1
|
Khwaza V, Aderibigbe BA. Potential Pharmacological Properties of Triterpene Derivatives of Ursolic Acid. Molecules 2024; 29:3884. [PMID: 39202963 PMCID: PMC11356970 DOI: 10.3390/molecules29163884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Ursolic acid (UA) and its derivatives have garnered significant attention due to their extensive pharmacological activity. UA is a pentacyclic triterpenoid found in a variety of plants, such as apples, rosemary, thyme, etc., and it possesses a range of pharmacological properties. Researchers have synthesized various derivatives of UA through structural modifications to enhance its potential pharmacological properties. Various in vitro and in vivo studies have indicated that UA and its derivatives possess diverse biological activities, such as anticancer, antifungal, antidiabetic, antioxidant, antibacterial, anti-inflammatory and antiviral properties. This review article provides a review of the biological activities of UA and its derivatives to show their valuable therapeutic properties useful in the treatment of different diseases, mainly focusing on the relevant structure-activity relationships (SARs), the underlying molecular targets/pathways, and modes of action.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa
| | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa
| |
Collapse
|
2
|
Silva E, Teixeira JA, Pereira MO, Rocha CMR, Sousa AM. Evolving biofilm inhibition and eradication in clinical settings through plant-based antibiofilm agents. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154973. [PMID: 37499434 DOI: 10.1016/j.phymed.2023.154973] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND After almost 100 years since evidence of biofilm mode of growth and decades of intensive investigation about their formation, regulatory pathways and mechanisms of antimicrobial tolerance, nowadays there are still no therapeutic solutions to eradicate bacterial biofilms and their biomedical related issues. PURPOSE This review intends to provide a comprehensive summary of the recent and most relevant published studies on plant-based products, or their isolated compounds with antibiofilm activity mechanisms of action or identified molecular targets against bacterial biofilms. The objective is to offer a new perspective of most recent data for clinical researchers aiming to prevent or eliminate biofilm-associated infections caused by bacterial pathogens. METHODS The search was performed considering original research articles published on PubMed, Web of Science and Scopus from 2015 to April 2023, using keywords such as "antibiofilm", "antivirulence", "phytochemicals" and "plant extracts". RESULTS Over 180 articles were considered for this review with a focus on the priority human pathogens listed by World Health Organization, including Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Inhibition and detachment or dismantling of biofilms formed by these pathogens were found using plant-based extract/products or derivative compounds. Although combination of plant-based products and antibiotics were recorded and discussed, this topic is currently poorly explored and only for a reduced number of bacterial species. CONCLUSIONS This review clearly demonstrates that plant-based products or derivative compounds may be a promising therapeutic strategy to eliminate bacterial biofilms and their associated infections. After thoroughly reviewing the vast amount of research carried out over years, it was concluded that plant-based products are mostly able to prevent biofilm formation through inhibition of quorum sensing signals, but also to disrupt mature biofilms developed by multidrug resistant bacteria targeting the biofilm extracellular polymeric substance. Flavonoids and phenolic compounds seemed the most effective against bacterial biofilms.
Collapse
Affiliation(s)
- Eduarda Silva
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - José A Teixeira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Maria Olivia Pereira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Cristina M R Rocha
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Ana Margarida Sousa
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal.
