1
|
Chen SC, Xu CT, Chang CF, Chao TY, Lin CC, Fu PW, Yu CH. Optimization of 5'UTR to evade SARS-CoV-2 Nonstructural protein 1-directed inhibition of protein synthesis in cells. Appl Microbiol Biotechnol 2023; 107:2451-2468. [PMID: 36843199 PMCID: PMC9968647 DOI: 10.1007/s00253-023-12442-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/28/2023]
Abstract
Maximizing the expression level of therapeutic proteins in cells is the general goal for DNA/mRNA therapies. It is particularly challenging to achieve efficient protein expression in the cellular contexts with inhibited translation machineries, such as in the presence of cellular Nonstructural protein 1 (Nsp1) of coronaviruses (CoVs) that has been reported to inhibit overall protein synthesis of host genes and exogenously delivered mRNAs/DNAs. In this study, we thoroughly examined the sequence and structure contexts of viral and non-viral 5'UTRs that determine the protein expression levels of exogenously delivered DNAs and mRNAs in cells expressing SARS-CoV-2 Nsp1. It was found that high 5'-proximal A/U content promotes an escape from Nsp1-directed inhibition of protein synthesis and results in selective protein expression. Furthermore, 5'-proximal Cs were found to significantly enhance the protein expression in an Nsp1-dependent manner, while Gs located at a specific window close to the 5'-end counteract such enhancement. The distinct protein expression levels resulted from different 5'UTRs were found correlated to Nsp1-induced mRNA degradations. These findings ultimately enabled rational designs for optimized 5'UTRs that lead to strong expression of exogenous proteins regardless of the translationally repressive Nsp1. On the other hand, we have also identified several 5'-proximal sequences derived from host genes that are capable of mediating the escapes. These results provided novel perspectives to the optimizations of 5'UTRs for DNA/mRNA therapies and/or vaccinations, as well as shedding light on the potential host escapees from Nsp1-directed translational shutoffs. KEY POINTS: • The 5'-proximal SL1 and 5a/b derived from SARS-CoV-2 genomic RNA promote exogenous protein synthesis in cells expressing Nsp1 comparing with non-specific 5'UTRs. • Specific 5'-proximal sequence contexts are the key determinants of the escapes from Nsp1-directed translational repression and thereby enhance protein expressions. • Systematic mutagenesis identified optimized 5'UTRs that strongly enhance protein expression and promote resistance to Nsp1-induced translational repression and RNA degradation.
Collapse
Affiliation(s)
- Shih-Cheng Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, New Taipei, Taiwan
| | - Cui-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chuan-Fu Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Yu Chao
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Chi Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Wen Fu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Hung Yu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Vyas K, Patel MM. Insights on drug and gene delivery systems in liver fibrosis. Asian J Pharm Sci 2023; 18:100779. [PMID: 36845840 PMCID: PMC9950450 DOI: 10.1016/j.ajps.2023.100779] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/30/2023] Open
Abstract
Complications of the liver are amongst the world's worst diseases. Liver fibrosis is the first stage of liver problems, while cirrhosis is the last stage, which can lead to death. The creation of effective anti-fibrotic drug delivery methods appears critical due to the liver's metabolic capacity for drugs and the presence of insurmountable physiological impediments in the way of targeting. Recent breakthroughs in anti-fibrotic agents have substantially assisted in fibrosis; nevertheless, the working mechanism of anti-fibrotic medications is not fully understood, and there is a need to design delivery systems that are well-understood and can aid in cirrhosis. Nanotechnology-based delivery systems are regarded to be effective but they have not been adequately researched for liver delivery. As a result, the capability of nanoparticles in hepatic delivery was explored. Another approach is targeted drug delivery, which can considerably improve efficacy if delivery systems are designed to target hepatic stellate cells (HSCs). We have addressed numerous delivery strategies that target HSCs, which can eventually aid in fibrosis. Recently genetics have proved to be useful, and methods for delivering genetic material to the target place have also been investigated where different techniques are depicted. To summarize, this review paper sheds light on the most recent breakthroughs in drug and gene-based nano and targeted delivery systems that have lately shown useful for the treatment of liver fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Kunj Vyas
