1
|
Harris RM, Pace F, Kuntz TM, Morgan XC, Hyland P, Summers K, McDermott E, Blumen K, Watnick PI. Testosterone treatment impacts the intestinal microbiome of transgender individuals. mSphere 2024; 9:e0055724. [PMID: 39254049 PMCID: PMC11520287 DOI: 10.1128/msphere.00557-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
Medical modulation of sex hormone levels is a cornerstone of treatment for many conditions that impact well-being, including cancer, fertility/infertility, gender dysphoria, and chronic metabolic diseases such as diabetes and obesity. The microbial residents of the intestine, known as the microbiota, interact with sex hormones in the intestine, and there is correlative evidence that this interaction is bidirectional. Based on these published findings, we hypothesized that transgender individuals receiving exogenous testosterone as part of their gender-affirming medical treatment might undergo changes in their intestinal microbiome. To test this, we collected 26 stool samples from nine individuals before and up to 8 months after initiation of treatment with exogenous testosterone and subjected these samples to metagenomic analysis. While no species were significantly associated with the duration of testosterone therapy, pathways that generate glutamate increased in abundance, while those that consume glutamate decreased. Glutamate is a precursor of arginine, and testosterone is known to increase levels of arginine and its metabolites in the plasma. We hypothesize that testosterone increases the uptake of glutamate by enterocytes, thus decreasing access of the microbiota to this amino acid. While this pilot study establishes the impact of testosterone therapy on the intestinal microbiome, a more comprehensive study is necessary to establish the impact of testosterone-driven metagenomic shifts on the stool metatranscriptome, the stool metabolome, and the plasma metabolome.IMPORTANCEThe human intestine is inhabited by a large community of microbes known as the microbiome. Members of the microbiome consume the diet along with their human host. Thus, the metabolomes of the host and microbe are intricately linked. Testosterone alters the plasma metabolome. In particular, plasma levels of arginine and its metabolites and testosterone are positively correlated. To investigate the impact of exogenous testosterone on the microbiome, we analyzed the stool metagenomes of transgender individuals before and after the initiation of testosterone treatment. In this pilot project, we found a modest impact on the microbiome community structure but an increase in the abundance of metabolic pathways that generate glutamate and spare glutamate consumption. We propose that the host uses glutamate to generate arginine, decreasing the amount available for the microbiome.
Collapse
Affiliation(s)
- Rebecca M. Harris
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Fernanda Pace
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Thomas M. Kuntz
- Harvard Chan Microbiome Analysis Core, Department of Biostatistics, Harvard Chan School of Public Health, Boston, Massachusetts, USA
| | - Xochitl C. Morgan
- Harvard Chan Microbiome Analysis Core, Department of Biostatistics, Harvard Chan School of Public Health, Boston, Massachusetts, USA
| | - Phoebe Hyland
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Kiana Summers
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Em McDermott
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Kai Blumen
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Paula I. Watnick
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Zhou H, Wang X, She Z, Huang L, Wei H, Yang S, Wei Z, Chen H, Yang B, Hu Z, Feng X, Zhu P, Li Z, Shen J, Liu H, Dong H, Chen G, Zhang Q. Combining bioinformatics and multiomics strategies to investigate the key microbiota and active components of Liupao tea ameliorating hyperlipidemia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118438. [PMID: 38848972 DOI: 10.1016/j.jep.2024.118438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hyperlipidemia as a major health issue has attracted much public attention. As a geographical indication product of China, Liupao tea (LPT) is a typical representative of traditional Chinese dark tea that has shown good potential in regulating glucose and lipid metabolism. LPT has important medicinal value in hyperlipidemia prevention. However, the active ingredients and metabolic mechanisms by which LPT alleviates hyperlipidemia remain unclear. AIM OF THE STUDY This study aimed to systematically investigate the metabolic mechanisms and active ingredients of LPT extract in alleviating hyperlipidemia. MATERIALS AND METHODS Firstly, we developed a mouse model of hyperlipidemia to study the pharmacodynamics of LPT. Subsequently, network pharmacology and molecular docking were performed to predict the potential key active ingredients and core targets of LPT against hyperlipidemia. LC-MS/MS was used to validate the identity of key active ingredients in LPT with chemical standards. Finally, the effect and metabolic mechanisms of LPT extract in alleviating hyperlipidemia were investigated by integrating metabolomic, lipidomic, and gut microbiome analyses. RESULTS Results showed that LPT extract effectively improved hyperlipidemia by suppressing weight gain, remedying dysregulation of glucose and lipid metabolism, and reducing hepatic damage. Network pharmacology analysis and molecular docking suggested that four potential active ingredients and seven potential core targets were closely associated with roles for hyperlipidemia treatment. Ellagic acid, catechin, and naringenin were considered to be the key active ingredients of LPT alleviating hyperlipidemia. Additionally, LPT extract modulated the mRNA expression levels of Fxr, Cyp7a1, Cyp8b1, and Cyp27a1 associated with bile acid (BA) metabolism, mitigated the disturbances of BA and glycerophospholipid (GP) metabolism in hyperlipidemia mice. Combining fecal microbiota transplantation and correlation analysis, LPT extract effectively improved species diversity and abundance of gut microbiota, particularly the BA and GP metabolism-related gut microbiota, in the hyperlipidemia mice. CONCLUSIONS LPT extract ameliorated hyperlipidemia by modulating GP and BA metabolism by regulating Lactobacillus and Dubosiella, thereby alleviating hyperlipidemia. Three active ingredients of LPT served as the key factors in exerting an improvement on hyperlipidemia. These findings provide new insights into the active ingredients and metabolic mechanisms of LPT in improving hyperlipidemia, suggesting that LPT can be used to prevent and therapeutic hyperlipidemia.
Collapse
Affiliation(s)
- Hailin Zhou
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Guangxi, China.
| | - Xuancheng Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Guangxi, China.
| | - Zhiyong She
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Guangxi, China.
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Guangxi, China.
| | - Huijie Wei
- College of Light Industry and Food Engineering, Guangxi University, Guangxi, China.
| | - Shanyi Yang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Guangxi, China.
| | - Zhijuan Wei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Guangxi, China.
| | - Hongwei Chen
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Guangxi, China.
| | - Bao Yang
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, Hubei, China.
| | - Zehua Hu
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, Hubei, China.
| | - Xue Feng
- Center for Instrumental Analysis, Guangxi University, Guangxi, China.