| |
Collapse
|
3
|
Wei C, Cui P, Liu X. Antibacterial Activity and Mechanism of Madecassic Acid against Staphylococcus aureus. Molecules 2023; 28:1895. [PMID: 36838882 PMCID: PMC9967526 DOI: 10.3390/molecules28041895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Antibacterial resistance has become one of the most serious problems threating global health. To overcome this urgent problem, many scientists have paid great attention to developing new antibacterial drugs from natural products. Hence, for exploring new antibacterial drugs from Chinese medicine, a series of experiments were carried out for verifying and elucidating the antibacterial activity and mechanisms of madecassic acid (MA), which is an active triterpenoid compound isolated from the traditional Chinese medicine, Centella asiatica. The antibacterial activity was investigated through measuring the diameter of the inhibition zone, the minimum inhibitory concentration (MIC), the growth curve, and the effect on the bacterial biofilm, respectively. Meanwhile, the antibacterial mechanism was also discussed from the aspects of cell wall integrity variation, cell membrane permeability, and the activities of related enzymes in the respiratory metabolic pathway before and after the intervention by MA. The results showed that MA had an inhibitory effect on eight kinds of pathogenic bacteria, and the MIC values for Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Bacillus megaterium were 31.25, 62.5, 250, 125, 62.5, and 62.5 µg/mL, respectively. For instance, 31.25 µg/mL MA could inhibit the growth of Staphylococcus aureus within 28 h. The antibacterial mechanism experiments confirmed that MA could destroy the integrity of the cell membrane and cell wall of Staphylococcus aureus, causing the leakage of macromolecular substances, inhibiting the synthesis of soluble proteins, reducing the activities of succinate dehydrogenase and malate dehydrogenase, and interacting with DNA, leading to the relaxation and ring opening of supercoiled DNA. Besides, the activities of DNA topoisomerase I and II were both inhibited by MA, which led to the cell growth of Staphylococcus aureus being repressed. This study provides a theoretical basis and reference for the application of MA in the control and inhibition of food-borne Staphylococcus aureus.
Collapse
Affiliation(s)
- Chunling Wei
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Research Lab of TCM Property & Efficacy, Level 3, National Administration of TCM, Changsha 410208, China
- Mycomedicine Research Lab, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Peiwu Cui
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Research Lab of TCM Property & Efficacy, Level 3, National Administration of TCM, Changsha 410208, China
- Mycomedicine Research Lab, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiangqian Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
4
|
Centella asiatica and Its Metabolite Asiatic Acid: Wound Healing Effects and Therapeutic Potential. Metabolites 2023; 13:metabo13020276. [PMID: 36837896 PMCID: PMC9966672 DOI: 10.3390/metabo13020276] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
An intense effort has been focused on new therapeutic approaches and the development of technologies for more efficient and rapid wound healing. The research for plants used for long time in traditional medicine in the treatment of wound has become a promising strategy to obtain drugs therapeutically useful in the acute and chronic wound management. In this context, Centella asiatica (Apiaceae) has been used to treat a variety of skin diseases, such as leprosy, lupus, varicose ulcers, eczema and psoriasis, in Asiatic traditional medicine for thousands of years. Studies have shown that Centella asiatica extracts (CAE) display activity in tissue regeneration, cell migration and wound repair process by promoting fibroblast proliferation and collagen synthesis. Preliminary findings have shown that the asiatic acid is one of the main active constituents of C. asiatica, directly associated with its healing activity. Thus, this study discusses aspects of the effects of Centella asiatica and its active component, asiatic acid, in different stages of the healing process of cutaneous wounds, including phytochemical and antimicrobial aspects that contribute to its therapeutic potential.
Collapse
|
5
|
Wang Y, Xu Y, Liu Z. A review of plant antipathogenic constituents: Source, activity and mechanism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105225. [PMID: 36464345 DOI: 10.1016/j.pestbp.2022.105225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/25/2022] [Accepted: 09/05/2022] [Indexed: 06/17/2023]
Abstract
Green prevention and control of plant pathogens is a development direction of sustainable and low-carbon agriculture given the limitation of traditional chemicals. Plant-derived antipathogenic constituents (PAPCs) exhibit the advantages of being environmental benign and a broad spectrum of target pathogens over traditional chemicals. Here, we review the research advances on plant sources, chemical compositions, activities of antipathogenic constituents in the past 20 years. Reported PAPCs are classified into categories of phenols, flavonoids, terpenoids, alkaloids and antimicrobial peptides. Angiosperms, gymnosperms and some lower plants are the main plant source of detected PAPCs. The PAPCs act on pathogens through multiple pathways including destroying cell structures, blocking key composition synthesis and inhibiting cell metabolism. The development trends of PAPCs are finally prospected. This review serves as a comprehensive review on the study of plant antipathogenic constituents and a key reference for forecasting the source, characteristic and activity of PAPC.
