1
|
Hagoss YT, Shen D, Wang W, Zhang Z, Li F, Sun E, Zhu Y, Ge J, Guo Y, Bu Z, Zhao D. African swine fever virus pCP312R interacts with host RPS27A to shut off host protein translation and promotes viral replication. Int J Biol Macromol 2024; 277:134213. [PMID: 39069039 DOI: 10.1016/j.ijbiomac.2024.134213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
African swine fever virus (ASFV) severely threatens the global economy and food security. ASFV encodes >150 genes, but the functions of most of them have yet to be characterized in detail. Here we explored the function of the ASFV CP312R gene and found that CP312R plays an essential role in ASFV replication. Knockout of the CP312R gene terminated viral replication and CP312R knockdown substantially suppressed ASFV infection in vitro. Furthermore, we resolved the crystal structure of pCP312R to 2.3 Å resolution and found that pCP312R has the potential to bind nucleic acids. LC-MS analysis and co-immunoprecipitation assay revealed that pCP312R interacts with RPS27A, a component of the 40S ribosomal subunit. Confocal microscopy showed the interaction between pCP312R and RPS27A leaded to a modification in the subcellular localization of this host protein, which suppresses host protein translation. Renilla-Glo luciferase assay and Ribopuromycylation analysis evidenced that knockout of RPS27A completely aborted the shutoff activity of pCP312R, and trans-complementation of RPS27A recovered pCP312R shutoff activity in RPS27A-knockout cells. Our findings shed light on the function of ASFV CP312R gene in virus infection, which triggers inhibition of host protein synthesis.
Collapse
Affiliation(s)
- Yibrah Tekle Hagoss
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; Department of Animal Sciences, College of Agriculture and Natural Resources, Raya University, Maichew, P.O. Box 92, Ethiopia
| | - Dongdong Shen
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Wenming Wang
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Zhenjiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Fang Li
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Encheng Sun
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yuanmao Zhu
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China.
| | - Zhigao Bu
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Dongming Zhao
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
2
|
Zhang SJ, Niu B, Liu SM, Zhu YM, Zhao DM, Bu ZG, Hua RH. Identification of Two Linear Epitopes on MGF_110-13L Protein of African Swine Fever Virus with Monoclonal Antibodies. Animals (Basel) 2024; 14:1951. [PMID: 38998063 PMCID: PMC11240426 DOI: 10.3390/ani14131951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
African swine fever caused by African swine fever virus (ASFV) is an acute, highly contagious swine disease with high mortality. To facilitate effective vaccine development and find more serodiagnostic targets, fully exploring the ASFV antigenic proteins is urgently needed. In this study, the MGF_110-13L was identified as an immunodominant antigen among the seven transmembrane proteins. The main outer-membrane domain of MGF_110-13L was expressed and purified. Two monoclonal antibodies (mAbs; 8C3, and 10E4) against MGF_110-13L were generated. The epitopes of two mAbs were preliminary mapped with the peptide fusion proteins after probing with mAbs by enzyme-linked immunosorbent assay (ELISA) and Western blot. And the two target epitopes were fine-mapped using further truncated peptide fusion protein strategy. Finally, the core sequences of mAbs 8C3 and 10E4 were identified as 48WDCQDGICKNKITESRFIDS67, and 122GDHQQLSIKQ131, respectively. The peptides of epitopes were synthesized and probed with ASFV antibody positive pig sera by a dot blot assay, and the results showed that epitope 10E4 was an antigenic epitope. The epitope 10E4 peptide was further evaluated as a potential antigen for detecting ASFV antibodies. To our knowledge, this is the first report of antigenic epitope information on the antigenic MGF_110-13L protein of ASFV.
Collapse
Affiliation(s)
- Shu-Jian Zhang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Bei Niu
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Shi-Meng Liu
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yuan-Mao Zhu
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Dong-Ming Zhao
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhi-Gao Bu
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Rong-Hong Hua
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
3
|
Fernandez-Colorado CP, Kim WH, Flores RA, Min W. African Swine Fever in the Philippines: A Review on Surveillance, Prevention, and Control Strategies. Animals (Basel) 2024; 14:1816. [PMID: 38929435 PMCID: PMC11200829 DOI: 10.3390/ani14121816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
African swine fever (ASF), a highly contagious disease of swine, has posed a significant global threat to the swine industry. As an archipelago, the Philippines has a geographic advantage when it comes to the risk of ASF transmission. However, since its introduction to the Philippines in 2019, it has proliferated not only in backyard and commercial farms but also in wild pig populations. While certain parts of the country were more affected than others, the epidemiologic features of ASF necessitate that all affected areas must be closely monitored and that confirmed cases be treated with the utmost care. With the very limited data on ASF epidemiology and surveillance in the Philippines, future efforts to combat ASF must place even greater emphasis on improved prevention and control strategies. It is worth mentioning that the government's efforts toward comprehensive ASF surveillance and epidemiological investigation into the possible ASFV sources or transmission pathways are the most important measures in the prevention and control of ASF outbreaks. This review article provides a comprehensive overview of the current swine industry and ASF situation in the Philippines, which includes its epidemiology, surveillance, prevention, and control strategies.
Collapse
Affiliation(s)
- Cherry P. Fernandez-Colorado
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines
| | - Woo Hyun Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (W.H.K.); (R.A.F.); (W.M.)
| | - Rochelle A. Flores
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (W.H.K.); (R.A.F.); (W.M.)
| | - Wongi Min
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (W.H.K.); (R.A.F.); (W.M.)