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Guangxi, China.
| | - Zijian Li
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Guangxi, China.
| | - Jiahui Shen
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Guangxi, China.
| | - Huan Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Guangxi, China.
| | - Huanxiao Dong
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Guangxi, China.
| | - Guanghui Chen
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Guangxi, China.
| | - Qisong Zhang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Guangxi, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, Hubei, China; Center for Instrumental Analysis, Guangxi University, Guangxi, China.
| |
Collapse
|
3
|
Sasidharan Pillai S, Gagnon CA, Foster C, Ashraf AP. Exploring the Gut Microbiota: Key Insights Into Its Role in Obesity, Metabolic Syndrome, and Type 2 Diabetes. J Clin Endocrinol Metab 2024; 109:2709-2719. [PMID: 39040013 PMCID: PMC11479700 DOI: 10.1210/clinem/dgae499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/22/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
The gut microbiota (GM), comprising trillions of microorganisms in the gastrointestinal tract, is a key player in the development of obesity and related metabolic disorders, such as type 2 diabetes (T2D), metabolic syndrome (MS), and cardiovascular diseases. This mini-review delves into the intricate roles and mechanisms of the GM in these conditions, offering insights into potential therapeutic strategies targeting the microbiota. The review elucidates the diversity and development of the human GM, highlighting its pivotal functions in host physiology, including nutrient absorption, immune regulation, and energy metabolism. Studies show that GM dysbiosis is linked to increased energy extraction, altered metabolic pathways, and inflammation, contributing to obesity, MS, and T2D. The interplay between dietary habits and GM composition is explored, underscoring the influence of diet on microbial diversity and metabolic functions. Additionally, the review addresses the impact of common medications and therapeutic interventions like fecal microbiota transplantation on GM composition. The evidence so far advocates for further research to delineate the therapeutic potential of GM modulation in mitigating obesity and metabolic diseases, emphasizing the necessity of clinical trials to establish effective and sustainable treatment protocols.
Collapse
Affiliation(s)
- Sabitha Sasidharan Pillai
- Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Charles A Gagnon
- University of Alabama at Birmingham Marnix E. Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Christy Foster
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ambika P Ashraf
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
4
|
Sritana N, Phungpinij A. Analysis of Oral Microbiota in Elderly Thai Patients with Alzheimer's Disease and Mild Cognitive Impairment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1242. [PMID: 39338124 PMCID: PMC11431138 DOI: 10.3390/ijerph21091242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that predominantly affects the older adult population. Neuroinflammation may be triggered by the migration of oral microbiota composition changes from the oral cavity to the brain. However, the relationship between oral microbiota composition and neurodegenerative diseases, such as AD, remains poorly understood. Therefore, we conducted a comprehensive comparison of the relative abundance and diversity of bacterial taxa present in saliva among older adults diagnosed with AD, those with mild cognitive impairment (MCI), and healthy controls. Saliva samples and clinical data were collected from 10 AD patients, 46 MCI patients, and 44 healthy older adults. AD patients had lower Clinical Dementia Rating, Montreal Cognitive Assessment, and Mini-mental Status Examination scores, and induced microbial diversity, than the MCI and control groups. Moreover, AD patients exhibited significantly higher levels of Fusobacteriota and Peptostreptococcaceae and lower levels of Veillonella than the MCI and control groups. In conclusion, a high abundance of Fusobacteria at various levels (i.e., phylum, class, family, and genus levels) may serve as a biomarker for AD. The analysis of oral microbiota dysbiosis biomarkers in older adults may be valuable for identifying individuals at risk for AD.
Collapse
Affiliation(s)
- Narongrit Sritana
- Molecular and Genomics Research Laboratory, Centre of Learning and Research in Celebration of HRH Princess Chulabhorn’s 60 th Birthday Anniversary, Chulabhorn Royal Academy, Bangkok 10210, Thailand;
| | | |
Collapse
|
5
|
Maslennikov R, Benuni N, Levshina A, Adzhieva F, Demina T, Kucher A, Pervushova E, Yuryeva E, Poluektova E, Zolnikova O, Kozlov E, Sigidaev A, Ivashkin V. Effect of Saccharomyces boulardii on Liver Diseases: A Systematic Review. Microorganisms 2024; 12:1678. [PMID: 39203520 PMCID: PMC11357183 DOI: 10.3390/microorganisms12081678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
We aimed to systematize the results of published studies on the use of Saccharomyces boulardii (SB) for the treatment of various liver disorders (CRD42022378050). Searches were conducted using PubMed and Scopus on 1 August 2022. The PubMed search was updated on 15 June 2024. The review included sixteen studies: ten experimental animal studies (EASs) and six randomized controlled trials (RCTs). The CNCM I-745 strain was used in 68.8% of the included studies. SB reduced the severity of many manifestations of cirrhosis, and lowered the Child-Pugh scores in RCT. SB reduced the serum concentrations of TNF-α, IL-1β, IL-6, and IL-4 in animals with metabolic dysfunction-associated steatotic liver disease (MASLD); lowered the serum TNF-α and IL-6 levels in experimental cirrhosis in rats; and reduced the CRP levels in decompensated cirrhosis. The EAS of MASLD revealed that SB reduced liver steatosis and inflammation and lowered the liver expression of genes of TNF-α, IL-1β, interferon-γ, and IL-10. In studies on experimental cirrhosis and MASLD, SB reduced the liver expression of genes of TGF-β, α-SMA, and collagen as well as liver fibrosis. SB reduced the abundance of Escherichia (Proteobacteria), increased the abundance of Bacteroidetes in the gut microbiota, prevented an increase in intestinal barrier permeability, and reduced bacterial translocation and endotoxemia.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia (A.K.)
| | - Nona Benuni
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia (A.K.)
| | - Anna Levshina
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia (A.K.)
| | - Farida Adzhieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia (A.K.)
| | - Tatyana Demina
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia (A.K.)
| | - Alina Kucher
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia (A.K.)
| | - Ekaterina Pervushova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia (A.K.)
| | - Evgeniya Yuryeva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia (A.K.)
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia (A.K.)