Collapse
Affiliation(s)
- Yueyao Wang
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yongdong Xu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Sycz Z, Wojnicz D, Tichaczek-Goska D. Does Secondary Plant Metabolite Ursolic Acid Exhibit Antibacterial Activity against Uropathogenic Escherichia coli Living in Single- and Multispecies Biofilms? Pharmaceutics 2022; 14:pharmaceutics14081691. [PMID: 36015317 PMCID: PMC9415239 DOI: 10.3390/pharmaceutics14081691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/18/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Multispecies bacterial biofilms are the often cause of chronic recurrent urinary tract infections within the human population. Eradicating such a complex bacterial consortium with standard pharmacotherapy is often unsuccessful. Therefore, plant-derived compounds are currently being researched as an alternative strategy to antibiotic therapy for preventing bacterial biofilm formation and facilitating its eradication. Therefore, our research aimed to determine the effect of secondary plant metabolite ursolic acid (UA) on the growth and survival, the quantity of exopolysaccharides formed, metabolic activity, and morphology of uropathogenic Gram-negative rods living in single- and mixed-species biofilms at various stages of their development. Spectrophotometric methods were used for biofilm mass formation and metabolic activity determination. The survival of bacteria was established using the serial dilution assay. The decrease in survival and inhibition of biofilm creation, both single- and multispecies, as well as changes in the morphology of bacterial cells were noticed. As UA exhibited better activity against young biofilms, the use of UA-containing formulations, especially during the initial steps of urinary tract infection, seems to be reasonable. However, the future direction should be a thorough understanding of the mechanisms of UA activity as a bioactive substance.
Collapse
|
7
|
Tamfu AN, Ceylan O, Cârâc G, Talla E, Dinica RM. Antibiofilm and Anti-Quorum Sensing Potential of Cycloartane-Type Triterpene Acids from Cameroonian Grassland Propolis: Phenolic Profile and Antioxidant Activity of Crude Extract. Molecules 2022; 27:4872. [PMID: 35956824 PMCID: PMC9369644 DOI: 10.3390/molecules27154872] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 01/21/2023] Open
Abstract
Propolis is very popular for its beneficial health properties, such as antimicrobial activity and antioxidant effects. It is one of the most long-serving traditional medicines to mankind due to its interesting chemical diversity and therapeutic properties. The detailed chemical information of propolis samples is very necessary to guarantee its safety and for it to be accepted into health care systems. The phenolic profile of the hydroethanolic extract was determined using HPLC-DAD, and the antioxidant was evaluated using five complementary methods. Triterpenoids were isolated using column chromatography and characterized using 1H NMR and 13C NMR. The effects of the extract and the isolated compounds on quorum sensing mediated processes and biofilm formation in bacteria were evaluated. Protocatechic acid (40.76 ± 0.82 µg/g), 4-hydroxybenzoic acid (24.04 ± 0.21 µg/g), vanillic acid (29.90 ± 1.05 µg/g), quercetin (43.53 ± 1.10 µg/g), and luteolin (4.44 ± 0.48 µg/g) were identified and quantified. The extract showed good antioxidant activity in the DPPH•, ABTS•+, CUPRAC, and metal chelating assays, and this antioxidant effect was confirmed by cyclic voltammetry. 27-Hydroxymangiferonic acid (1), Ambolic acid (2), and Mangiferonic acid (3) were isolated from anti-quorum sensing activity at MIC, and it was indicated that the most active sample was the extract with inhibition diameter zone of 18.0 ± 1.0 mm, while compounds 1, 2, and 3 had inhibition zones of 12.0 ± 0.5 mm, 9.0 ± 1.0 mm, and 12.3 ± 1.0 mm, respectively. The samples inhibited the P. aeruginosa PA01 swarming motility at the three tested concentrations (50, 75, and 100 μg/mL) in a dose-dependent manner. The propolis extract was able to inhibit biofilm formation by S. aureus, E. coli, P. aeruginosa, C. albicans, and C. tropicalis at MIC concentration. Compound 1 proved biofilm inhibition on S. aureus, L. monocytogenes, E. faecalis, E. coli, and C. tropicalis at MIC and MIC/2; compound 2 inhibited the formation of biofilm at MIC on S. aureus, E. faecalis, E. coli, S. typhi, C. albicans, and C. tropicalis; and compound 3 inhibited biofilm formation on E. faecalis, E. coli, C. albicans, and C. tropicalis and further biofilm inhibition on E. coli at MIC/4 and MIC/8. The studied propolis sample showed important amounts of cycloartane-type triterpene acids, and this indicates that there can be significant intra-regional variation probably due to specific flora within the vicinity. The results indicate that propolis and its compounds can reduce virulence factors of pathogenic bacteria.