| |
Collapse
|
4
|
Kim G, Kim SJ, Kim WJ, Kim JH, Kim JC, Lee SG, Kim ES, Lee SH, Jheong WH. Emergence and Prevalence of an African Swine Fever Virus Variant in Wild Boar Populations in South Korea from 2019 to 2022. Viruses 2023; 15:1667. [PMID: 37632010 PMCID: PMC10459476 DOI: 10.3390/v15081667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
African swine fever (ASF), a viral disease caused by the African swine fever virus (ASFV), is associated with high mortality rates in domestic pigs and wild boars. ASF has been spreading since its discovery in wild boars in Korea in October 2019. Genomic analyses have provided insights into the genetic diversity of the ASFV isolated from various regions, enabling a better understanding of the virus origin and transmission patterns. We conducted a genome analysis to evaluate the diversity and mutations of ASFV spreading among wild boars in Korea during 2019-2022. We compared the genomes of ASFV strains isolated from Korean wild boars and publicly available ASFV genomes. Genomic analysis revealed several single-nucleotide polymorphisms within multigene families (MGFs) 360-1La and 360-4L in Korean ASFV. MGF 360-1La and 360-4L variations were not observed in other ASFV strains, including those of genotype II. Finally, we partially analyzed MGFs 360-1La and 360-4L in ASFV-positive samples between 2019 and 2022, confirming the geographical distribution of the variants. Our findings can help identify new genetic markers for epidemiological ASFV analysis and provide essential information for effective disease management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Weon-Hwa Jheong
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention (NIWDC), 1 Songam-gil, Gwangsan-gu, Gwangju 62407, Republic of Korea; (G.K.); (S.-J.K.); (W.-J.K.); (J.-H.K.); (J.-C.K.); (S.-G.L.); (E.-S.K.); (S.-H.L.)
| |
Collapse
|
5
|
Hua RH, Liu J, Zhang SJ, Liu RQ, Zhang XF, He XJ, Zhao DM, Bu ZG. Mammalian Cell-Line-Expressed CD2v Protein of African Swine Fever Virus Provides Partial Protection against the HLJ/18 Strain in the Early Infection Stage. Viruses 2023; 15:1467. [PMID: 37515155 PMCID: PMC10383863 DOI: 10.3390/v15071467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
A cell line expressing the CD2v protein of ASFV was generated. The efficient expression of CD2v protein was determined by immunofluorescence and Western blotting. The CD2v protein was Ni-affinity purified from the supernatant of cell cultures. The CD2v-expressing cells showed properties of hemadsorption, and the secreted CD2v protein exhibited hemagglutinating activity. The antigenicity and immunoprotection ability of CD2v were evaluated by immunizing pigs alone, combined with a cell-line-expressed p30 protein or triple combined with p30 and K205R protein. Immunized pigs were challenged with the highly virulent ASFV strain HLJ/18. Virus challenge results showed that CD2v immunization alone could provide partial protection at the early infection stage. Protein p30 did not show synergistic protection effects in immunization combined with CD2v. Interestingly, immunization with the triple combination of CD2V, p30 and K205R reversed the protection effect. The viremia onset time was delayed, and one pig out of three recovered after the challenge. The pig recovered from ASFV clinical symptoms, the rectal temperature returned to normal levels and the viremia was cleared. The mechanism of this protection effect warrants further investigation.
Collapse
Affiliation(s)
- Rong-Hong Hua
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jing Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shu-Jian Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Ren-Qiang Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xian-Feng Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xi-Jun He
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Dong-Ming Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhi-Gao Bu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| |
Collapse
|
6
|
Mataca AR, Oliveira FAS, Lampeão ÂA, Mendonça JP, Moreira MAS, Mota RA, Porto WJN, Schwarz DGG, Silva-Júnior A. High-Risk Regions of African Swine Fever Infection in Mozambique. Viruses 2023; 15:v15041010. [PMID: 37112990 PMCID: PMC10142141 DOI: 10.3390/v15041010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
African swine fever (ASF) is a transboundary infectious disease that can infect wild and domestic swine and requires enhanced surveillance between countries. In Mozambique, ASF has been reported across the country, spreading between provinces, mainly through the movement of pigs and their by-products. Subsequently, pigs from bordering countries were at risk of exposure. This study evaluated the spatiotemporal distribution and temporal trends of ASF in swine in Mozambique between 2000 and 2020. During this period, 28,624 cases of ASF were reported across three regions of the country. In total, the northern, central, and southern regions presented 64.9, 17.8, and 17.3% of the total cases, respectively. When analyzing the incidence risk (IR) of ASF per 100,000 pigs, the Cabo Delgado province had the highest IR (17,301.1), followed by the Maputo province (8868.6). In the space-time analysis, three clusters were formed in each region: (i) Cluster A involved the provinces of Cabo Delgado and Nampula (north), (ii) Cluster B involved the province of Maputo and the city of Maputo (south), and (iii) Cluster C consisted of the provinces of Manica and Sofala (central) in 2006. However, when analyzing the temporal trend in the provinces, most were found to be decreasing, except for Sofala, Inhambane, and Maputo, which had a stationary trend. To the best of our knowledge, this is the first study to evaluate the spatial distribution of ASF in Mozambique. These findings will contribute to increasing official ASF control programs by identifying high-risk areas and raising awareness of the importance of controlling the borders between provinces and countries to prevent their spread to other regions of the world.
Collapse
Affiliation(s)
- Azido Ribeiro Mataca
- Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
- Escola Superior de Desenvolvimento Rural, Universidade Eduardo Mondlane, Maputo 257, Mozambique
| | | | - Ângelo André Lampeão
- Escola Superior de Desenvolvimento Rural, Universidade Eduardo Mondlane, Maputo 257, Mozambique
| | | | | | - Rinaldo Aparecido Mota
- Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco (UFRPE), Recife 52171-900, Brazil
| | | | | | - Abelardo Silva-Júnior
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió 57072-900, Brazil
| |
Collapse
|
7
|
Zhang SJ, Liu J, Niu B, Zhu YM, Zhao DM, Chen WY, Liu RQ, Bu ZG, Hua RH. Comprehensive mapping of antigenic linear B-cell epitopes on K205R protein of African swine fever virus with monoclonal antibodies. Virus Res 2023; 328:199085. [PMID: 36889544 DOI: 10.1016/j.virusres.2023.199085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023]
Abstract
African swine fever virus causes an acute, highly contagious swine disease with high mortality, leading to enormous losses in the pig industry. The K205R, a nonstructural protein of African swine fever virus, is abundantly expressed in the cytoplasm of infected cells at the early stage of infection and induces a strong immune response. However, to date, the antigenic epitopes of this immunodeterminant have not been characterized. In the present study, the K205R protein was expressed in a mammalian cell line and purified using Ni-affinity chromatography. Furthermore, three monoclonal antibodies (mAbs; 5D6, 7A8, and 7H10) against K205R were generated. Indirect immunofluorescence assay and western blot results showed that all three mAbs recognized native and denatured K205R in African swine fever virus (ASFV)-infected cells. To identify the epitopes of the mAbs, a series of overlapping short peptides were designed and expressed as fusion proteins with maltose-binding protein. Subsequently, the peptide fusion proteins were probed with monoclonal antibodies using western blot and enzyme-linked immunosorbent assay. The three target epitopes were fine-mapped; the core sequences of recognized by the mAbs 5D6, 7A8, and 7H10 were identified as 157FLTPEIQAILDE168, 154REKFLTP160, and 136PTNAMFFTRSEWA148, respectively. Probing with sera from ASFV-infected pigs in a dot blot assay demonstrated that epitope 7H10 was the immunodominant epitope of K205R. Sequence alignment showed that all epitopes were conserved across ASFV strains and genotypes. To our knowledge, this is the first study to characterize the epitopes of the antigenic K205R protein of ASFV. These findings may serve as a basis for the development of serological diagnostic methods and subunit vaccines.