- Scientific Community for the Promotion of the Clinical Study of the Human Microbiome, Moscow 119435, Russia
| | - Oxana Zolnikova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia (A.K.)
| | - Evgenii Kozlov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov University, Moscow 119435, Russia;
| | - Alexey Sigidaev
- Department of Clinical Disciplines, Tyumen State Medical University, Tyumen 625023, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia (A.K.)
| |
Collapse
|
6
|
Kong F, Wang F, Zhang Y, Wang S, Wang W, Li S. Repeated inoculation with rumen fluid accelerates the rumen bacterial transition with no benefit on production performance in postpartum Holstein dairy cows. J Anim Sci Biotechnol 2024; 15:17. [PMID: 38310317 PMCID: PMC10838461 DOI: 10.1186/s40104-023-00963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/01/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND The dairy cow's postpartum period is characterized by dramatic physiological changes, therefore imposing severe challenges on the animal for maintaining health and milk output. The dynamics of the ruminal microbiota are also tremendous and may play a crucial role in lactation launch. We aim to investigate the potential benefits of early microbial intervention by fresh rumen microbiota transplantation (RMT) and sterile RMT in postpartum dairy cows. Twelve fistulated peak-lactation dairy cows were selected to be the donors for rumen fluid collection. Thirty postpartum cows were divided into 3 groups as the transplantation receptors respectively receiving 10 L fresh rumen fluid (FR), 10 L sterile rumen fluid (SR), or 10 L saline (CON) during 3 d after calving. RESULTS Production performance, plasma indices, plasma lipidome, ruminal microbiome, and liver transcriptome were recorded. After fresh and sterile RMT, we found that the molar proportion of propionic acid was increased on d 7 in the FR and SR groups and the bacterial composition was also significantly changed when compared with the CON group. A similarity analysis showed that the similarities between the CON group and FR or SR group on d 7 were 48.40% or 47.85%, whereas the similarities between microbiota on d 7 and 21 in the FR and SR groups were 68.34% or 66.85%. Dry matter intake and feed efficiency were not affected by treatments. Plasma β-hydroxybutyrate concentration in the FR group was decreased and significantly different lipids mainly included phosphatidylcholine and lysophosphatidylcholine containing polyunsaturated fatty acids. Hepatic transcriptomics analysis indicated acute-phase response pathways were upregulated in the SR group. CONCLUSIONS Our study suggests that RMT can shorten the transition process of the ruminal microbiota of postpartum dairy cows with no benefit on dry matter intake or feed efficiency. Inoculation with rumen fluid may not be a useful approach to promote the recovery of postpartum dairy cows.
Collapse
Affiliation(s)
- Fanlin Kong
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Feiran Wang
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Yijia Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Shuo Wang
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Wei Wang
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Shengli Li
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
7
|
Zhang LW, Zhu LL, Zhu XY, Fu SQ, Liu XM. Traditional Chinese Medicine formula Dai-Zong-Fang alleviating hepatic steatosis in db/db mice via gut microbiota modulation. Front Pharmacol 2024; 15:1337057. [PMID: 38327989 PMCID: PMC10847264 DOI: 10.3389/fphar.2024.1337057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
Introduction: Hepatic steatosis is a hepatic pathological change closely associated with metabolic disorders, commonly observed in various metabolic diseases such as metabolic syndrome (MetS), with a high global prevalence. Dai-Zong-Fang (DZF), a traditional Chinese herbal formula, is widely used in clinical treatment for MetS, exhibiting multifaceted effects in reducing obesity and regulating blood glucose and lipids. This study aims to explore the mechanism by which DZF modulates the gut microbiota and reduces hepatic steatosis based on the gut-liver axis. Methods: This study utilized db/db mice as a disease model for drug intervention. Body weight and fasting blood glucose were monitored. Serum lipid and transaminase levels were measured. Insulin tolerance test was conducted to assess insulin sensitivity. Hematoxylin and eosin (HE) staining was employed to observe morphological changes in the liver and intestine. The degree of hepatic steatosis was evaluated through Oil Red O staining and hepatic lipid determination. Changes in gut microbiota were assessed using 16S rRNA gene sequencing. Serum lipopolysaccharide (LPS) levels were measured by ELISA. The expression levels of intestinal tight junction proteins, intestinal lipid absorption-related proteins, and key proteins in hepatic lipid metabolism were examined through Western blot and RT-qPCR. Results: After DZF intervention, there was a decrease in body weight, alleviation of glucose and lipid metabolism disorders, reduction in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, and mitigation of insulin resistance in mice. DZF significantly modulated the diversity of the gut microbiota, with a notable increase in the abundance of the Bacteroidetes phylum. PICRUSt indicated that DZF influenced various functions in gut microbiota, including carbohydrate and amino acid metabolism. Following DZF intervention, serum LPS levels decreased, intestinal pathological damage was reduced, and the expression of intestinal tight junction protein occludin was increased, while the expression of intestinal lipid absorption-related proteins cluster of differentiation 36 (CD36) and apolipoprotein B48 (ApoB48) were decreased. In the liver, DZF intervention resulted in a reduction in hepatic steatosis and lipid droplets, accompanied by a decrease fatty acid synthase (FASN) and stearoyl-CoA desaturase 1 (SCD1) and fatty acid transport protein 2 (FATP2). Conversely, there was an increase in the expression of the fatty acid oxidation-related enzyme carnitine palmitoyltransferase-1𝛂 (CPT-1𝛂). Conclusion: DZF can regulate the structure and function of the intestinal microbiota in db/db mice. This ameliorates intestinal barrier damage and the detrimental effects of endotoxemia on hepatic metabolism. DZF not only inhibits intestinal lipid absorption but also improves hepatic lipid metabolism from various aspects, including de novo lipogenesis, fatty acid uptake, and fatty acid oxidation. This suggests that DZF may act on the liver and intestine as target organs, exerting its effects by improving the intestinal microbiota and related barrier and lipid absorption functions, ultimately ameliorating hepatic steatosis and enhancing overall glucose and lipid metabolism.