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University SG Highway, Gujarat 382481, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University SG Highway, Gujarat 382481, India
| |
Collapse
|
3
|
DNAzymes, Novel Therapeutic Agents in Cancer Therapy: A Review of Concepts to Applications. J Nucleic Acids 2021; 2021:9365081. [PMID: 34760318 PMCID: PMC8575636 DOI: 10.1155/2021/9365081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
The past few decades have witnessed a rapid evolution in cancer drug research which is aimed at developing active biological interventions to regulate cancer-specific molecular targets. Nucleic acid-based therapeutics, including ribozymes, antisense oligonucleotides, small interference RNA (siRNA), aptamer, and DNAzymes, have emerged as promising candidates regulating cancer-specific genes at either the transcriptional or posttranscriptional level. Gene-specific catalytic DNA molecules, or DNAzymes, have shown promise as a therapeutic intervention against cancer in various in vitro and in vivo models, expediting towards clinical applications. DNAzymes are single-stranded catalytic DNA that has not been observed in nature, and they are synthesized through in vitro selection processes from a large pool of random DNA libraries. The intrinsic properties of DNAzymes like small molecular weight, higher stability, excellent programmability, diversity, and low cost have brought them to the forefront of the nucleic acid-based therapeutic arsenal available for cancers. In recent years, considerable efforts have been undertaken to assess a variety of DNAzymes against different cancers. However, their therapeutic application is constrained by the low delivery efficiency, cellular uptake, and target detection within the tumour microenvironment. Thus, there is a pursuit to identify efficient delivery methods in vivo before the full potential of DNAzymes in cancer therapy is realized. In this light, a review of the recent advances in the use of DNAzymes against cancers in preclinical and clinical settings is valuable to understand its potential as effective cancer therapy. We have thus sought to firstly provide a brief overview of construction and recent improvements in the design of DNAzymes. Secondly, this review stipulates the efficacy, safety, and tolerability of DNAzymes developed against major hallmarks of cancers tested in preclinical and clinical settings. Lastly, the recent advances in DNAzyme delivery systems along with the challenges and prospects for the clinical application of DNAzymes as cancer therapy are also discussed.
Collapse
|
4
|
Damase TR, Sukhovershin R, Boada C, Taraballi F, Pettigrew RI, Cooke JP. The Limitless Future of RNA Therapeutics. Front Bioeng Biotechnol 2021; 9:628137. [PMID: 33816449 PMCID: PMC8012680 DOI: 10.3389/fbioe.2021.628137] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Recent advances in the generation, purification and cellular delivery of RNA have enabled development of RNA-based therapeutics for a broad array of applications. RNA therapeutics comprise a rapidly expanding category of drugs that will change the standard of care for many diseases and actualize personalized medicine. These drugs are cost effective, relatively simple to manufacture, and can target previously undruggable pathways. It is a disruptive therapeutic technology, as small biotech startups, as well as academic groups, can rapidly develop new and personalized RNA constructs. In this review we discuss general concepts of different classes of RNA-based therapeutics, including antisense oligonucleotides, aptamers, small interfering RNAs, microRNAs, and messenger RNA. Furthermore, we provide an overview of the RNA-based therapies that are currently being evaluated in clinical trials or have already received regulatory approval. The challenges and advantages associated with use of RNA-based drugs are also discussed along with various approaches for RNA delivery. In addition, we introduce a new concept of hospital-based RNA therapeutics and share our experience with establishing such a platform at Houston Methodist Hospital.