Collapse
Affiliation(s)
- Shu-Jian Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jing Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Bei Niu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yuan-Mao Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Dong-Ming Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Wei-Ye Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ren-Qiang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhi-Gao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Rong-Hong Hua
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
8
|
Beato MS, D’Errico F, Iscaro C, Petrini S, Giammarioli M, Feliziani F. Disinfectants against African Swine Fever: An Updated Review. Viruses 2022; 14:v14071384. [PMID: 35891365 PMCID: PMC9315964 DOI: 10.3390/v14071384] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
African Swine Fever (ASF), a hemorrhagic disease with a high mortality rate in suids, is transmitted via direct and indirect contact with infectious animals and contaminated fomites, respectively. ASF reached Europe in 2014, affecting 14 of the 27 EU countries including, recently, the Italian peninsula. The fast and unprecedented spread of ASF in the EU has highlighted gaps in knowledge regarding transmission mechanisms. Fomites, such as contaminated clothing and footwear, farming tools, equipment and vehicles have been widely reported in the spread of ASF. The absence of available vaccines renders biosecurity measures, cleaning and disinfection procedures an essential control tool, to a greater degree than the others, for the prevention of primary and secondary introductions of ASF in pig farms. In this review, available data on the virucidal activity of chemical compounds as disinfectants against the ASF virus (ASFV) are summarized together with laboratory methods adopted to assess the virucidal activity.
Collapse
|
9
|
Simbizi V, Moerane R, Ramsay G, Mubamba C, Abolnik C, Gummow B. A review of pig and poultry diseases in the Eastern Cape Province of South Africa, 2000–2020. J S Afr Vet Assoc 2022. [DOI: 10.36303/jsava.2022.93.1.495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Affiliation(s)
- V Simbizi
- Department of Rural Development and Agrarian Reform, State Veterinary Services,
South Africa
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria,
South Africa
| | - R Moerane
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria,
South Africa
| | - G Ramsay
- School of Animal & Veterinary Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University,
Australia
| | - C Mubamba
- Department of Veterinary Services, Ministry of Livestock and Fisheries,
Zambia
| | - C Abolnik
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria,
South Africa
| | - B Gummow
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria,
South Africa
- Discipline of Veterinary Sciences, College of Public Health, Medical and Veterinary Sciences, James Cook University,
Australia
| |
Collapse
|
10
|
Janse van Rensburg L, Penrith ML, Etter EMC. Prioritisation of Provinces for African Swine Fever Intervention in South Africa through Decision Matrix Analysis. Pathogens 2022; 11:pathogens11020135. [PMID: 35215079 PMCID: PMC8880338 DOI: 10.3390/pathogens11020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
South Africa has experienced an increase in the number of African swine fever (ASF) outbreaks in domestic pigs in the last ten years. Intervention will be needed in the form of control and prevention strategies to minimise the impact of this disease in the country. The aim of this study is to prioritise which provinces resources should be allocated to for ASF intervention strategies, based on the risk factors identified as pertinent in South Africa. A multi-criteria decision analysis approach was followed using an analytic hierarchy process (AHP) method to determine the perceived risk of ASF outbreaks in domestic pigs per province. Nine risk factors applicable to the South African context were identified from literature. Data on the presence of these risk factors per province were collected from records and by means of a questionnaire. The risk factors were weighted by means of an AHP. The decision matrix determined that ASF intervention and prevention resources should be focused on Mpumalanga, Free State and Gauteng provinces in South Africa. Specific intervention strategies should be focused on the confinement of pigs, swill-feeding of pigs and buying/selling of pigs at auctions through a participatory approach with stakeholders.
Collapse
Affiliation(s)
- Leana Janse van Rensburg
- Department of Production Animal Studies, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort 0110, South Africa;
- Directorate Animal Health, Department of Agriculture, Land Reform & Rural Development of South Africa, Pretoria 0001, South Africa
- Correspondence: or
| | - Mary-Louise Penrith
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort 0110, South Africa;
| | - Eric M. C. Etter
- Department of Production Animal Studies, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort 0110, South Africa;
- CIRAD, UMR AnimalS Territories Risks Ecosystems (ASTRE), 97170 Petit Bourg, France
- ASTRE, University Montpellier, CIRAD, INRAE, 34070 Montpellier, France
| |
Collapse
|
11
|
Njau EP, Machuka EM, Cleaveland S, Shirima GM, Kusiluka LJ, Okoth EA, Pelle R. African Swine Fever Virus (ASFV): Biology, Genomics and Genotypes Circulating in Sub-Saharan Africa. Viruses 2021; 13:2285. [PMID: 34835091 PMCID: PMC8623397 DOI: 10.3390/v13112285] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/17/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022] Open
Abstract
African swine fever (ASF) is a highly infectious and fatal haemorrhagic disease of pigs that is caused by a complex DNA virus of the genus Asfivirus and Asfarviridae African suids family. The disease is among the most devastating pig diseases worldwide including Africa. Although the disease was first reported in the 19th century, it has continued to spread in Africa and other parts of the world. Globally, the rising demand for pork and concomitant increase in transboundary movements of pigs and pork products is likely to increase the risk of transmission and spread of ASF and pose a major challenge to the pig industry. Different genotypes of the ASF virus (ASFV) with varying virulence have been associated with different outbreaks in several countries in sub-Saharan Africa (SSA) and worldwide, and understanding genotype circulation will be important for ASF prevention and control strategies. ASFV genotypes unique to Africa have also been reported in SSA. This review briefly recounts the biology, genomics and genotyping of ASFV and provides an account of the different genotypes circulating in SSA. The review also highlights prevention, control and progress on vaccine development and identifies gaps in knowledge of ASFV genotype circulation in SSA that need to be addressed.