Collapse
Affiliation(s)
- Li-Wei Zhang
- Department of Laboratory of Diabetes, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Li Zhu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Yun Zhu
- Department of Laboratory of Diabetes, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shou-Qiang Fu
- Pulmonary Disease Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xi-Ming Liu
- Department of Laboratory of Diabetes, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Ding P, Yu Y, Zhao Z, Li X, Wang X, Wang H, Huang X, Ding J, Zhao C. Behavior, intestinal health, and growth of small sea cucumbers Apostichopus japonicus in different color morphs. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106300. [PMID: 38103303 DOI: 10.1016/j.marenvres.2023.106300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Selecting high-quality seeds with long-term advantages in behavior, intestinal health, and growth are the key to improve production efficiency of sea cucumber aquaculture. It is proposed to distinguish the seed quality of sea cucumbers by color morphs. In the present study, we carried out a 6-week experiment to investigate behavior, intestinal health, and growth of small sea cucumbers Apostichopus japonicus in different color morphs. We found that dark-colored seeds of sea cucumber were significantly more adhesive than those with light-colored seeds. This indicates that the dark-colored seeds of A. japonicus are more adaptive in complex environments in stock enhancement. Food consumption and defecation outputs of dark-colored seeds were significantly higher than those of light-colored seeds. In addition, the feces of dark-colored seeds of sea cucumber had significantly lower crude protein content and better intestinal morphology, but there was no advantage in digestive enzyme activities. This suggests that there are potential digestive benefits in dark-colored seeds. Further, dark-colored seeds of A. japonicus showed significantly better intestinal microbiota composition and faster growth rate than that of light-colored seeds. In conclusion, the present results prove that dark-colored seeds of sea cucumber have long-term advantages in behavior, intestinal health and growth. Overall, this study provides important information for the early selection of seeds and the consequent production efficiency in sea cucumber aquaculture.
Collapse
Affiliation(s)
- Peng Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yushi Yu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Zihe Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xiang Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xiajing Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Huiyan Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xiyuan Huang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| | - Chong Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| |
Collapse
|
9
|
Maslennikov R, Poluektova E, Zolnikova O, Sedova A, Kurbatova A, Shulpekova Y, Dzhakhaya N, Kardasheva S, Nadinskaia M, Bueverova E, Nechaev V, Karchevskaya A, Ivashkin V. Gut Microbiota and Bacterial Translocation in the Pathogenesis of Liver Fibrosis. Int J Mol Sci 2023; 24:16502. [PMID: 38003692 PMCID: PMC10671141 DOI: 10.3390/ijms242216502] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cirrhosis is the end result of liver fibrosis in chronic liver diseases. Studying the mechanisms of its development and developing measures to slow down and regress it based on this knowledge seem to be important tasks for medicine. Currently, disorders of the gut-liver axis have great importance in the pathogenesis of cirrhosis. However, gut dysbiosis, which manifests as increased proportions in the gut microbiota of Bacilli and Proteobacteria that are capable of bacterial translocation and a decreased proportion of Clostridia that strengthen the intestinal barrier, occurs even at the pre-cirrhotic stage of chronic liver disease. This leads to the development of bacterial translocation, a process by which those microbes enter the blood of the portal vein and then the liver tissue, where they activate Kupffer cells through Toll-like receptor 4. In response, the Kupffer cells produce profibrogenic cytokines, which activate hepatic stellate cells, stimulating their transformation into myofibroblasts that produce collagen and other elements of the extracellular matrix. Blocking bacterial translocation with antibiotics, probiotics, synbiotics, and other methods could slow down the progression of liver fibrosis. This was shown in a number of animal models but requires further verification in long-term randomized controlled trials with humans.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119048 Moscow, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119048 Moscow, Russia
| | - Oxana Zolnikova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Alla Sedova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Anastasia Kurbatova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Yulia Shulpekova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Natyia Dzhakhaya
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Svetlana Kardasheva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Maria Nadinskaia
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Elena Bueverova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Vladimir Nechaev
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Anna Karchevskaya
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119048 Moscow, Russia
| |
Collapse
|
10
|
Yanan Z, Lu M, Lu Z, Jinhai H, Weiming W. Effects and action mechanisms of lotus leaf ( Nelumbo nucifera) ethanol extract on gut microbes and obesity in high-fat diet-fed rats. Front Nutr 2023; 10:1169843. [PMID: 37435567 PMCID: PMC10332267 DOI: 10.3389/fnut.2023.1169843] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 07/13/2023] Open
Abstract
Objective The present study aimed to clarify the effect of the lotus leaf ethanol extract (LLEE) on the mechanism of antiobesity and the intestinal microbiota of obese rats. Methods A total of 40 specific pathogen-free (SPF) male Sprague-Dawley (SD) rats were split into the blank control group, the model control group, the Orlistat capsule control group, and the LLEE group. All the groups were intervened and fed specific diets for 5 months. During the experiment, we evaluated the rats' body weight, length, serum biochemical indicators, and inflammatory factor levels. After dissection, the liver; epididymal and perirenal white adipose tissue (WAT); and the contents of the cecum were collected for pathological evaluation and intestinal flora analysis. Results Lotus leaf alcohol extract can significantly reduce the serum total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels. It also decreases the accumulation of fatty deposits in the liver of rats and the levels of serum inflammatory factors IL-6 and TNF-α and increases the level of IL-10. Lotus leaf alcohol extracts significantly increased the abundance of Muribaculaceae in the intestinal flora of rats, reduced the abundance of pro-inflammatory bacteria Firmicutes, and relieved fatty liver and other inflammation and diseases caused by a high-fat diet. Besides, the ethanol extract of the lotus leaf significantly regulated the abundance of Ruminococcus, suggesting that the ethanol extract of the lotus leaf may prevent hyperlipidemia. Conclusion We elucidated the effects and action mechanisms of LLEE on obesity in high-fat diet-fed rats to provide suggestions for regulating intestinal flora through dietary intervention and thus improving blood lipid metabolism.