Collapse
Affiliation(s)
- Alfred Ngenge Tamfu
- School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere 454, Cameroon;
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla 48147, Turkey;
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla 48147, Turkey;
| | - Geta Cârâc
- Department of Chemistry, Faculty of Sciences and Environment, Physics and Environment, Dunarea de Jos University, Galati, 47 Domneasca Str., 800008 Galati, Romania;
| | - Emmanuel Talla
- School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere 454, Cameroon;
| | - Rodica Mihaela Dinica
- Department of Chemistry, Faculty of Sciences and Environment, Physics and Environment, Dunarea de Jos University, Galati, 47 Domneasca Str., 800008 Galati, Romania;
| |
Collapse
|
8
|
Widjaya AS, Liu Y, Yang Y, Yin W, Liang J, Jiang Y. Tumor-permeable smart liposomes by modulating the tumor microenvironment to improve the chemotherapy. J Control Release 2022; 344:62-79. [PMID: 35182612 DOI: 10.1016/j.jconrel.2022.02.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022]
Abstract
Low levels of accumulation and permeability in tumors are two primary reasons for the limited efficacy of conventional antineoplastic nanodrugs. In the present study, based on an original corosolic acid liposome (CALP) carrier with the functions of cell penetration, tumor permeability and anti-inflammation developed by our previous work, a versatile PTX/CALP was achieved by CALP loading paclitaxel (PTX). Compared to conventional PTX liposomes (PTX/LP) prepared by cholesterol and phospholipid, PTX/CALP exhibited extremely increasing cellular uptake and cytotoxicity in vitro, and in vivo enhancing the accumulation and permeability of tumor, thus significantly improving the antitumor efficacy. Further evidence indicated that PTX/CALP conspicuously promoted the recruitment of CD8+ T cells as well as reduced the infiltration of regulatory T cells and M2 macrophages into tumor by inducing enhanced immunogenic cell death (ICD) and down-regulating the inflammation level. Therefore, the improvement of efficacy was also attributed to the superiorities of PTX/CALP in modulating the inflammatory and immunosuppressive tumor microenvironment. Overall, the smart PTX liposomes based on the multi-functional CALP carrier without any modification could overcome the harsh tumor biological barriers, enhance the induction of ICD and then achieve satisfactory efficacy, suggesting its promising potentials in industrial transfer and clinical application.