Collapse
Affiliation(s)
- Emma P. Njau
- Biosciences Eastern and Central Africa—International Livestock Research Institute Hub, P.O. Box 30709, Nairobi 00100, Kenya; (E.M.M.); (E.A.O.); (R.P.)
- Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania; (S.C.); (G.M.S.); (L.J.K.)
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Chuo Kikuu, Morogoro P.O. Box 3015, Tanzania
| | - Eunice M. Machuka
- Biosciences Eastern and Central Africa—International Livestock Research Institute Hub, P.O. Box 30709, Nairobi 00100, Kenya; (E.M.M.); (E.A.O.); (R.P.)
| | - Sarah Cleaveland
- Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania; (S.C.); (G.M.S.); (L.J.K.)
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gabriel M. Shirima
- Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania; (S.C.); (G.M.S.); (L.J.K.)
| | - Lughano J. Kusiluka
- Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania; (S.C.); (G.M.S.); (L.J.K.)
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Chuo Kikuu, Morogoro P.O. Box 3015, Tanzania
- Mzumbe University, Morogoro P.O. Box 1, Tanzania
| | - Edward A. Okoth
- Biosciences Eastern and Central Africa—International Livestock Research Institute Hub, P.O. Box 30709, Nairobi 00100, Kenya; (E.M.M.); (E.A.O.); (R.P.)
| | - Roger Pelle
- Biosciences Eastern and Central Africa—International Livestock Research Institute Hub, P.O. Box 30709, Nairobi 00100, Kenya; (E.M.M.); (E.A.O.); (R.P.)
| |
Collapse
|
12
|
Construction, Identification and Analysis of the Interaction Network of African Swine Fever Virus MGF360-9L with Host Proteins. Viruses 2021; 13:v13091804. [PMID: 34578385 PMCID: PMC8473002 DOI: 10.3390/v13091804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/24/2022] Open
Abstract
African swine fever virus (ASFV) is prevalent in many countries and is a contagious and lethal virus that infects pigs, posing a threat to the global pig industry and public health. The interaction between the virus and the host is key to unlocking the mystery behind viral pathogenesis. A comprehensive understanding of the viral and host protein interaction may provide clues for developing new antiviral strategies. Here, we show a network of ASFV MGF360-9L protein interactions in porcine kidney (PK-15) cells. Overall, 268 proteins that interact with MGF360-9L are identified using immunoprecipitation and liquid chromatography–mass spectrometry (LC-MS). Accordingly, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted, and the protein–protein interaction (PPI) network was created. It was speculated that the cellular proteins interacting with MGF360-9L are involved in protein binding, metabolism, and the innate immune response. Proteasome subunit alpha type (PSMA3), 26S protease regulatory subunit 4 (PSMC1), autophagy and beclin 1 regulator 1 (AMBRA1), and DEAD-box helicase 20 (DDX20) could interact with MGF360-9L in vitro. PSMA3 and PSMC1 overexpression significantly promoted ASFV replication, and MGF360-9L maintained the transcriptional level of PSMA3 and PSMC1. Here, we show the interaction between ASFV MGF360-9L and cellular proteins and elucidate the virus–host interaction network, which effectively provides useful protein-related information that can enable further study of the potential mechanism and pathogenesis of ASFV infection.
Collapse
|
13
|
Muñoz-Pérez C, Jurado C, Sánchez-Vizcaíno JM. African swine fever vaccine: Turning a dream into reality. Transbound Emerg Dis 2021; 68:2657-2668. [PMID: 34137198 DOI: 10.1111/tbed.14191] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 12/19/2022]
Abstract
African swine fever (ASF) is currently threatening the swine industry at a global level. The disease originated in Africa has spread to Europe, Asia and Oceania, since 2007, reaching a pandemic dimension. Currently, the spread of ASF is unstoppable and that the development of a safe and effective vaccine is urgently required. The objective of this paper is to review the vaccine candidates tested during the 20th and 21st centuries, to identify the strengths and weaknesses of these studies and to highlight what we should learn. Several strategies have been explored to date, some of which have shown positive and negative results. Inactivated preparations and subunit vaccines are not a viable option. The most promising strategy would appear to be live attenuated vaccines, because these vaccine candidates are able to induce variable percentages of protection against certain homologous and heterologous virus isolates. The number of studies on live attenuated vaccine candidates has steadily increased in the 21st century thanks to advances in molecular biology and an in-depth knowledge of ASF virus, which have allowed the development of vaccines based on deletion mutants. The deletion of virulence-related genes has proved to be a useful tool for attenuation, although attenuation does not always mean protection and even less, cross protection. Therefore, ASF vaccine development has proved to be one of the top priorities in ASF research. Efforts are still being made to fill the gaps in the knowledge regarding immune response, safety and cross protection, and these efforts will hopefully help to find a safe and effective vaccine that could be commercialised soon, thus making it possible to turn a dream into reality.