Collapse
Affiliation(s)
- Zhang Yanan
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, China
| | - Ma Lu
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, China
| | - Zhang Lu
- Institute of Chinese Materia Medica, Heilongjiang Nursing College, Harbin, China
| | - Huo Jinhai
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, China
| | - Wang Weiming
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, China
| |
Collapse
|
11
|
Ma X, Kong Y, Xu H, Bi Q, Liang M, Mai K, Zhang Y. Short-Term Alternate Feeding between Terrestrially Sourced Oil- and Fish Oil-Based Diets Modulates the Intestinal Microecology of Juvenile Turbot. BIOLOGY 2023; 12:biology12050650. [PMID: 37237464 DOI: 10.3390/biology12050650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023]
Abstract
A nine-week feeding trial was conducted to investigate changes in the intestinal microbiota of turbot in response to alternate feeding between terrestrially sourced oil (TSO)- and fish oil (FO)-based diets. The following three feeding strategies were designed: (1) continuous feeding with the FO-based diet (FO group); (2) weekly alternate feeding between soybean oil (SO)- and FO-based diets (SO/FO group); and (3) weekly alternate feeding between beef tallow (BT)- and FO-based diets (BT/FO group). An intestinal bacterial community analysis showed that alternate feeding reshaped the intestinal microbial composition. Higher species richness and diversity of the intestinal microbiota were observed in the alternate-feeding groups. A PCoA analysis showed that the samples clustered separately according to the feeding strategy, and among the three groups, the SO/FO group clustered relatively closer to the BT/FO group. The alternate feeding significantly decreased the abundance of Mycoplasma and selectively enriched specific microorganisms, including short-chain fatty acid (SCFA)-producing bacteria, digestive bacteria (Corynebacterium and Sphingomonas), and several potential pathogens (Desulfovibrio and Mycobacterium). Alternate feeding may maintain the intestinal microbiota balance by improving the connectivity of the ecological network and increasing the competitive interactions within the ecological network. The alternate feeding significantly upregulated the KEGG pathways of fatty acid and lipid metabolism, glycan biosynthesis, and amino acid metabolism in the intestinal microbiota. Meanwhile, the upregulation of the KEGG pathway of lipopolysaccharide biosynthesis indicates a potential risk for intestinal health. In conclusion, short-term alternate feeding between dietary lipid sources reshapes the intestinal microecology of the juvenile turbot, possibly resulting in both positive and negative effects.
Collapse
Affiliation(s)
- Xiuhua Ma
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Yaoyao Kong
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qingzhu Bi
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Yanjiao Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| |
Collapse
|
12
|
Zhang Y, Chen R, Zhang D, Qi S, Liu Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other? Biomed Pharmacother 2023; 160:114295. [PMID: 36709600 DOI: 10.1016/j.biopha.2023.114295] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Metabolites produced by the host and microbiota play a crucial role in how human bodies develop and remain healthy. Most of these metabolites are produced by microbiota and hosts in the digestive tract. Metabolites in the gut have important roles in energy metabolism, cellular communication, and host immunity, among other physiological activities. Although numerous host metabolites, such as free fatty acids, amino acids, and vitamins, are found in the intestine, metabolites generated by gut microbiota are equally vital for intestinal homeostasis. Furthermore, microbiota in the gut is the sole source of some metabolites, including short-chain fatty acids (SCFAs). Metabolites produced by microbiota, such as neurotransmitters and hormones, may modulate and significantly affect host metabolism. The gut microbiota is becoming recognized as a second endocrine system. A variety of chronic inflammatory disorders have been linked to aberrant host-microbiota interplays, but the precise mechanisms underpinning these disturbances and how they might lead to diseases remain to be fully elucidated. Microbiome-modulated metabolites are promising targets for new drug discovery due to their endocrine function in various complex disorders. In humans, metabolotherapy for the prevention or treatment of various disorders will be possible if we better understand the metabolic preferences of bacteria and the host in specific tissues and organs. Better disease treatments may be possible with the help of novel complementary therapies that target host or bacterial metabolism. The metabolites, their physiological consequences, and functional mechanisms of the host-microbiota interplays will be highlighted, summarized, and discussed in this overview.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Rui Chen
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China.
| | - Shuang Qi
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| |
Collapse
|
13
|
Murali A, Giri V, Zickgraf FM, Ternes P, Cameron HJ, Sperber S, Haake V, Driemert P, Kamp H, Funk-Weyer D, Sturla SJ, Rietjens IMCM, van Ravenzwaay B. Connecting Gut Microbial Diversity with Plasma Metabolome and Fecal Bile Acid Changes Induced by the Antibiotics Tobramycin and Colistin Sulfate. Chem Res Toxicol 2023; 36:598-616. [PMID: 36972423 DOI: 10.1021/acs.chemrestox.2c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The diversity of microbial species in the gut has a strong influence on health and development of the host. Further, there are indications that the variation in expression of gut bacterial metabolic enzymes is less diverse than the taxonomic profile, underlying the importance of microbiome functionality, particularly from a toxicological perspective. To address these relationships, the gut bacterial composition of Wistar rats was altered by a 28 day oral treatment with the antibiotics tobramycin or colistin sulfate. On the basis of 16S marker gene sequencing data, tobramycin was found to cause a strong reduction in the diversity and relative abundance of the microbiome, whereas colistin sulfate had only a marginal impact. Associated plasma and fecal metabolomes were characterized by targeted mass spectrometry-based profiling. The fecal metabolome of tobramycin-treated animals had a high number of significant alterations in metabolite levels compared to controls, particularly in amino acids, lipids, bile acids (BAs), carbohydrates, and energy metabolites. The accumulation of primary BAs and significant reduction of secondary BAs in the feces indicated that the microbial alterations induced by tobramycin inhibit bacterial deconjugation reactions. The plasma metabolome showed less, but still many alterations in the same metabolite groups, including reductions in indole derivatives and hippuric acid, and furthermore, despite marginal effects of colistin sulfate treatment, there were nonetheless systemic alterations also in BAs. Aside from these treatment-based differences, we also uncovered interindividual differences particularly centering on the loss of Verrucomicrobiaceae in the microbiome, but with no apparent associated metabolite alterations. Finally, by comparing the data set from this study with metabolome alterations in the MetaMapTox database, key metabolite alterations were identified as plasma biomarkers indicative of altered gut microbiomes resulting from a wide activity spectrum of antibiotics.
