1
|
da Silva AF, Gonçalves LMD, Fernandes A, Almeida AJ. Optimization and evaluation of a chitosan-coated PLGA nanocarrier for mucosal delivery of Porphyromonas gingivalis antigens. Eur J Pharm Sci 2024; 202:106896. [PMID: 39250981 DOI: 10.1016/j.ejps.2024.106896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/30/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Recent advances in understanding Alzheimer's disease (AD) suggest the possibility of an infectious etiology, with Porphyromonas gingivalis emerging as a prime suspect in contributing to AD. P. gingivalis may invade systemic circulation via weakened oral/intestinal barriers and then cross the blood-brain barrier (BBB), reaching the brain and precipitating AD pathology. Based on the proposed links between P. gingivalis and AD, a prospective approach is the development of an oral nanovaccine containing P. gingivalis antigens for mucosal delivery. Targeting the gut-associated lymphoid tissue (GALT), the nanovaccine may elicit both mucosal and systemic immunity, thereby hampering P. gingivalis ability to breach the oral/intestinal barriers and the BBB, respectively. The present study describes the optimization, characterization, and in vitro evaluation of a candidate chitosan-coated poly(lactic-co-glycolic acid) (PLGA-CS) nanovaccine containing a P. gingivalis antigen extract. The nanocarrier was prepared using the double emulsion solvent evaporation method and optimized for selected experimental factors, e.g. PLGA amount, surfactant concentration, w1/o phase ratio, applying a d-optimal statistical design to target the desired physicochemical criteria for its intended application. After nanocarrier optimization, the nanovaccine was characterized in terms of particle size, polydispersity index (PdI), ζ-potential, encapsulation efficiency (EE), drug loading (DL), morphology, and in vitro release profile, as well as for mucoadhesivity, stability under simulated gastrointestinal conditions, antigen integrity, in vitro cytotoxicity and uptake using THP-1 macrophages. The candidate PLGA-CS nanovaccine demonstrated appropriate physicochemical, mucoadhesive, and antigen release properties for oral delivery, along with acceptable levels of EE (55.3 ± 3.5 %) and DL (1.84 ± 0.12 %). The integrity of the encapsulated antigens remained uncompromised throughout NPs production and simulated gastrointestinal exposure, as confirmed by SDS-PAGE and Western blotting analyses. Furthermore, the nanovaccine showed effective in vitro uptake, while exhibiting low cytotoxicity. Taken together, these findings underscore the potential of PLGA-CS NPs as carriers for adequate antigen mucosal delivery, paving the way for further investigations into their applicability as vaccine candidates against P. gingivalis.
Collapse
Affiliation(s)
- André Ferreira da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| | - Lídia M D Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| | - António J Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
2
|
Demusaj D, Toma R, Khan T, Hu L, Banavar G, Vuyisich M. A novel method for sampling subgingival microbiome: a comparative metatranscriptomic study. Biotechniques 2024; 76:83-93. [PMID: 38319053 DOI: 10.2144/btn-2023-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
The subgingival microbiome has been implicated in oral and systemic diseases such as periodontitis and Alzheimer's disease. However, subgingival sampling is challenging. We developed a novel method of sampling the subgingival microbiome by rotationally swabbing the supragingival area, named subgingival-P (for proxy) samples. We sampled and metatranscriptomically analyzed subgingival and subgingival-P samples of three different teeth in 20 individuals. The subgingival-P samples were comparable to the subgingival samples in the relative abundances of microorganisms and microbial gene expression levels. Our data demonstrate that the novel method of collecting and analyzing the subgingival-P samples can act as a proxy for the subgingiva, paving the way for large and diverse studies investigating the role of the subgingival microbiome in health and disease.