Collapse
Affiliation(s)
- Carolina Muñoz-Pérez
- VISAVET Health Surveillance Centre and Animal Health Department, Complutense University of Madrid, Madrid, Spain
| | - Cristina Jurado
- VISAVET Health Surveillance Centre and Animal Health Department, Complutense University of Madrid, Madrid, Spain
| | - José Manuel Sánchez-Vizcaíno
- VISAVET Health Surveillance Centre and Animal Health Department, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
14
|
Hakizimana JN, Yona C, Kamana O, Nauwynck H, Misinzo G. African Swine Fever Virus Circulation between Tanzania and Neighboring Countries: A Systematic Review and Meta-Analysis. Viruses 2021; 13:v13020306. [PMID: 33672090 PMCID: PMC7919636 DOI: 10.3390/v13020306] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
For over 100 years after the description of the first case of African swine fever (ASF) in Kenya, ASF virus (ASFV) cross-border spread in eastern and southern Africa has not been fully investigated. In this manuscript, we reviewed systematically the available literature on molecular epidemiology of ASF in Tanzania and its eight neighboring countries in order to establish the transmission dynamics of ASFV between these countries. Data were retrieved from World Animal Health Information System (WAHIS), Google Scholar, PubMed, Scopus, and CrossRef databases, using the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and reviewed to document ASF outbreaks and ASFV genotypes distribution. Using phylogeographic approach applied to ASFV p72 sequence dataset, the evolutionary history and the dispersal pattern of the ASFV strains were assessed. From 2005 to 2019, a total of 1588 ASF outbreaks affecting 341,742 cases that led to 302,739 domestic pig deaths were reported. The case fatality rates (CFR) varied from 15.41% to 98.95% with an overall CFR of 88.58%. Fifteen different p72 ASFV genotypes were reported and the time to the most recent common ancestor (TMRCA) for ASFV strains dated back to 1652.233 (1626.473, 1667.735) with an evolutionary rate of 4.805 × 10−5 (2.5857 × 10−5, 9.7789 × 10−5). Phylogeographic dispersal analysis revealed several transboundary spread events of ASFV strains between these countries. These results suggest persistent circulation of ASFV in these countries and advocate for more research to improve our understanding of the transmission dynamics of the virus and for a regional approach to mitigate the spread of ASFV.
Collapse
Affiliation(s)
- Jean N. Hakizimana
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3019 Morogoro, Tanzania;
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019 Morogoro, Tanzania
- Correspondence: (J.N.H.); (G.M.)
| | - Clara Yona
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3019 Morogoro, Tanzania;
- Department of Biosciences, Solomon Mahlangu College of Science and Education, Sokoine University of Agriculture, P.O. Box 3019 Morogoro, Tanzania
| | - Olivier Kamana
- Department of Applied Research and Development and Foresight Incubation, National Industrial Research and Development Agency, P.O. Box 273 Kigali, Rwanda;
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Gerald Misinzo
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3019 Morogoro, Tanzania;
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019 Morogoro, Tanzania
- Correspondence: (J.N.H.); (G.M.)
| |
Collapse
|
15
|
Bisimwa PN, Ongus JR, Tiambo CK, Machuka EM, Bisimwa EB, Steinaa L, Pelle R. First detection of African swine fever (ASF) virus genotype X and serogroup 7 in symptomatic pigs in the Democratic Republic of Congo. Virol J 2020; 17:135. [PMID: 32883295 PMCID: PMC7468181 DOI: 10.1186/s12985-020-01398-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/14/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND African swine fever (ASF) is a highly contagious and severe hemorrhagic viral disease of domestic pigs. The analysis of variable regions of African swine fever virus (ASFV) genome led to more genotypic and serotypic information about circulating strains. The present study aimed at investigating the genetic diversity of ASFV strains in symptomatic pigs in South Kivu province of the Democratic Republic of Congo (DRC). MATERIALS AND METHODS Blood samples collected from 391 ASF symptomatic domestic pigs in 6 of 8 districts in South Kivu were screened for the presence of ASFV, using a VP73 gene-specific polymerase chain reaction (PCR) with the universal primer set PPA1-PPA2. To genotype the strains, we sequenced and compared the nucleotide sequences of PPA-positive samples at three loci: the C-terminus of B646L gene encoding the p72 protein, the E183L gene encoding the p54 protein, and the central hypervariable region (CVR) of the B602L gene encoding the J9L protein. In addition, to serotype and discriminate between closely related strains, the EP402L (CD2v) gene and the intergenic region between the I73R and I329L genes were analyzed. RESULTS ASFV was confirmed in 26 of 391 pigs tested. However, only 19 and 15 PPA-positive samples, respectively, were successfully sequenced and phylogenetically analyzed for p72 (B646L) and p54 (E183L). All the ASFV studied were of genotype X. The CVR tetrameric repeat clustered the ASFV strains in two subgroups: the Uvira subgroup (10 TRS repeats, AAAABNAABA) and another subgroup from all other strains (8 TRS repeats, AABNAABA). The phylogenetic analysis of the EP402L gene clustered all the strains into CD2v serogroup 7. Analyzing the intergenic region between I73R and I329L genes revealed that the strains were identical but contained a deletion of a 33-nucleotide internal repeat sequence compared to ASFV strain Kenya 1950. CONCLUSION ASFV genotype X and serogroup 7 was identified in the ASF disease outbreaks in South Kivu province of DRC in 2018-2019. This represents the first report of ASFV genotype X in DRC. CVR tetrameric repeat sequences clustered the ASFV strains studied in two subgroups. Our finding emphasizes the need for improved coordination of the control of ASF.
Collapse
Affiliation(s)
- Patrick N. Bisimwa
- Department of Molecular Biology and Biotechnology, Pan African University, Institute of Basic Sciences, Technology and Innovation, Nairobi, Kenya
- Department of Animal Science and Production, Université Evangélique en Afrique, Bukavu, Democratic Republic of the Congo
| | - Juliette R. Ongus
- Department of Molecular Biology and Biotechnology, Pan African University, Institute of Basic Sciences, Technology and Innovation, Nairobi, Kenya
- Department of Medical Laboratory Sciences, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Christian K. Tiambo
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Naivasha Road, P.O. Box 30709, Nairobi, 00100 Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Institute, Nairobi, Kenya
| | - Eunice M. Machuka
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Naivasha Road, P.O. Box 30709, Nairobi, 00100 Kenya
| | - Espoir B. Bisimwa
- Department of Animal Science and Production, Université Evangélique en Afrique, Bukavu, Democratic Republic of the Congo
| | - Lucilla Steinaa
- International Livestock Research Institute, Animal and Human Health, Nairobi, Kenya
| | - Roger Pelle
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Naivasha Road, P.O. Box 30709, Nairobi, 00100 Kenya
| |
Collapse
|
16
|
Investigation into eradication of African swine fever in domestic pigs from a previous outbreak (2016/17) area of South Africa. Res Vet Sci 2020; 133:42-47. [PMID: 32932197 DOI: 10.1016/j.rvsc.2020.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 11/24/2022]
Abstract
A serological survey was conducted to evaluate the eradication of African swine fever (ASF) infection eighteen months after clinical surveillance and selective culling had been completed during domestic cycle outbreaks in parts of South Africa in 2016/17. Three hundred and twenty-two serum samples from 85 pig keepers were collected in the study area and tested for the presence of antibodies against the ASF virus (ASFV). None of the samples contained detectable levels of antibodies against ASFV. These results together with the findings from clinical surveillance following culling activities suggest that the disease had been eradicated from the domestic pig population in this area following the outbreaks. Questionnaire responses from the pig keepers in this area highlighted the need to implement basic biosecurity measures in smallholder pig keepers to prevent outbreaks of ASF in South Africa.