Collapse
Affiliation(s)
- Andy Samuel Widjaya
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yunhu Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yueying Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Weiwei Yin
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianying Liang
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yanyan Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
9
|
Sycz Z, Tichaczek-Goska D, Wojnicz D. Anti-Planktonic and Anti-Biofilm Properties of Pentacyclic Triterpenes-Asiatic Acid and Ursolic Acid as Promising Antibacterial Future Pharmaceuticals. Biomolecules 2022; 12:98. [PMID: 35053246 PMCID: PMC8774094 DOI: 10.3390/biom12010098] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 01/27/2023] Open
Abstract
Due to the ever-increasing number of multidrug-resistant bacteria, research concerning plant-derived compounds with antimicrobial mechanisms of action has been conducted. Pentacyclic triterpenes, which have a broad spectrum of medicinal properties, are one of such groups. Asiatic acid (AA) and ursolic acid (UA), which belong to this group, exhibit diverse biological activities that include antioxidant, anti-inflammatory, diuretic, and immunostimulatory. Some of these articles usually contain only a short section describing the antibacterial effects of AA or UA. Therefore, our review article aims to provide the reader with a broader understanding of the activity of these acids against pathogenic bacteria. The bacteria in the human body can live in the planktonic form and create a biofilm structure. Therefore, we found it valuable to present the action of AA and UA on both planktonic and biofilm cultures. The article also presents mechanisms of the biological activity of these substances against microorganisms.
Collapse
Affiliation(s)
| | - Dorota Tichaczek-Goska
- Department of Biology and Medical Parasitology, Wroclaw Medical University, 50-345 Wroclaw, Poland; (Z.S.); (D.W.)
| | | |
Collapse
|
10
|
Are Uropathogenic Bacteria Living in Multispecies Biofilm Susceptible to Active Plant Ingredient-Asiatic Acid? Biomolecules 2021; 11:biom11121754. [PMID: 34944398 PMCID: PMC8698853 DOI: 10.3390/biom11121754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Urinary tract infections (UTIs) are a serious health problem in the human population due to their chronic and recurrent nature. Bacteria causing UTIs form multispecies biofilms being resistant to the activity of the conventionally used antibiotics. Therefore, compounds of plant origin are currently being searched for, which could constitute an alternative strategy to antibiotic therapy. Our study aimed to determine the activity of asiatic acid (AA) against biofilms formed by uropathogenic Escherichia coli, Enterobacter cloacae, and Pseudomonas aeruginosa. The influence of AA on the survival, biofilm mass formation by bacteria living in mono-, dual-, and triple-species consortia as well as the metabolic activity and bacterial cell morphology were determined. The spectrophotometric methods were used for biofilm mass synthesis and metabolic activity determination. The survival of bacteria was established using the serial dilution assay. The decrease in survival and a weakening of the ability to create biofilms, both single and multi-species, as well as changes in the morphology of bacterial cells were noticed. As AA works best against young biofilms, the use of AA-containing formulations, especially during the initial stages of infection, seems to be reasonable. However, there is a need for further research concerning AA especially regarding its antibacterial mechanisms of action.
Collapse
|
11
|
Chung PY. Novel targets of pentacyclic triterpenoids in Staphylococcus aureus: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 73:152933. [PMID: 31103429 DOI: 10.1016/j.phymed.2019.152933] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Staphylococcus aureus is an important pathogen both in community-acquired and healthcare-associated infections, and has successfully evolved numerous strategies for resisting the action to practically all antibiotics. Resistance to methicillin is now widely described in the community setting (CMRSA), thus the development of new drugs or alternative therapies is urgently necessary. Plants and their secondary metabolites have been a major alternative source in providing structurally diverse bioactive compounds as potential therapeutic agents for the treatment of bacterial infections. One of the classes of natural secondary metabolites from plants with the most bioactive compounds are the triterpenoids, which comprises structurally diverse organic compounds. In nature, triterpenoids are often found as tetra- or penta-cyclic structures. AIM This review highlights the anti-staphylococcal activities of pentacyclic triterpenoids, particularly α-amyrin (AM), betulinic acid (BA) and betulinaldehyde (BE). These compounds are based on a 30-carbon skeleton comprising five six-membered rings (ursanes and lanostanes) or four six-membered rings and one five-membered ring (lupanes and hopanes). METHODS Electronic databases such as ScienceDirect, PubMed and Scopus were used to search scientific contributions until March 2018, using relevant keywords. Literature focusing on the antimicrobial and antibiofilms of effects of pentacyclic triterpenoids on S. aureus were identified and summarized. RESULTS Pentacyclic triterpenoids can be divided into three representative classes, namely ursane, lupane and oleananes. This class of compounds have been shown to exhibit analgesic, immunomodulatory, anti-inflammatory, anticancer, antioxidant, antifungal and antibacterial activities. In studies of the antimicrobial activities and targets of AM, BA and BE in sensitive and multidrug-resistant S. aureus, these compounds acted synergistically and have different targets from the conventional antibiotics. CONCLUSION The inhibitory mechanisms of S. aureus in novel targets and pathways should stimulate further researches to develop AM, BA and BE as therapeutic agents for infections caused by S. aureus. Continued efforts to identify and exploit synergistic combinations by the three compounds and peptidoglycan inhibitors, are also necessary as alternative treatment options for S. aureus infections.