Collapse
Affiliation(s)
- Diana Demusaj
- Viome Life Sciences, Inc., Bothell, WA 98011 and Bellevue, WA 98004, New York, NY 10018, USA
| | - Ryan Toma
- Viome Life Sciences, Inc., Bothell, WA 98011 and Bellevue, WA 98004, New York, NY 10018, USA
| | - Tanveer Khan
- Viome Life Sciences, Inc., Bothell, WA 98011 and Bellevue, WA 98004, New York, NY 10018, USA
| | - Lan Hu
- Viome Life Sciences, Inc., Bothell, WA 98011 and Bellevue, WA 98004, New York, NY 10018, USA
| | - Guruduth Banavar
- Viome Life Sciences, Inc., Bothell, WA 98011 and Bellevue, WA 98004, New York, NY 10018, USA
| | - Momchilo Vuyisich
- Viome Life Sciences, Inc., Bothell, WA 98011 and Bellevue, WA 98004, New York, NY 10018, USA
| |
Collapse
|
3
|
Paul M, Pramanik SD, Sahoo RN, Dey YN, Nayak AK. Dental delivery systems of antimicrobial drugs using chitosan, alginate, dextran, cellulose and other polysaccharides: A review. Int J Biol Macromol 2023; 247:125808. [PMID: 37460072 DOI: 10.1016/j.ijbiomac.2023.125808] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 07/01/2023] [Indexed: 07/24/2023]
Abstract
Dental caries, periodontal disease, and endodontic disease are major public health concerns worldwide due to their impact on individuals' quality of life. The present problem of dental disorders is the removal of the infection caused by numerous microbes, particularly, bacteria (both aerobes and anaerobes). The most effective method for treating and managing dental diseases appears to be the use of antibiotics or other antimicrobials, which are incorporated in some drug delivery systems. However, due to their insufficient bioavailability, poor availability for gastrointestinal absorption, and pharmacokinetics after administration via the oral route, many pharmaceutical medicines or natural bioactive substances have limited efficacy. During past few decades, a range of polysaccharide-based systems have been widely investigated for dental dug delivery. The polysaccharide-based carrier materials made of chitosan, alginate, dextran, cellulose and other polysaccharides have recently been spotlighted on the recent advancements in preventing, treating and managing dental diseases. The objective of the current review article is to present a brief comprehensive overview of the recent advancements in polysaccharide-based dental drug delivery systems for the delivery of different antimicrobial drugs.
Collapse
Affiliation(s)
- Mousumi Paul
- Department of Pharmacology, Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur 713206, West Bengal, India
| | - Siddhartha Das Pramanik
- Department of Biosciences and Bioengineering, Indian Institute Technology-Roorkee, Roorkee 247667, Uttarakhand, India
| | - Rudra Narayan Sahoo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Yadu Nandan Dey
- Department of Pharmacology, Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur 713206, West Bengal, India.
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
4
|
Ozga AT, Ottoni C. Dental calculus as a proxy for animal microbiomes. QUATERNARY INTERNATIONAL : THE JOURNAL OF THE INTERNATIONAL UNION FOR QUATERNARY RESEARCH 2023; 653-654:47-52. [PMID: 37559969 PMCID: PMC7614904 DOI: 10.1016/j.quaint.2021.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The field of dental calculus research has exploded in recent years, predominantly due to the multitude of studies related to human genomes and oral pathogens. Despite having a subset of these studies devoted to non-human primates, little progress has been made in the distribution of oral pathogens across domestic and wild animal populations. This overlooked avenue of research is particularly important at present when many animal populations with the potentiality for zoonotic transmission continue to reside in close proximity to human groups due to reasons such as deforestation and climatic impacts on resource availability. Here, we analyze all previously available published oral microbiome data recovered from the skeletal remains of animals, all of which belong to the Mammalia class. Our genus level results emphasize the tremendous diversity of oral ecologies across mammals in spite of the clustering based primarily on host species. We also discuss the caveats and flaws in analyzing ancient animal oral microbiomes at the species level of classification. Lastly, we assess the benefits, challenges, and gaps in the current knowledge of dental calculus research within animals and postulate the future of the field as a whole.