Collapse
|
17
|
Hakizimana JN, Kamwendo G, Chulu JLC, Kamana O, Nauwynck HJ, Misinzo G. Genetic profile of African swine fever virus responsible for the 2019 outbreak in northern Malawi. BMC Vet Res 2020; 16:316. [PMID: 32859205 PMCID: PMC7455991 DOI: 10.1186/s12917-020-02536-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/23/2020] [Indexed: 11/10/2022] Open
Abstract
Background African swine fever (ASF) is an infectious transboundary animal disease which causes high mortality, approaching 100% in domestic pigs and it is currently considered as the most serious constraint to domestic pig industry and food security globally. Despite regular ASF outbreaks within Malawi, few studies have genetically characterized the causative ASF virus (ASFV). This study aimed at genetic characterization of ASFV responsible for the 2019 outbreak in northern Malawi. The disease confirmation was done by polymerase chain reaction (PCR) followed by molecular characterization of the causative ASFV by partial genome sequencing and phylogenetic reconstruction of the B646L (p72) gene, nucleotide alignment of the intergenic region (IGR) between I73R and I329L genes and translation of the central variable region (CVR) coded by B602L gene. Results All thirteen samples collected during this study in Karonga district in September 2019 were ASFV-positive and after partial genome sequencing and phylogenetic reconstruction of the B646L (p72) gene, the viruses clustered into ASFV p72 genotype II. The viruses characterized in this study lacked a GAATATATAG fragment between the I173R and the I329L genes and were classified as IGR I variants. Furthermore, the tetrameric amino acid repeats within the CVR of the B602L gene of the 2019 Malawian ASFV reported in this study had the signature BNDBNDBNAA, 100% similar to ASFV responsible for the 2013 and 2017 ASF outbreaks in Zambia and Tanzania, respectively. Conclusions The results of this study confirm an ASF outbreak in Karonga district in northern Malawi in September 2019. The virus was closely related to other p72 genotype II ASFV that caused outbreaks in neighboring eastern and southern African countries, emphasizing the possible regional transboundary transmission of this ASFV genotype. These findings call for a concerted regional and international effort to control the spread of ASF in order to improve nutritional and food security.
Collapse
Affiliation(s)
- J N Hakizimana
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania.,Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - G Kamwendo
- Department of Animal Health and Livestock Development, Ministry of Agriculture, Irrigation and Water Development, Lilongwe, Malawi
| | - J L C Chulu
- Department of Animal Health and Livestock Development, Ministry of Agriculture, Irrigation and Water Development, Lilongwe, Malawi
| | - O Kamana
- Department of Food Science and Technology, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Busogo, Rwanda.,Department of Applied Research and Development and Foresight Incubation, National Industrial Research and Development Agency, Kigali, Rwanda
| | - H J Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - G Misinzo
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania. .,Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania.
| |
Collapse
|
18
|
Peter E, Machuka E, Githae D, Okoth E, Cleaveland S, Shirima G, Kusiluka L, Pelle R. Detection of African swine fever virus genotype XV in a sylvatic cycle in Saadani National Park, Tanzania. Transbound Emerg Dis 2020; 68:813-823. [PMID: 32696552 PMCID: PMC8246581 DOI: 10.1111/tbed.13747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 11/28/2022]
Abstract
African swine fever (ASF) is a severe haemorrhagic disease of domestic pigs caused by ASF virus (ASFV). ASFV is transmitted by soft ticks (Ornithodoros moubata complex group) and by direct transmission. In Africa, ASF is maintained in transmission cycles of asymptomatic infection involving wild suids, mainly warthogs (Phacochoerus africanus). ASF outbreaks have been reported in many parts of Tanzania; however, active surveillance has been limited to pig farms in a few geographical locations. There is an information gap on whether and where the sylvatic cycle may occur independently of domestic pigs. To explore the existence of a sylvatic cycle in Saadani National Park in Tanzania, blood and serum samples were collected from 19 warthogs selected using convenience sampling along vehicle-accessible transects within the national park. The ticks were sampled from warthog burrows. Blood samples and ticks were subjected to ASFV molecular diagnosis (PCR) and genotyping, and warthog sera were subjected to serological (indirect ELISA) testing for ASFV antibody detection. All warthog blood samples were PCR-negative, but 16/19 (84%) of the warthog sera were seropositive by ELISA confirming exposure of warthogs to ASFV. Of the ticks sampled, 20/111 (18%) were positive for ASFV by conventional PCR. Sequencing of the p72 virus gene fragments showed that ASF viruses detected in ticks belonged to genotype XV. The results confirm the existence of a sylvatic cycle of ASFV in Saadani National Park, Tanzania, that involves ticks and warthogs independent of domestic pigs. Our findings suggest that genotype XV previously reported in 2008 in Tanzania is likely to be widely distributed and involved in both wild and domestic infection cycles. Whole-genome sequencing and analysis of the ASFV genotype XV circulating in Tanzania is recommended to determine the phylogeny of the viruses.