Collapse
Affiliation(s)
- Pooi Yin Chung
- Department of Pathology, School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
12
|
Differing antibacterial and antibiofilm properties of Polypodium vulgare L. Rhizome aqueous extract and one of its purified active ingredients–osladin. J Herb Med 2019. [DOI: 10.1016/j.hermed.2019.100261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Silva GNSD, Primon-Barros M, Macedo AJ, Gnoatto SCB. Triterpene Derivatives as Relevant Scaffold for New Antibiofilm Drugs. Biomolecules 2019; 9:E58. [PMID: 30754716 PMCID: PMC6406419 DOI: 10.3390/biom9020058] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 01/31/2023] Open
Abstract
New medicines for the treatment of bacterial biofilm formation are required. For thisreason, this study shows the in vitro activity of betulinic acid (BA), ursolic acid (UA) and their twentyderivatives against planktonic and biofilm cells (gram-positive bacterial pathogens: Enterococcusfaecalis, Staphylococcus aureus and Staphylococcus epidermidis). We evaluated the antibiofilm activity(through the crystal violet method), as well as the antibacterial activity via absorbance (OD600) atconcentrations of 5, 25 and 100 μM. Likewise, the cytotoxicity of all compounds was evaluated on akidney African green monkey (VERO) cell line at the same concentration, by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) methodology. We verified for the first timewhether different groups at carbon 3 (C-3) of triterpenes may interfere in the antibiofilm activity withminimal or no antibacterial effect. After the screening of 22 compounds at three distinctconcentrations, we found antibiofilm activity for eight distinct derivatives without antibiotic effect.In particular, the derivative 2f, with an isopentanoyl ester at position C-3, was an antibiofilm activityagainst S. aureus without any effect upon mammalian cells.
Collapse
Affiliation(s)
- Gloria Narjara Santos da Silva
- Laboratório de Fitoquímica e Síntese Orgânica, Faculdade de Farmácia, Universidade Federaldo Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90610-000, Brasil.
| | - Muriel Primon-Barros
- Laboratório de Biofilmes e Diversidade, Faculdade de Farmácia and Centro de Biotecnologia, UniversidadeFederal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 91501-970, Brasil.
| | - Alexandre José Macedo
- Laboratório de Biofilmes e Diversidade, Faculdade de Farmácia and Centro de Biotecnologia, UniversidadeFederal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 91501-970, Brasil.
| | - Simone Cristina Baggio Gnoatto
- Laboratório de Fitoquímica e Síntese Orgânica, Faculdade de Farmácia, Universidade Federaldo Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90610-000, Brasil.
