 48:40-61. [PMID: 25975734 DOI: 10.1016/j.preteyeres.2015.05.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 12/21/2022]
Abstract
Diabetic retinopathy remains the major cause of blindness among working age adults. Although a number of metabolic abnormalities have been associated with its development, due to complex nature of this multi-factorial disease, a link between any specific abnormality and diabetic retinopathy remains largely speculative. Diabetes increases oxidative stress in the retina and its capillary cells, and overwhelming evidence suggests a bidirectional relationship between oxidative stress and other major metabolic abnormalities implicated in the development of diabetic retinopathy. Due to increased production of cytosolic reactive oxygen species, mitochondrial membranes are damaged and their membrane potentials are impaired, and complex III of the electron transport system is compromised. Suboptimal enzymatic and nonenzymatic antioxidant defense system further aids in the accumulation of free radicals. As the duration of the disease progresses, mitochondrial DNA (mtDNA) is damaged and the DNA repair system is compromised, and due to impaired transcription of mtDNA-encoded proteins, the integrity of the electron transport system is encumbered. Due to decreased mtDNA biogenesis and impaired transcription, superoxide accumulation is further increased, and the vicious cycle of free radicals continues to self-propagate. Diabetic milieu also alters enzymes responsible for DNA and histone modifications, and various genes important for mitochondrial homeostasis, including mitochondrial biosynthesis, damage and antioxidant defense, undergo epigenetic modifications. Although antioxidant administration in animal models has yielded encouraging results in preventing diabetic retinopathy, controlled longitudinal human studies remain to be conducted. Furthermore, the role of epigenetic in mitochondrial homeostasis suggests that regulation of such modifications also has potential to inhibit/retard the development of diabetic retinopathy.
Collapse
|
28
|
Simó R, Hernández C. Novel approaches for treating diabetic retinopathy based on recent pathogenic evidence. Prog Retin Eye Res 2015; 48:160-80. [PMID: 25936649 DOI: 10.1016/j.preteyeres.2015.04.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/13/2015] [Accepted: 04/21/2015] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy remains as a leading cause of blindness in developed countries. Current treatments target late stages of DR when vision has already been significantly affected. A better understanding of the pathogenesis of DR would permit the development of more efficient preventional/interventional strategies against early stages of DR. In this article a critical review of the state of the art of this issue is provided along with a discussion of problems which have yet to be overcome. Neuroprotection as a new approach for the treatment of the early stages of DR has been particularly emphasized. The development and progression of DR is not homogeneous and, apart from blood glucose levels and blood pressure, it depends on genetic factors which remain to be elucidated. In addition, the role of the pathogenic pathways is not the same in all patients. All these factors should be taken into account in the near future when an individualized oriented treatment for DR could become feasible. The new techniques in retinal imaging acquisition, the identification of useful circulating biomarkers and the individualized analysis of biological samples could facilitate the development of early and personalized therapy in the setting of DR. Finally, it should be noted that only a coordinated action among ophthalmologists, diabetologists, basic researchers, experts in pharmaco-economics and health care providers addressed to the design of rational strategies targeting prevention and the early stages of DR will be effective in reducing the burden and improving the clinical outcome of this devastating complication of diabetes.
Collapse
Affiliation(s)
- Rafael Simó
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabólicas Asociadas) and Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, 08035 Barcelona, Spain.
| | - Cristina Hernández
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabólicas Asociadas) and Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, 08035 Barcelona, Spain.
| |
Collapse
|
29
|
Primary retinal cultures as a tool for modeling diabetic retinopathy: an overview. BIOMED RESEARCH INTERNATIONAL 2015; 2015:364924. [PMID: 25688355 PMCID: PMC4320900 DOI: 10.1155/2015/364924] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/04/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022]
Abstract
Experimental models of diabetic retinopathy (DR) have had a crucial role in the comprehension of the pathophysiology of the disease and the identification of new therapeutic strategies. Most of these studies have been conducted in vivo, in animal models. However, a significant contribution has also been provided by studies on retinal cultures, especially regarding the effects of the potentially toxic components of the diabetic milieu on retinal cell homeostasis, the characterization of the mechanisms on the basis of retinal damage, and the identification of potentially protective molecules. In this review, we highlight the contribution given by primary retinal cultures to the study of DR, focusing on early neuroglial impairment. We also speculate on possible themes into which studies based on retinal cell cultures could provide deeper insight.
Collapse
|
30
|
Epigenetic modifications and potential new treatment targets in diabetic retinopathy. J Ophthalmol 2014; 2014:789120. [PMID: 25165577 PMCID: PMC4137538 DOI: 10.1155/2014/789120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/22/2014] [Accepted: 07/17/2014] [Indexed: 01/11/2023] Open
Abstract
Retinopathy is a debilitating vascular complication of diabetes. As with other diabetic complications, diabetic retinopathy (DR) is characterized by the metabolic memory, which has been observed both in DR patients and in DR animal models. Evidences have provided that after a period of poor glucose control insulin or diabetes drug treatment fails to prevent the development and progression of DR even when good glycemic control is reinstituted (glucose normalization), suggesting a metabolic memory phenomenon. Recent studies also underline the role of epigenetic chromatin modifications as mediators of the metabolic memory. Indeed, epigenetic changes may lead to stable modification of gene expression, participating in DR pathogenesis. Moreover, increasing evidences suggest that environmental factors such as chronic hyperglycemia are implicated DR progression and may also affect the epigenetic state. Here we review recent findings demonstrating the key role of epigenetics in the progression of DR. Further elucidation of epigenetic mechanisms, acting both at the cis- and trans-chromatin structural elements, will yield new insights into the pathogenesis of DR and will open the way for the discovery of novel therapeutic targets to prevent DR progression.
Collapse
|