Collapse
Affiliation(s)
- Tulsi Ram Damase
- RNA Therapeutics Program, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Roman Sukhovershin
- RNA Therapeutics Program, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Christian Boada
- Colleges of Medicine, Engineering, Texas A&M University and Houston Methodist Hospital, Houston, TX, United States
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Roderic I. Pettigrew
- Colleges of Medicine, Engineering, Texas A&M University and Houston Methodist Hospital, Houston, TX, United States
| | - John P. Cooke
- RNA Therapeutics Program, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
5
|
Rasolonjatovo B, Illy N, Bennevault V, Mathé J, Midoux P, Le Gall T, Haudebourg T, Montier T, Lehn P, Pitard B, Cheradame H, Huin C, Guégan P. Temperature‐Sensitive Amphiphilic Non‐Ionic Triblock Copolymers for Enhanced In Vivo Skeletal Muscle Transfection. Macromol Biosci 2020; 20:e1900276. [DOI: 10.1002/mabi.201900276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Bazoly Rasolonjatovo
- LAMBE, CNRS, Université Evry, CEAUniversité Paris–Saclay 91025 Evry France
- LAMBE, UCPUniversité Paris–Seine 91025 Evry France
| | - Nicolas Illy
- Equipe Chimie des Polymères, Institut Parisien de Chimie Moléculaire, CNRS, Sorbonne Université 4 Place Jussieu 75005 Paris France
| | - Véronique Bennevault
- Equipe Chimie des Polymères, Institut Parisien de Chimie Moléculaire, CNRS, Sorbonne Université 4 Place Jussieu 75005 Paris France
- Université Evry 91025 Evry France
| | - Jérôme Mathé
- LAMBE, CNRS, Université Evry, CEAUniversité Paris–Saclay 91025 Evry France
- LAMBE, UCPUniversité Paris–Seine 91025 Evry France
| | - Patrick Midoux
- Centre de Biophysique MoléculaireCNRS UPR4301 45071 Orléans Cedex 02 France
| | - Tony Le Gall
- Groupe – Transfert de Gènes et Thérapie Génique, UMR 1078 – Génétique, Génomique Fonctionnelle et BiotechnologiesUniversité de Brest, INSERM, CHU de Brest 22 Avenue Camille Desmoulins 29238 Brest Cedex France
| | - Thomas Haudebourg
- CRCINA, INSERMUniversity of Angers, University of Nantes 49000 and 44000 Nantes France
| | - Tristan Montier
- Groupe – Transfert de Gènes et Thérapie Génique, UMR 1078 – Génétique, Génomique Fonctionnelle et BiotechnologiesUniversité de Brest, INSERM, CHU de Brest 22 Avenue Camille Desmoulins 29238 Brest Cedex France
| | - Pierre Lehn
- Groupe – Transfert de Gènes et Thérapie Génique, UMR 1078 – Génétique, Génomique Fonctionnelle et BiotechnologiesUniversité de Brest, INSERM, CHU de Brest 22 Avenue Camille Desmoulins 29238 Brest Cedex France
| | - Bruno Pitard
- CRCINA, INSERMUniversity of Angers, University of Nantes 49000 and 44000 Nantes France
| | - Herve Cheradame
- LAMBE, CNRS, Université Evry, CEAUniversité Paris–Saclay 91025 Evry France
- LAMBE, UCPUniversité Paris–Seine 91025 Evry France
| | - Cécile Huin
- Equipe Chimie des Polymères, Institut Parisien de Chimie Moléculaire, CNRS, Sorbonne Université 4 Place Jussieu 75005 Paris France
- Université Evry 91025 Evry France
| | - Philippe Guégan
- Equipe Chimie des Polymères, Institut Parisien de Chimie Moléculaire, CNRS, Sorbonne Université 4 Place Jussieu 75005 Paris France
| |
Collapse
|
6
|
Bajan S, Hutvagner G. RNA-Based Therapeutics: From Antisense Oligonucleotides to miRNAs. Cells 2020; 9:E137. [PMID: 31936122 PMCID: PMC7016530 DOI: 10.3390/cells9010137] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
The first therapeutic nucleic acid, a DNA oligonucleotide, was approved for clinical use in 1998. Twenty years later, in 2018, the first therapeutic RNA-based oligonucleotide was United States Food and Drug Administration (FDA) approved. This promises to be a rapidly expanding market, as many emerging biopharmaceutical companies are developing RNA interference (RNAi)-based, and RNA-based antisense oligonucleotide therapies. However, miRNA therapeutics are noticeably absent. miRNAs are regulatory RNAs that regulate gene expression. In disease states, the expression of many miRNAs is measurably altered. The potential of miRNAs as therapies and therapeutic targets has long been discussed and in the context of a wide variety of infections and diseases. Despite the great number of studies identifying miRNAs as potential therapeutic targets, only a handful of miRNA-targeting drugs (mimics or inhibitors) have entered clinical trials. In this review, we will discuss whether the investment in finding potential miRNA therapeutic targets has yielded feasible and practicable results, the benefits and obstacles of miRNAs as therapeutic targets, and the potential future of the field.