| |
Collapse
|
14
|
Nagoor Meeran MF, Goyal SN, Suchal K, Sharma C, Patil CR, Ojha SK. Pharmacological Properties, Molecular Mechanisms, and Pharmaceutical Development of Asiatic Acid: A Pentacyclic Triterpenoid of Therapeutic Promise. Front Pharmacol 2018; 9:892. [PMID: 30233358 PMCID: PMC6131672 DOI: 10.3389/fphar.2018.00892] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022] Open
Abstract
Asiatic acid (AA) is a naturally occurring aglycone of ursane type pentacyclic triterpenoids. It is abundantly present in many edible and medicinal plants including Centella asiatica that is a reputed herb in many traditional medicine formulations for wound healing and neuropsychiatric diseases. AA possesses numerous pharmacological activities such as antioxidant and anti-inflammatory and regulates apoptosis that attributes its therapeutic effects in numerous diseases. AA showed potent antihypertensive, nootropic, neuroprotective, cardioprotective, antimicrobial, and antitumor activities in preclinical studies. In various in vitro and in vivo studies, AA found to affect many enzymes, receptors, growth factors, transcription factors, apoptotic proteins, and cell signaling cascades. This review aims to represent the available reports on therapeutic potential and the underlying pharmacological and molecular mechanisms of AA. The review also also discusses the challenges and prospects on the pharmaceutical development of AA such as pharmacokinetics, physicochemical properties, analysis and structural modifications, and drug delivery. AA showed favorable pharmacokinetics and found bioavailable following oral or interaperitoneal administration. The studies demonstrate the polypharmacological properties, therapeutic potential and molecular mechanisms of AA in numerous diseases. Taken together the evidences from available studies, AA appears one of the important multitargeted polypharmacological agents of natural origin for further pharmaceutical development and clinical application. Provided the favorable pharmacokinetics, safety, and efficacy, AA can be a promising agent or adjuvant along with currently used modern medicines with a pharmacological basis of its use in therapeutics.
Collapse
Affiliation(s)
- Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Kapil Suchal
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Charu Sharma
- Department of Internal Meicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Chandragouda R. Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
15
|
Zacchino SA, Butassi E, Cordisco E, Svetaz LA. Hybrid combinations containing natural products and antimicrobial drugs that interfere with bacterial and fungal biofilms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 37:14-26. [PMID: 29174600 DOI: 10.1016/j.phymed.2017.10.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Biofilms contribute to the pathogenesis of many chronic and difficult-to eradicate infections whose treatment is complicated due to the intrinsic resistance to conventional antibiotics. As a consequence, there is an urgent need for strategies that can be used for the prevention and treatment of biofilm-associated infections. The combination therapy comprising an antimicrobial drug with a low molecular weight (MW) natural product and an antimicrobial drug (antifungal or antibacterial) appeared as a good alternative to eradicate biofilms. PURPOSE The aims of this review were to perform a literature search on the different natural products that have showed the ability of potentiating the antibiofilm capacity of antimicrobial drugs, to analyze which are the antimicrobial drugs most used in combination, and to have a look on the microbial species most used to prepare biofilms. RESULTS Seventeen papers, nine on combinations against antifungal biofilms and eight against antibacterial biofilms were collected. Within the text, the following topics have been developed: breaf history of the discovery of biofilms; stages in the development of a biofilm; the most used methodologies to assess antibiofilm-activity; the natural products with capacity of eradicating biofilms when acting alone; the combinations of low MW natural products with antibiotics or antifungal drugs as a strategy for eradicating microbial biofilms and a list of the low MW natural products that potentiate the inhibition capacity of antifungal and antibacterial drugs against biofilms. CONCLUSIONS AND PERSPECTIVES Regarding combinations against antifungal biofilms, eight over the nine collected works were carried out with in vitro studies while only one was performed with in vivo assays by using Caenorhabditis elegans nematode. All studies use biofilms of the Candida genus. A 67% of the potentiators were monoterpenes and sesquiterpenes and six over the nine works used FCZ as the antifungal drug. The activity of AmpB and Caspo was enhanced in one and two works respectively. Regarding combinations against bacterial biofilms, in vitro studies were performed in all works by using several different methods of higher variety than the used against fungal biofilms. Biofilms of both the gram (+) and gram (-) bacteria were prepared, although biofilm of Staphylococcus spp. were the most used in the collected works. Among the discovered potentiators of antibacterial drugs, 75% were terpenes, including mono, di- and triterpenes, and, among the atibacterial drugs, several structurally diverse types were used in the combinations: aminoglycosides, β-lactams, glucopeptides and fluoroquinolones. The potentiating capacity of natural products, mainly terpenes, on the antibiofilm effect of antimicrobial drugs opens a wide range of possibilities for the combination antimicrobial therapy. More in vivo studies on combinations of natural products with antimicrobial drugs acting against biofilms are highly required to cope the difficult to treat biofilm-associated infections.