Collapse
Affiliation(s)
| | - Varun Giri
- BASF SE, Ludwigshafen am Rhein 67056, Rheinland-Pfalz, Germany
| | | | - Philipp Ternes
- Metanomics (BASF Metabolome Solutions) GmbH, Tegeler Weg 33, Berlin 10589, Germany
| | - Hunter James Cameron
- BASF Corporation Computational Biology (RTP), Research Triangle Park, 3500 Paramount Parkway, Morrisvile, North Carolina 27560, United States
| | - Saskia Sperber
- BASF SE, Ludwigshafen am Rhein 67056, Rheinland-Pfalz, Germany
| | - Volker Haake
- Metanomics (BASF Metabolome Solutions) GmbH, Tegeler Weg 33, Berlin 10589, Germany
| | - Peter Driemert
- Metanomics (BASF Metabolome Solutions) GmbH, Tegeler Weg 33, Berlin 10589, Germany
| | - Hennicke Kamp
- Metanomics (BASF Metabolome Solutions) GmbH, Tegeler Weg 33, Berlin 10589, Germany
| | | | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, Zurich CH 8092, Switzerland
| | | | | |
Collapse
|
14
|
Zhao N, Zhao M, Jin H. Microplastic-induced gut microbiota and serum metabolic disruption in Sprague-Dawley rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121071. [PMID: 36646405 DOI: 10.1016/j.envpol.2023.121071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/13/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Toxic effects of exposure to microplastics (MPs) on living organisms and humans have attracted global concern. However, most previous studies exposed animals to only one type of MP (mainly polystyrene) to assess the health risk of MPs for animals. Therefore, we conducted a laboratory gavage experiment on rats based on the types and concentration of MPs to which humans are exposed in their daily life. The purpose of this study is to use Sprague-Dawley (SD) rat models to assess the potential health risks in mammals from co-exposure to various MPs. In the present study, SD rats were exposed to 12 mg/kg bw/day mixed-MPs (containing 10 types of MPs) for 42 days, and then examined the alteration of gut microbes and serum metabolites. The results showed that 6 gut microbes at the family level (f_Muribaculaceae, f_Oscillospiraceae, f_Bacteroidaceae, f_Neisseriaceae, f_Prevotellaceae, and f_Veillonellaceae) were significantly perturbed (t-test, p < 0.05) in rats after MP exposure. After MP intervention, 47 metabolites significantly regulated in SD rat serum, mainly including lipids and lipid-like molecules (e.g., fatty acids), organic acids and derivatives (e.g., phosphoric acids), and isoflavonoids (e.g., daidzein). These findings contribute to assessing the health risks of various MP co-exposure in mammals in the actual environment and provide a novel insight into the toxicity mechanism of MPs.
Collapse
Affiliation(s)
- Nan Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| |
Collapse
|
15
|
Zeng H, Safratowich BD, Cheng WH, Bukowski MR. Identification of oncogenic signatures in the inflammatory colon of C57BL/6 mice fed a high-fat diet. J Nutr Biochem 2023; 111:109188. [PMID: 36272693 DOI: 10.1016/j.jnutbio.2022.109188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/21/2022] [Accepted: 09/15/2022] [Indexed: 11/07/2022]
Abstract
Adoption of an obesogenic diet such as a high-fat diet (HFD) results in obesity, bacterial dysbiosis, chronic inflammation, and cancer. Gut bacteria and their metabolites are recognized by interleukin-1 (IL-1R)/toll-like receptors (TLRs) which are essential to maintain intestinal homeostasis. Moreover, host extracellular microRNAs (miRNAs) can alter bacterial growth in the colon. Characterization of the underlying mechanisms may lead to identifying fecal oncogenic signatures reflecting colonic health. We hypothesize that an HFD accelerates the inflammatory process and modulates IL-1R/TLR pathways, gut microbiome, and disease-related miRNA in the colon. In this study, 4-week-old C57BL/6 mice were fed a modified AIN93G diet (AIN, 16% energy fat) or an HFD (45% energy fat) for 15 weeks. In addition to increased body weight and body fat composition, the concentrations of plasma interleukin 6 (IL-6), inflammatory cell infiltration, β-catenin, and cell proliferation marker (Ki67) in the colon were elevated > 68% in the HFD group compared to the AIN group. Using a PCR array analysis, we identified 14 out of 84 genes with a ≥ 24% decrease in mRNA content related to IL-1R and TLR pathways in colonic epithelial cells in mice fed an HFD compared to the AIN. Furthermore, the content of Alistipes bacteria, the Firmicutes/Bacteroidetes ratio, microRNA-29a, and deoxycholic and lithocholic acids (secondary bile acids with oncogenic potential) were 55% greater in the feces of the HFD group compared to the AIN group. Collectively, this composite, a multimodal profile may represent a unique HFD-induced fecal signature for colonic inflammation and cancer in C57BL/6 mice.
Collapse
Affiliation(s)
- Huawei Zeng
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA.
| | - Bryan D Safratowich
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, USA
| | - Michael R Bukowski
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA
| |
Collapse
|
16
|
Song J, liu Q, Hao M, Zhai X, Chen J. Effects of neutral polysaccharide from Platycodon grandiflorum on high-fat diet-induced obesity via the regulation of gut microbiota and metabolites. Front Endocrinol (Lausanne) 2023; 14:1078593. [PMID: 36777345 PMCID: PMC9908743 DOI: 10.3389/fendo.2023.1078593] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
The obesity epidemic has become a global problem with far-reaching health and economic impact. Despite the numerous therapeutic efficacies of Platycodon grandiflorum, its role in modulating obesity-related metabolic disorders has not been clarified. In this study, a purified neutral polysaccharide, PGNP, was obtained from Platycodon grandiflorum. Based on methylation and NMR analyses, PGNP was found to be composed of 2,1-β-D-Fruf residues ending with a (1→2)-bonded α-D-Glcp. The protective effects of PGNP on high-fat HFD-induced obesity were assessed. According to our results, PGNP effectively alleviated the signs of metabolic syndrome, as demonstrated by reductions in body weight, hepatic steatosis, lipid profile, inflammatory response, and insulin resistance in obese mice. Under PGNP treatment, intestinal histomorphology and the tight junction protein, ZO-1, were well maintained. To elucidate the underlying mechanism, 16S rRNA gene sequencing and LC-MS were employed to assess the positive influence of PGNP on the gut microbiota and metabolites. PGNP effectively increased species diversity of gut microbiota and reversed the HFD-induced imbalance in the gut microbiota by decreasing the Firmicutes to Bacteroidetes ratio. The abundance of Bacteroides and Blautia were increased after PGNP treatment, while the relative abundance of Rikenella, Helicobacter were reduced. Furthermore, PGNP notably influenced the levels of microbial metabolites, including the increased levels of cholic and gamma-linolenic acid. Overall, PGNP might be a potential supplement for the regulation of gut microbiota and metabolites, further affecting obesity.