Collapse
Affiliation(s)
- Emma Peter
- Biosciences eastern and central Africa - International Livestock Research Institute Hub, Nairobi, Kenya.,Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania.,Sokoine University of Agriculture, Morogoro, Tanzania
| | - Eunice Machuka
- Biosciences eastern and central Africa - International Livestock Research Institute Hub, Nairobi, Kenya
| | - Dedan Githae
- Biosciences eastern and central Africa - International Livestock Research Institute Hub, Nairobi, Kenya
| | - Edward Okoth
- Biosciences eastern and central Africa - International Livestock Research Institute Hub, Nairobi, Kenya
| | - Sarah Cleaveland
- Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Gabriel Shirima
- Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Lughano Kusiluka
- Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania.,Sokoine University of Agriculture, Morogoro, Tanzania
| | - Roger Pelle
- Biosciences eastern and central Africa - International Livestock Research Institute Hub, Nairobi, Kenya
| |
Collapse
|
19
|
Janse van Rensburg L, Van Heerden J, Penrith ML, Heath LE, Rametse T, Etter EMC. Investigation of African swine fever outbreaks in pigs outside the controlled areas of South Africa, 2012-2017. J S Afr Vet Assoc 2020; 91:e1-e9. [PMID: 32787419 PMCID: PMC7433221 DOI: 10.4102/jsava.v91i0.1997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 11/18/2022] Open
Abstract
South Africa historically experienced sporadic African swine fever (ASF) outbreaks in domestic pigs in the northern parts of the country. This was subsequently indicated to be because of spillover from the sylvatic cycle of ASF between warthog and tampans (soft ticks) in the area. South Africa declared this area an ASF-controlled area in 1935, and the area is still controlled in terms of the Animal Diseases Act, 1984 (Act 35 of 1984). Two main epidemics of ASF in domestic pigs were identified outside of the South African ASF-controlled area. The first occurred in 2012 with outbreaks in Gauteng and Mpumalanga provinces, and the second occurred in 2016-2017 with outbreaks in the North West, Free State and Northern Cape provinces. These were the first ASF epidemics in South Africa associated with transmission of the disease via a domestic cycle. This study found that the spread of ASF in these epidemics was mainly via auctions, swill feeding and scavenging. These three aspects need to be addressed in terms of awareness and education on the disease including implementation of biosecurity measures in order to prevent future ASF outbreaks in South Africa. Specific biosecurity measures should be implemented in the semi-commercial sector to prevent ASF-infected pigs and pig products from being moved to naïve pigs and therefore spreading the disease.
Collapse
Affiliation(s)
- Leana Janse van Rensburg
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa; and Directorate Animal Health, Department of Agriculture, Forestry and Fisheries of the Republic of South Africa, Pretoria.
| | | | | | | | | | | |
Collapse
|
20
|
Janse van Rensburg L, Etter E, Heath L, Penrith ML, van Heerden J. Understanding African swine fever outbreaks in domestic pigs in a sylvatic endemic area: The case of the South African controlled area between 1977-2017. Transbound Emerg Dis 2020; 67:2753-2769. [PMID: 32438525 DOI: 10.1111/tbed.13632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/28/2022]
Abstract
South Africa declared a controlled area for African swine fever (ASF) in 1935, consisting of the northern parts of Limpopo, Mpumalanga, North West and Kwa-Zulu Natal Provinces. The area was delineated based on the endemic presence of the sylvatic cycle of ASF, involving warthogs and argasid ticks. Occasionally, spillover occurs from the sylvatic cycle to domestic pigs, causing ASF outbreaks. In the period 1977 to 2017, 59 outbreaks of ASF were reported in domestic pigs within the ASF controlled area of South Africa. During these outbreaks, at least 4,031 domestic pigs either died or were culled. Season did not affect the number of reported ASF outbreaks, but the number of reported outbreaks in this area per year was thought to be slowly increasing, although not statistically significant. Outbreaks occurred predominantly in Limpopo province (93%) and were mostly due to contact (or suspected contact) with warthog or warthog carcasses. Clustering analysis of outbreaks found that the local municipalities of Ramotshere Moiloa, Lephalale and Thabazimbi had the highest relative risk for outbreaks. In 32 of the 59 outbreaks, the genotype of the ASF virus (ASFV) involved could be determined. Phylogenetic analysis of ASFVs detected in domestic pigs during the study period revealed that p72 genotypes I, III, IV, VII, VIII, XIX, XX, XXI and XXII had been involved in causing outbreaks within the ASF controlled area. No outbreaks were reported in the Kwa-Zulu Natal part of the controlled area during this period. South Africa is unlikely to eradicate all sources of ASFV as spillover from the sylvatic cycle in the controlled area continued to occur, but with the implementation of appropriate biosecurity measures pigs can be successfully farmed despite the presence of ASFV in African wild suids and soft ticks.
Collapse
Affiliation(s)
- Leana Janse van Rensburg
- Department of Production Animal Studies, Faculty of Veterinary Sciences, University of Pretoria, Pretoria, South Africa.,Directorate Animal Health, Department of Agriculture, Forestry and Fisheries of the Republic of South Africa, Pretoria, South Africa
| | - Eric Etter
- Department of Production Animal Studies, Faculty of Veterinary Sciences, University of Pretoria, Pretoria, South Africa.,CIRAD, UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), Montpellier, France.,ASTRE, University of Montpellier, CIRAD, INRA, Montpellier, France
| | - Livio Heath
- Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, South Africa
| | - Mary-Louise Penrith
- TAD Scientific, Pretoria, South Africa.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Sciences, University of Pretoria, Pretoria, South Africa
| | - Juanita van Heerden
- Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, South Africa
| |
Collapse
|
21
|
Schulz K, Staubach C, Blome S. African and classical swine fever: similarities, differences and epidemiological consequences. Vet Res 2017; 48:84. [PMID: 29183365 PMCID: PMC5706370 DOI: 10.1186/s13567-017-0490-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/08/2017] [Indexed: 11/19/2022] Open
Abstract
For the global pig industry, classical (CSF) and African swine fever (ASF) outbreaks are a constantly feared threat. Except for Sardinia, ASF was eradicated in Europe in the late 1990s, which led to a research focus on CSF because this disease continued to be present. However, ASF remerged in eastern Europe in 2007 and the interest in the disease, its control and epidemiology increased tremendously. The similar names and the same susceptible species suggest a similarity of the two viral diseases, a related biological behaviour and, correspondingly, similar epidemiological features. However, there are several essential differences between both diseases, which need to be considered for the design of control or preventive measures. In the present review, we aimed to collate differences and similarities of the two diseases that impact epidemiology and thus the necessary control actions. Our objective was to discuss critically, if and to which extent the current knowledge can be transferred from one disease to the other and where new findings should lead to a critical review of measures relating to the prevention, control and surveillance of ASF and CSF. Another intention was to identify research gaps, which need to be closed to increase the chances of a successful eradication of ASF and therefore for a decrease of the economic threat for pig holdings and the international trade.