Collapse
Affiliation(s)
- Susana A Zacchino
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| | - Estefanía Butassi
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Estefanía Cordisco
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Laura A Svetaz
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
16
|
Antibacterial effect on mature biofilms of oral streptococci and antioxidant activity of 3β,6β,16β-trihydroxylup-20(29)-ene from Combretum leprosum. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2022-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Wojnicz D, Tichaczek-Goska D, Korzekwa K, Kicia M, Hendrich AB. Study of the impact of cranberry extract on the virulence factors and biofilm formation by Enterococcus faecalis strains isolated from urinary tract infections. Int J Food Sci Nutr 2016; 67:1005-16. [PMID: 27456160 DOI: 10.1080/09637486.2016.1211996] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drinking of cranberry fruit juice and application of commercial preparations containing the cranberry extracts are recommended in the prevention and treatment of urinary tract infections (UTIs), especially in women with recurrent UTIs. Many studies focus on the activity of cranberries against uropathogenic Escherichia coli (E. coli) strains. However, the knowledge of the cranberry effect on Gram-positive Enterococcus faecalis (E. faecalis) is limited. Therefore, the aim of our study was to establish the activity of commercial concentrated cranberry extract on the growth, virulence factors and biofilm formation of E. faecalis strains isolated from urine. Minimal inhibitory concentrations (MICs) of cranberry extract were determined by the broth microdilution method. Disc diffusion method was used to determine antimicrobial susceptibility. The impact of cranberry extract on bacterial survival, hydrophobicity, synthesis of lipase, lecithinase, DNase, hemolysin, gelatinase and biofilm mass was determined. Results show that cranberry extract inhibits the growth, enzymatic activities of bacteria and limits biofilm formation. The antibacterial activities of the studied cranberry extract confirm that it could be successfully used in prevention of UTIs caused by E. faecalis.
Collapse
Affiliation(s)
- Dorota Wojnicz
- a Department of Biology and Medical Parasitology , Wroclaw Medical University , Wroclaw , Poland
| | - Dorota Tichaczek-Goska
- a Department of Biology and Medical Parasitology , Wroclaw Medical University , Wroclaw , Poland
| | - Kamila Korzekwa
- b Department of Microbiology , Institute of Genetics and Microbiology, University of Wroclaw , Wroclaw , Poland
| | - Marta Kicia
- a Department of Biology and Medical Parasitology , Wroclaw Medical University , Wroclaw , Poland
| | - Andrzej B Hendrich
- a Department of Biology and Medical Parasitology , Wroclaw Medical University , Wroclaw , Poland
| |
Collapse
|
18
|
Kashyap D, Tuli HS, Sharma AK. Ursolic acid (UA): A metabolite with promising therapeutic potential. Life Sci 2016; 146:201-13. [PMID: 26775565 DOI: 10.1016/j.lfs.2016.01.017] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/12/2022]
Abstract
Plants are known to produce a variety of bioactive metabolites which are being used to cure various life threatening and chronic diseases. The molecular mechanism of action of such bioactive molecules, may open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle dreadful diseases such as cancer and cardiovascular and neurodegenerative disorders. Ursolic acid (UA) is one among the categories of such plant-based therapeutic metabolites having multiple intracellular and extracellular targets that play role in apoptosis, metastasis, angiogenesis and inflammatory processes. Moreover, the synthetic derivatives of UA have also been seen to be involved in a range of pharmacological applications, which are associated with prevention of diseases. Evidences suggest that UA could be used as a potential candidate to develop a comprehensive competent strategy towards the treatment and prevention of health disorders. The review article herein describes the possible therapeutic effects of UA along with putative mechanism of action.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab 160012, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, Haryana 133207, India.
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, Haryana 133207, India
| |
Collapse
|