Collapse
Affiliation(s)
- Jing Song
- College of pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
| | - Qin liu
- College of pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Mengqi Hao
- College of pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiaohu Zhai
- College of pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Juan Chen
- College of pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, China
- *Correspondence: Juan Chen,
| |
Collapse
|
17
|
Wang Y, Li T, Liu Y, Yang C, Liu L, Zhang X, Yang X. Heimao tea polysaccharides ameliorate obesity by enhancing gut microbiota-dependent adipocytes thermogenesis in mice fed with high fat diet. Food Funct 2022; 13:13014-13027. [PMID: 36449351 DOI: 10.1039/d2fo02415b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heimao tea (HMT) is a kind of fermented dark tea that has various health benefits. However, the available information regarding the anti-obesity effect of HMT and its active ingredients is still limited. Herein, we extracted the polysaccharides from Heimao tea (HMTP) and evaluated the anti-obesity effect and the underlying mechanism of HMTP. 12-Week administration of HMTP ameliorated lipid accumulation in the adipose tissue and improved glucolipid metabolism in high-fat diet (HFD)-fed mice. HMTP also induced browning of inguinal white adipose tissue (iWAT) and enhanced the thermogenic activity of interscapular brown adipose tissue (iBAT) by upregulating the expression of a series of thermogenic genes, such as Ucp1, Prdm16, and Pgc1α. Interestingly, the anti-obesity effect of HMTP was closely associated with altered relative abundance of the gut microbes, especially Dubosiella and Romboutsia, with significant increases, in which the abundance of Dubosiella and Romboutsia was negatively correlated with the body weight (r = -0.567, p < 0.05; r = -0.407, p < 0.05) and positively correlated with the iBAT index (r = 0.520, p < 0.05; r = 0.315, p < 0.05). Our data suggest that the alteration of the gut microbiota may play a critical role in HMTP-induced iWAT browning and iBAT activation, and our findings may provide a promising way for preventing obesity.
Collapse
Affiliation(s)
- Yu Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Yueyue Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Chengcheng Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Lei Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Xiangnan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
18
|
Zhu X, Li H, Zhou L, Jiang H, Ji M, Chen J. Evaluation of the gut microbiome alterations in healthy rats after dietary exposure to different synthetic ZnO nanoparticles. Life Sci 2022; 312:121250. [PMID: 36455650 DOI: 10.1016/j.lfs.2022.121250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
AIMS Although synthetic ZnO nanoparticles (Nano-ZnO) as an alternative of ZnO compounds have been extensively used such as in livestock production, the increased consuming of Nano-ZnO has raised considerable concerns in environmental pollution and public health. Because of the low digestion of Nano-ZnO, the systematic studies on their interactions with gut microbiota remain to be clarified. MATERIALS AND METHODS Nano-ZnOs were prepared by co-precipitation (ZnO-cp) and high temperature thermal decomposition (ZnO-td) as well as the commercial type (ZnO-s). Transmission electron microscopy (TEM) was used to monitor the morphology of Nano-ZnO. CCK-8 assay was used for cytotoxicity evaluation. Total antioxidant capacity assay, total superoxide dismutase assay, and lipid peroxidation assay were used to evaluate oxidative states of rats. 16S rRNA was used to study the impact of Nano-ZnO on the rat gut microbiome. KEY FINDINGS Both ZnO-cp and ZnO-td exhibited low cytotoxicity while ZnO-s and ZnO-td exhibited prominent antibacterial activities. After a 28-day oral feeding with 1000 mg/kg Zn at dietary dosage, ZnO-s showed slight effect on causing oxidative stress in comparison with that of ZnO-cp and ZnO-td. Results of 16S rRNA sequencing analysis indicated that ZnO-td as a promising short-term nano-supplement can increase probiotics abundances like strains belonged to the genus Lactobacillus and provide the antipathogenic effect. SIGNIFICANCE The results of the gut microbiome alteration by synthetic Nano-ZnO not only provide solution to exposure monitoring of environmental hazard, but rationalize their large-scale manufacture as alternative additive in the food chain.
Collapse
Affiliation(s)
- Xinyi Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Henghui Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Liuzhu Zhou
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, 211166 Nanjing, China
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing 211166, China
| | - Jin Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166 Nanjing, China.
| |
Collapse
|
19
|
Li M, Zhao Y, Wang Y, Geng R, Fang J, Kang SG, Huang K, Tong T. Eugenol, A Major Component of Clove Oil, Attenuates Adiposity and Modulates Gut Microbiota in High-Fat Diet-fed Mice. Mol Nutr Food Res 2022; 66:e2200387. [PMID: 36029106 DOI: 10.1002/mnfr.202200387] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/09/2022]
Abstract
SCOPE Eugenol (EU), the major aromatic compound derived from clove oil, is being focused recently due to its potential in preventing several chronic conditions. Herein, we aimed to evaluate the potential of EU in obesity prevention and to delineate the mechanisms involved. METHODS AND RESULTS Five-week-old male C57BL/6J mice were fed with high-fat diet (HFD) or HFD supplemented with EU (0.2%, w/w) for 13 weeks. EU significantly reduced obesity-related indexes including final body weight, body weight gain, adipocyte size, visceral fat-pad weight, and fasting blood glucose. EU prevented HFD-induced gut dysbiosis, as indicated by the increase of Firmicutes and decrease of Desulfobacterota at phylum level, and the increase of Dubosiella, Blautia, unclassified_f_Oscillospiraceae, and unclassified_f_Ruminococcaceae, and the decrease of Alistipes, Alloprevotella, and Bilophila at genus level. Notably, the obesity-related indexes were positively correlated with the relative abundances of Bacteroides, unclassified_f_Lachnospiraceae, Colidextribacter, and Bilophila, and negatively correlated with the relative abundances of norank_f_Muribaculaceae and Lachnospiraceae_NK4A136_group. Moreover, the preventive effects of EU on obesity were accompanied by the transcriptomic reprogramming of white adipose tissue. CONCLUSION These findings demonstrated that EU prevents the HFD-induced adiposity and modulates gut dysbiosis, and highlighted the potential of EU in obesity intervention as a functional dietary supplement. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengjie Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Yuhan Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Yanan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Seong-Gook Kang
- Department of Food Engineering, Mokpo National University, Muangun, 58554, Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| |
Collapse
|
20
|
Tomasova L, Grman M, Ondrias K, Ufnal M. The impact of gut microbiota metabolites on cellular bioenergetics and cardiometabolic health. Nutr Metab (Lond) 2021; 18:72. [PMID: 34266472 PMCID: PMC8281717 DOI: 10.1186/s12986-021-00598-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022] Open
Abstract
Recent research demonstrates a reciprocal relationship between gut microbiota-derived metabolites and the host in controlling the energy homeostasis in mammals. On the one hand, to thrive, gut bacteria exploit nutrients digested by the host. On the other hand, the host utilizes numerous products of gut bacteria metabolism as a substrate for ATP production in the colon. Finally, bacterial metabolites seep from the gut into the bloodstream and interfere with the host’s cellular bioenergetics machinery. Notably, there is an association between alterations in microbiota composition and the development of metabolic diseases and their cardiovascular complications. Some metabolites, like short-chain fatty acids and trimethylamine, are considered markers of cardiometabolic health. Others, like hydrogen sulfide and nitrite, demonstrate antihypertensive properties. Scientific databases were searched for pre-clinical and clinical studies to summarize current knowledge on the role of gut microbiota metabolites in the regulation of mammalian bioenergetics and discuss their potential involvement in the development of cardiometabolic disorders. Overall, the available data demonstrates that gut bacteria products affect physiological and pathological processes controlling energy and vascular homeostasis. Thus, the modulation of microbiota-derived metabolites may represent a new approach for treating obesity, hypertension and type 2 diabetes.