Collapse
Affiliation(s)
- Sarah Bajan
- Faculty of Science, University of Technology Sydney, Sydney, NSW 2000, Australia
- Health and Sport Science, University of Sunshine Coast, Sunshine Coast, QLD 4556, Australia
| | - Gyorgy Hutvagner
- School of Biomedical Engineering Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2000, Australia
| |
Collapse
|
7
|
Arabipour I, Amani J, Mirhosseini SA, Salimian J. The study of genes and signal transduction pathways involved in mustard lung injury: A gene therapy approach. Gene 2019; 714:143968. [PMID: 31323308 DOI: 10.1016/j.gene.2019.143968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Sulfur mustard (SM) is a destructive and harmful chemical agent for the eyes, skin and lungs that causes short-term and long-term lesions and was widely used in Iraq war against Iran (1980-1988). SM causes DNA damages, oxidative stress, and Inflammation. Considering the similarities between SM and COPD (Chronic Obstructive Pulmonary Disease) pathogens and limited available treatments, a novel therapeutic approach is not developed. Gene therapy is a novel therapeutic approach that uses genetic engineering science in treatment of most diseases including chronic obstructive pulmonary disease. In this review, attempts to presenting a comprehensive study of mustard lung and introducing the genes therapy involved in chronic obstructive pulmonary disease and emphasizing the pathways and genes involved in the pathology and pathogenesis of sulfur Mustard. It seems that, given the high potential of gene therapy and the fact that this experimental technique is a candidate for the treatment of pulmonary diseases, further study of genes, vectors and gene transfer systems can draw a very positive perspective of gene therapy in near future.
Collapse
Affiliation(s)
- Iman Arabipour
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Flamme M, Clarke E, Gasser G, Hollenstein M. Applications of Ruthenium Complexes Covalently Linked to Nucleic Acid Derivatives. Molecules 2018; 23:E1515. [PMID: 29932443 PMCID: PMC6099586 DOI: 10.3390/molecules23071515] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022] Open
Abstract
Oligonucleotides are biopolymers that can be easily modified at various locations. Thereby, the attachment of metal complexes to nucleic acid derivatives has emerged as a common pathway to improve the understanding of biological processes or to steer oligonucleotides towards novel applications such as electron transfer or the construction of nanomaterials. Among the different metal complexes coupled to oligonucleotides, ruthenium complexes, have been extensively studied due to their remarkable properties. The resulting DNA-ruthenium bioconjugates have already demonstrated their potency in numerous applications. Consequently, this review focuses on the recent synthetic methods developed for the preparation of ruthenium complexes covalently linked to oligonucleotides. In addition, the usefulness of such conjugates will be highlighted and their applications from nanotechnologies to therapeutic purposes will be discussed.
Collapse
Affiliation(s)
- Marie Flamme
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, F-75005 Paris, France.
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institute Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | - Emma Clarke
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, F-75005 Paris, France.
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institute Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | - Gilles Gasser
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, F-75005 Paris, France.
| | - Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institute Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
9
|
Arginine homopeptides for plasmid DNA purification using monolithic supports. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1087-1088:149-157. [DOI: 10.1016/j.jchromb.2018.04.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/11/2018] [Accepted: 04/15/2018] [Indexed: 12/15/2022]
|
10
|
Rasolonjatovo B, Pitard B, Haudebourg T, Bennevault V, Guégan P. Synthesis of tetraarm star block copolymer based on polytetrahydrofuran and poly(2-methyl-2-oxazoline) for gene delivery applications. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.09.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Gheita TA, Gheita HA, Kenawy SA. The potential of genetically guided treatment in Behçet's disease. Pharmacogenomics 2016; 17:1165-1174. [DOI: 10.2217/pgs-2015-0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Continuous identification of specific targets and candidate genes together with novel approaches offers new promises for the future of gene therapy design in Behçet's disease (BD). Personalized medicine based on pharmacogenomics is being developed at the clinical stage to improve treatment response. Screening the whole gene and regulatory regions is important when searching for novel variants associated with such complex diseases. Different host genetic factors play significant roles in susceptibility to BD. Thus, identifying these genes responsible for susceptibility and resistance to BD may offer a notable contribution toward understanding its pathogenesis, and may lead to the development of novel prophylactic and treatment strategies. Evidenced-based treatment strategy is recommended for the management in BD patients. This review sheds light on the immunopathogenesis and pharmacogenetics of BD with special attention to the treatment targeting gene polymorphisms. In conclusion, the potential of genetically guided treatment in BD takes us back to the future for an accurate management strategy of this serious rheumatic disease. The ongoing discovery of pivotal genes related to the susceptibility, manifestations, disease activity and treatment options provide substantial hope to the reduced frequency of BD, effective control and improvement in the prognosis. Targeted gene therapy could be a leading option in the treatment armamentarium of BD.