Collapse
Affiliation(s)
- Andrew T. Ozga
- Nova Southeastern University, Halmos College of Arts and Sciences, Fort Lauderdale, FL, 33314, USA
| | - Claudio Ottoni
- DANTE - Diet and ANcient TEchnology Laboratory, Department of Oral and Maxillo-Facial Sciences, “Sapienza” University of Rome, 00161, Rome, Italy
- Centre of Molecular Anthropology for Ancient DNA Studies; Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
5
|
Parmar NP, Thompson GL, Atack NE, Ireland AJ, Sherriff M, Haworth JA. Microbial colonisation associated with conventional and self-ligating brackets: a systematic review. J Orthod 2022; 49:151-162. [PMID: 34839734 PMCID: PMC9160783 DOI: 10.1177/14653125211056023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/26/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Decalcification and gingivitis caused by plaque accumulation around brackets are common iatrogenic effects of fixed appliances. The influence of conventional versus self-ligating bracket design on microbial colonisation is unknown. OBJECTIVE To assess the levels of microbial colonisation associated with conventional and self-ligating brackets. SEARCH SOURCES Three databases were searched for publications from 2009 to 2021. DATA SELECTION Randomised controlled trials comparing levels of microbial colonisation before and during treatment with conventional and self-ligating brackets were assessed independently and in duplicate. DATA EXTRACTION Data were extracted independently by two authors from the studies that fulfilled the inclusion criteria. Risk of bias assessments were made using the revised Cochrane risk of bias tool for randomized trials. The quality of the included studies was assessed using the Critical Appraisal Skills Programme Checklist. RESULTS A total of 11 randomised controlled trials were included in this systematic review. Six of the studies were found to be at low risk of bias and five presented with some concerns. The studies were considered moderate to high quality. Five trials reported no statistically significant difference in microbial colonisation between bracket types. The remaining studies showed mixed results, with some reporting increased colonisation of conventional brackets and others increased colonisation of self-ligating brackets. The heterogeneity of study methods and outcomes precluded meta-analysis. CONCLUSION Of the 11 studies included in this systematic review, five found no differences in colonisation between conventional and self-ligating brackets. The remaining studies showed mixed results. The evidence is inconclusive regarding the association between bracket design and levels of microbial colonisation.
Collapse
Affiliation(s)
| | | | - Nikki E Atack
- Bristol Dental School, University of Bristol,
Bristol, UK
| | | | | | | |
Collapse
|
6
|
Ingalagi P, Bhat KG, Kulkarni RD, Kotrashetti VS, Kumbar V, Kugaji M. Detection and comparison of prevalence of Porphyromonas gingivalis through culture and Real Time-polymerase chain reaction in subgingival plaque samples of chronic periodontitis and healthy individuals. J Oral Maxillofac Pathol 2022; 26:288. [PMID: 35968159 PMCID: PMC9364635 DOI: 10.4103/jomfp.jomfp_163_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/06/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION The micro-flora of oral cavity is a myriad of micro-organism. Any infection of oral cavity leads to diseased condition which is a transitional transformation of the micro-organism in a specific paradigm depending upon the diseased condition. Periodontitis is one of the predominant chronic diseases which is a multifactorial infection. Porphyromonas gingivalis is a key etiological agent in causing periodontitis. To study the predominance of these bacteria in the diseased condition is important to detect, quantify and to find its efficacy by comparing different methods for identification. AIM AND OBJECTIVES The aim of the study is to determine the prevalence of P. gingivalis by anerobic culture and by real-time polymerase chain reaction (PCR) from subgingival plaque samples of chronic periodontitis and healthy individual and to compare efficacy of two methods. MATERIALS AND METHODS A total of 400 subjects were considered, and subgingival plaque was collected using paper points. Individual were equally divided into two groups: chronic periodontitis (200) and healthy individuals (200). Each plaque sample collected was divided into two aliquots of which the first aliquot was subjected for anerobic culture to isolate P. gingivalis. Phenotypical identification was done morphologically and biochemically further quantification of P. gingivalis was done by colony-forming unit. The second aliquot was subjected for DNA extraction and real-time PCR was conducted to detect and quantify P. gingivalis using specific primer. RESULTS Out of 400 samples, 73% showed detection of P. gingivalis by culture method and through reverse transcription-PCR (RT-PCR), the detection was 75%. Individual detection of P. gingivalis by culture in chronic periodontitis was 89.5% and 54.4% in healthy individuals, while detection by RT-PCR was found to be 91.5% in chronic periodontitis and 58% in healthy individuals. However, comparison between two techniques in detection of P. gingivalis was statistically insignificant. CONCLUSION When we compared RT-PCR with culture RT-PCR showed higher positivity. RT-PCR is more sensitive and requires less time to detect. However, in the present study, culture also showed good positivity, suggesting proper dilution and with extended incubation, the specificity of culture can be improved to a great extent.