Collapse
Affiliation(s)
- Lenka Tomasova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic.
| | - Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - Karol Ondrias
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-091, Warsaw, Poland.
| |
Collapse
|
21
|
Jang HR, Lee HY. Mechanisms linking gut microbial metabolites to insulin resistance. World J Diabetes 2021; 12:730-744. [PMID: 34168724 PMCID: PMC8192250 DOI: 10.4239/wjd.v12.i6.730] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/23/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance is the rate-limiting step in the development of metabolic diseases, including type 2 diabetes. The gut microbiota has been implicated in host energy metabolism and metabolic diseases and is recognized as a quantitatively important organelle in host metabolism, as the human gut harbors 10 trillion bacterial cells. Gut microbiota break down various nutrients and produce metabolites that play fundamental roles in host metabolism and aid in the identification of possible therapeutic targets for metabolic diseases. Therefore, understanding the various effects of bacterial metabolites in the development of insulin resistance is critical. Here, we review the mechanisms linking gut microbial metabolites to insulin resistance in various insulin-responsive tissues.
Collapse
Affiliation(s)
- Hye Rim Jang
- Laboratory of Mitochondrial and Metabolic Diseases, Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, South Korea
| | - Hui-Young Lee
- Laboratory of Mitochondrial and Metabolic Diseases, Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, South Korea
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
- Division of Molecular Medicine, Department of Medicine, Gachon University College of Medicine, Incheon 21936, South Korea
| |
Collapse
|
22
|
Patra AK, Kar I. Heat stress on microbiota composition, barrier integrity, and nutrient transport in gut, production performance, and its amelioration in farm animals. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:211-247. [PMID: 33987600 PMCID: PMC8071753 DOI: 10.5187/jast.2021.e48] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022]
Abstract
Livestock species experience several stresses, particularly weaning,
transportation, overproduction, crowding, temperature, and diseases in their
life. Heat stress (HS) is one of the most stressors, which is encountered in
livestock production systems throughout the world, especially in the tropical
regions and is likely to be intensified due to global rise in environmental
temperature. The gut has emerged as one of the major target organs affected by
HS. The alpha- and beta-diversity of gut microbiota composition are altered due
to heat exposure to animals with greater colonization of pathogenic microbiota
groups. HS also induces several changes in the gut including damages of
microstructures of the mucosal epithelia, increased oxidative insults, reduced
immunity, and increased permeability of the gut to toxins and pathogens.
Vulnerability of the intestinal barrier integrity leads to invasion of
pathogenic microbes and translocation of antigens to the blood circulations,
which ultimately may cause systematic inflammations and immune responses.
Moreover, digestion of nutrients in the guts may be impaired due to reduced
enzymatic activity in the digesta, reduced surface areas for absorption and
injury to the mucosal structure and altered expressions of the nutrient
transport proteins and genes. The systematic hormonal changes due to HS along
with alterations in immune and inflammatory responses often cause reduced feed
intake and production performance in livestock and poultry. The altered
microbiome likely orchestrates to the hosts for various relevant biological
phenomena occurring in the body, but the exact mechanisms how functional
communications occur between the microbiota and HS responses are yet to be
elucidated. This review aims to discuss the effects of HS on microbiota
composition, mucosal structure, oxidant-antioxidant balance mechanism, immunity,
and barrier integrity in the gut, and production performance of farm animals
along with the dietary ameliorations of HS. Also, this review attempts to
explain the mechanisms how these biological responses are affected by HS.
Collapse
Affiliation(s)
- Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal 700037, India
| | - Indrajit Kar
- Department of Avian Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal 700037, India
| |
Collapse
|
23
|
Pace F, Watnick PI. The Interplay of Sex Steroids, the Immune Response, and the Intestinal Microbiota. Trends Microbiol 2020; 29:849-859. [PMID: 33257138 DOI: 10.1016/j.tim.2020.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
The role of sex steroids in mammalian maturation is well established. Recently, it has been increasingly appreciated that sex steroids also play an important role in the propensity of adults to develop a myriad of diseases. The exposure and responsiveness of tissues to sex steroids varies among individuals and between the sexes, and this has been correlated with gender-specific differences in the composition of the intestinal microbiota and in susceptibility to metabolic, autoimmune, and neoplastic diseases. Here we focus on recent studies that demonstrate an interplay between sex steroids, the intestinal immune response, and the intestinal microbiota. While correlations between biological sex, the intestinal innate immune response, intestinal inflammation, and intestinal microbiota have been established, many gaps in our knowledge prevent the emergence of an overarching model for this complex interaction. Such a model could aid in the development of prebiotic, probiotic, or synthetic therapeutics that decrease the risk of autoimmune, metabolic, neoplastic, and infectious diseases of the intestine and mitigate the particular health risks faced by individuals receiving sex steroid treatment.
Collapse
Affiliation(s)
- Fernanda Pace
- Division of Infectious Diseases, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Paula I Watnick
- Division of Infectious Diseases, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|