Collapse
Affiliation(s)
- Katja Schulz
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald, Insel Riems Germany
| | - Christoph Staubach
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald, Insel Riems Germany
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, 17493 Greifswald, Insel Riems Germany
| |
Collapse
|
22
|
The Epidemiology of African Swine Fever in "Nonendemic" Regions of Zambia (1989-2015): Implications for Disease Prevention and Control. Viruses 2017; 9:v9090236. [PMID: 28832525 PMCID: PMC5618003 DOI: 10.3390/v9090236] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/11/2017] [Accepted: 08/21/2017] [Indexed: 11/29/2022] Open
Abstract
African swine fever (ASF) is a highly contagious and deadly viral hemorrhagic disease of swine. In Zambia, ASF was first reported in 1912 in Eastern Province and is currently believed to be endemic in that province only. Strict quarantine measures implemented at the Luangwa River Bridge, the only surface outlet from Eastern Province, appeared to be successful in restricting the disease. However, in 1989, an outbreak occurred for the first time outside the endemic province. Sporadic outbreaks have since occurred almost throughout the country. These events have brought into acute focus our limited understanding of the epidemiology of ASF in Zambia. Here, we review the epidemiology of the disease in areas considered nonendemic from 1989 to 2015. Comprehensive sequence analysis conducted on genetic data of ASF viruses (ASFVs) detected in domestic pigs revealed that p72 genotypes I, II, VIII and XIV have been involved in causing ASF outbreaks in swine during the study period. With the exception of the 1989 outbreak, we found no concrete evidence of dissemination of ASFVs from Eastern Province to other parts of the country. Our analyses revealed a complex epidemiology of the disease with a possibility of sylvatic cycle involvement. Trade and/or movement of pigs and their products, both within and across international borders, appear to have been the major factor in ASFV dissemination. Since ASFVs with the potential to cause countrywide and possibly regional outbreaks, could emerge from “nonendemic regions”, the current ASF control policy in Zambia requires a dramatic shift to ensure a more sustainable pig industry.
Collapse
|
23
|
Abolnik C. History of Newcastle disease in South Africa. ACTA ACUST UNITED AC 2017; 84:e1-e7. [PMID: 28281777 PMCID: PMC6238702 DOI: 10.4102/ojvr.v84i1.1306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/05/2016] [Indexed: 11/09/2022]
Abstract
Poultry production in South Africa, a so-called developing country, may be seen as a gradient between two extremes with highly integrated commercial enterprises with world-class facilities on one hand and unimproved rural chickens kept by households and subsistence farmers on the other. Although vaccination against Newcastle disease is widely applied to control this devastating infection, epizootics continue to occur. Since the first official diagnosis in 1945, through the sporadic outbreaks of the 1950s and early 1960s, to serious epizootics caused by genotype VIII (late 1960s–2000), genotype VIIb (1993–1999), genotype VIId (2003–2012) and most recently genotype VIIh (2013 to present), South Africa’s encounters with exotic Newcastle disease follow global trends. Importation – probably illegal – of infected poultry, poultry products or exotic birds and illegal swill dumping are likely routes of entry. Once the commercial sector is affected, the disease spreads rapidly within the region via transportation routes. Each outbreak genotype persisted for about a decade and displaced its predecessor.
Collapse
Affiliation(s)
- Celia Abolnik
- Department of Production Animal Studies, University of Pretoria.
| |
Collapse
|
24
|
Bellini S, Rutili D, Guberti V. Preventive measures aimed at minimizing the risk of African swine fever virus spread in pig farming systems. Acta Vet Scand 2016; 58:82. [PMID: 27899125 PMCID: PMC5129245 DOI: 10.1186/s13028-016-0264-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/14/2016] [Indexed: 11/21/2022] Open
Abstract
African swine fever (ASF) is one of the most severe diseases of pigs; it has a drastic impact on the pig industry, causing serious socio-economic consequences to pig farmers and pork producers. In Europe, there are currently two main clusters of infection; one in Sardinia caused by strains of African swine fever virus (ASFV) belonging to genotype I and another in Eastern Europe caused by strains of ASFV belonging to genotype II. The latter is inducing an acute form of ASF and it represents a serious threat to the pig sector. ASF is a disease for which there is no effective vaccine; therefore, prevention has a pivotal role in the control strategy of the disease. This review describes the main preventive measures to adopt to mitigate the risk of ASF spread in pig farming systems.
Collapse
|
25
|
Fasina FO, Mokoele JM, Spencer BT, Van Leengoed LAML, Bevis Y, Booysen I. Spatio-temporal patterns and movement analysis of pigs from smallholder farms and implications for African swine fever spread, Limpopo province, South Africa. Onderstepoort J Vet Res 2015; 82:795. [PMID: 26842362 PMCID: PMC6238709 DOI: 10.4102/ojvr.v82i1.795] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 02/05/2023] Open
Abstract
Infectious and zoonotic disease outbreaks have been linked to increasing volumes of legal and illegal trade. Spatio-temporal and trade network analyses have been used to evaluate the risks associated with these challenges elsewhere, but few details are available for the pig sector in South Africa. Regarding pig diseases, Limpopo province is important as the greater part of the province falls within the African swine fever control area. Emerging small-scale pig farmers in Limpopo perceived pig production as an important means of improving their livelihood and an alternative investment. They engage in trading and marketing their products with a potential risk to animal health, because the preferred markets often facilitate potential longdistance spread and disease dispersal over broad geographic areas. In this study, we explored the interconnectedness of smallholder pig farmers in Limpopo, determined the weaknesses and critical control points, and projected interventions that policy makers can implement to reduce the risks to pig health. The geo-coordinates of surveyed farms were used to draw maps, links and networks. Predictive risks to pigs were determined through the analyses of trade networks, and the relationship to previous outbreaks of African swine fever was postulated. Auction points were identified as high-risk areas for the spread of animal diseases. Veterinary authorities should prioritise focused surveillance and diagnostic efforts in Limpopo. Early disease detection and prompt eradication should be targeted and messages promoting enhanced biosecurity to smallholder farmers are advocated. The system may also benefit from the restructuring of marketing and auction networks. Since geographic factors and networks can rapidly facilitate pig disease dispersal over large areas, a multi-disciplinary approach to understanding the complexities that exist around the animal disease epidemiology becomes mandatory.
Collapse
|