Collapse
Affiliation(s)
- Preeti Ingalagi
- Department of Microbiology, Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and research Centre, Belgaum, Karnataka, India
| | - Kishore G Bhat
- Department of Microbiology, Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and research Centre, Belgaum, Karnataka, India
| | - R. D. Kulkarni
- Department of Microbiology, SDM Medical College, Dharwad, Karnataka, India
| | - Vijayalakshmi S. Kotrashetti
- Department of Oral Pathology and Microbiology, Maratha Mandal's NGH Institute of Dental Sciences and Research Centre, Belgaum, Karnataka, India,Address for correspondence: Dr. Vijayalakshmi Kotrashetti, Department of Oral Pathology and Microbiology, Maratha Mandal's NGH Institute of Dental Sciences and Research Centre, Belgaum - 590 010, Karnataka, India. E-mail:
| | - Vijay Kumbar
- Department of Microbiology, Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and research Centre, Belgaum, Karnataka, India
| | - Manohar Kugaji
- Department of Microbiology, Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and research Centre, Belgaum, Karnataka, India
| |
Collapse
|
7
|
Peña-Oyarzún D, San Martin C, Hernández-Cáceres MP, Lavandero S, Morselli E, Budini M, Burgos PV, Criollo A. Autophagy in aging-related oral diseases. Front Endocrinol (Lausanne) 2022; 13:903836. [PMID: 35992149 PMCID: PMC9390882 DOI: 10.3389/fendo.2022.903836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Autophagy is an intracellular degradation mechanism that allows recycling of organelles and macromolecules. Autophagic function increases metabolite availability modulating metabolic pathways, differentiation and cell survival. The oral environment is composed of several structures, including mineralized and soft tissues, which are formed by complex interactions between epithelial and mesenchymal cells. With aging, increased prevalence of oral diseases such as periodontitis, oral cancer and periapical lesions are observed in humans. These aging-related oral diseases are chronic conditions that alter the epithelial-mesenchymal homeostasis, disrupting the oral tissue architecture affecting the quality of life of the patients. Given that autophagy levels are reduced with age, the purpose of this review is to discuss the link between autophagy and age-related oral diseases.
Collapse
Affiliation(s)
- Daniel Peña-Oyarzún
- Physiology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Interdisciplinary Center for Research in Territorial Health of the Aconcagua Valley (CIISTe Aconcagua), School of Medicine, Faculty of Medicine, San Felipe Campus, Universidad de Valparaíso, San Felipe, Chile
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Carla San Martin
- Interdisciplinary Center for Research in Territorial Health of the Aconcagua Valley (CIISTe Aconcagua), School of Medicine, Faculty of Medicine, San Felipe Campus, Universidad de Valparaíso, San Felipe, Chile
| | - María Paz Hernández-Cáceres
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago de Chile, Chile
- Autophagy Research Center, Universidad de Chile, Santiago de Chile, Chile
| | - Mauricio Budini
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
- Autophagy Research Center, Universidad de Chile, Santiago de Chile, Chile
| | - Patricia V. Burgos
- Autophagy Research Center, Universidad de Chile, Santiago de Chile, Chile
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, Chile
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Alfredo Criollo
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Autophagy Research Center, Universidad de Chile, Santiago de Chile, Chile
- *Correspondence: Alfredo Criollo,
| |
Collapse
|
8
|
da Silva Júnior FL, de Araújo Silva DN, da Silva Azevedo ML, da Silva NT, Almeida HC, da Silva RCM, de Lima KC, da Silveira ÉJD, de Aquino Martins ARL. Efficacy of ILIB on periodontal clinical parameters and glycemic control in patients with periodontitis and type II diabetes-randomized clinical trial. Lasers Med Sci 2021; 37:1945-1952. [PMID: 34787762 DOI: 10.1007/s10103-021-03455-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022]
Abstract
Our study aimed to study the efficacy of ILIB on periodontal parameters and glycemic control in patients with periodontitis and type II diabetes. Twenty-one patients in a randomized clinical trial were divided into 2 groups: control group (CG), conventional periodontal therapy, and test group (TG), conventional periodontal treatment associated with 10 laser applications by the ILIB-Modified (ILIB-M) technique. Fasting blood glucose levels and glycated hemoglobin (HbA1c), visible plaque index (VPI), gingival bleeding index (GBI), and periodontal clinical parameters were evaluated at baseline and after 4 months (T4). Regarding periodontal parameters, the intragroup analysis showed a statistically significant reduction (p < 0.05) between baseline and T4, for the VPI, GBI, BOP, PD, and CAL indexes. However, in the intergroup analysis, no statistically significant improvements (p > 0.05) were observed between the TG and CG for the VPI, GBI, BOP, PD, and CAL indexes. Regarding HbA1C and fasting blood glucose values, no statistically significant improvements were observed in intergroup and intragroup analyses (p > 0.05). The Modified ILIB did not improve the periodontal clinical parameters and glycemic control in patients with type II diabetes.