Collapse
Affiliation(s)
- Tamer A Gheita
- Rheumatology & Clinical Immunology, Faculty of Medicine, Cairo University, Egypt
| | - Heba A Gheita
- Pharmacology Department, Atomic Energy Authorization, Cairo, Egypt
| | - Sanaa A Kenawy
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University
- Pharmacology, Royal College of Surgeons, London University, London, UK
| |
Collapse
|
12
|
Carrette LLG, Gyssels E, De Laet N, Madder A. Furan oxidation based cross-linking: a new approach for the study and targeting of nucleic acid and protein interactions. Chem Commun (Camb) 2016; 52:1539-54. [PMID: 26679922 DOI: 10.1039/c5cc08766j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The coming of age story of furan oxidation cross-linking.
Collapse
Affiliation(s)
- L. L. G. Carrette
- Organic and Biomimetic Chemistry Research Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Gent
- Belgium
| | - E. Gyssels
- Organic and Biomimetic Chemistry Research Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Gent
- Belgium
| | - N. De Laet
- Organic and Biomimetic Chemistry Research Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Gent
- Belgium
| | - A. Madder
- Organic and Biomimetic Chemistry Research Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Gent
- Belgium
| |
Collapse
|
13
|
Markedly lowering the viscosity of aqueous solutions of DNA by additives. Int J Pharm 2015; 494:66-72. [PMID: 26260229 DOI: 10.1016/j.ijpharm.2015.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/22/2015] [Accepted: 08/05/2015] [Indexed: 01/15/2023]
Abstract
Aqueous solutions of DNAs, while relevant in drug delivery and as a target of therapies, are often very viscous making them difficult to use. Since less viscous solutions could enable targeted drug delivery and/or therapies, the purpose of the present work was to explore compounds capable of "thinning" such DNA solutions under pharmaceutically relevant conditions. To this end, viscosities of aqueous solutions of DNAs and model polyanions were examined at 25 °C in the absence and presence of a number of bulky organic salts (and related compounds) previously found to substantially lower the viscosities of concentrated protein solutions. Out of two dozen compounds tested, only three were found to be effective; the FDA-approved local anesthetics lidocaine, mepivacaine, and prilocaine at near-isotonic concentrations and pH 6.4 lowered solution viscosity of three different DNAs up to about 20 fold. The observed multi-fold viscosity reductions appear to be due to these bulky organic salts' structure-specific non-covalent binding to nucleotide bases resulting in denaturation (unwinding) to, and stabilization of, single-stranded DNA.
Collapse
|
14
|
Paiva D, Markowski T, Dobner B, Brezesinski G, Möhwald H, do Carmo Pereira M, Rocha S. Synthesis and study of the complex formation of a cationic alkyl-chain bola amino alcohol with DNA: in vitro transfection efficiency. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3710-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Gyssels E, Carrette LLG, Vercruysse E, Stevens K, Madder A. Triplex crosslinking through furan oxidation requires perturbation of the structured triple-helix. Chembiochem 2015; 16:651-8. [PMID: 25630588 DOI: 10.1002/cbic.201402602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Indexed: 01/08/2023]
Abstract
Short oligonucleotides can selectively recognize duplexes by binding in the major groove thereby forming triplexes. Based on the success of our recently developed strategy for furan-based crosslinking in DNA duplexes, we here investigated for the first time the use of the furan-oxidation crosslink methodology for the covalent locking of triplex structures by an interstrand crosslink. It was shown that in a triplex context, although crosslinking yields are surprisingly low (to nonexistent) when targeting fully complementary duplexes, selective crosslinking can be achieved towards mismatched duplex sites at the interface of triplex to duplex structures. We show the promising potential of furan-containing probes for the selective detection of single-stranded regions within nucleic acids containing a variety of structural motifs.
Collapse
Affiliation(s)
- Ellen Gyssels
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Gent (Belgium)
| | | | | | | | | |
Collapse
|
16
|
Shi M, Liu Y, Xu M, Yang H, Wu C, Miyoshi H. Core/Shell Fe3O4@SiO2 Nanoparticles Modified with PAH as a Vector for EGFP Plasmid DNA Delivery into HeLa Cells. Macromol Biosci 2011; 11:1563-9. [DOI: 10.1002/mabi.201100150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 06/24/2011] [Indexed: 12/20/2022]
|
17
|
|