Collapse
Affiliation(s)
- Francisco Leonardo da Silva Júnior
- Dentistry Department, Rio Grande Do Norte Federal University, Av. Senador Salgado Filho, 1787, Lagoa Nova, Natal, RN, CEP 59056-000, Brazil
| | - Davi Neto de Araújo Silva
- Dentistry Department, Rio Grande Do Norte Federal University, Av. Senador Salgado Filho, 1787, Lagoa Nova, Natal, RN, CEP 59056-000, Brazil
| | - Marcela Letícia da Silva Azevedo
- Dentistry Department, Rio Grande Do Norte Federal University, Av. Senador Salgado Filho, 1787, Lagoa Nova, Natal, RN, CEP 59056-000, Brazil
| | - Natália Teixeira da Silva
- Dentistry Department, Rio Grande Do Norte Federal University, Av. Senador Salgado Filho, 1787, Lagoa Nova, Natal, RN, CEP 59056-000, Brazil
| | - Hursula Cardoso Almeida
- Dentistry Department, Rio Grande Do Norte Federal University, Av. Senador Salgado Filho, 1787, Lagoa Nova, Natal, RN, CEP 59056-000, Brazil
| | - Regia Carla Medeiros da Silva
- Dentistry Department, Rio Grande Do Norte Federal University, Av. Senador Salgado Filho, 1787, Lagoa Nova, Natal, RN, CEP 59056-000, Brazil
| | - Kenio Costa de Lima
- Dentistry Department, Rio Grande Do Norte Federal University, Av. Senador Salgado Filho, 1787, Lagoa Nova, Natal, RN, CEP 59056-000, Brazil
| | - Éricka Janine Dantas da Silveira
- Dentistry Department, Rio Grande Do Norte Federal University, Av. Senador Salgado Filho, 1787, Lagoa Nova, Natal, RN, CEP 59056-000, Brazil
| | - Ana Rafaela Luz de Aquino Martins
- Dentistry Department, Rio Grande Do Norte Federal University, Av. Senador Salgado Filho, 1787, Lagoa Nova, Natal, RN, CEP 59056-000, Brazil.
| |
Collapse
|
9
|
Marcano R, Rojo MÁ, Cordoba-Diaz D, Garrosa M. Pathological and Therapeutic Approach to Endotoxin-Secreting Bacteria Involved in Periodontal Disease. Toxins (Basel) 2021; 13:533. [PMID: 34437404 PMCID: PMC8402370 DOI: 10.3390/toxins13080533] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022] Open
Abstract
It is widely recognized that periodontal disease is an inflammatory entity of infectious origin, in which the immune activation of the host leads to the destruction of the supporting tissues of the tooth. Periodontal pathogenic bacteria like Porphyromonas gingivalis, that belongs to the complex net of oral microflora, exhibits a toxicogenic potential by releasing endotoxins, which are the lipopolysaccharide component (LPS) available in the outer cell wall of Gram-negative bacteria. Endotoxins are released into the tissues causing damage after the cell is lysed. There are three well-defined regions in the LPS: one of them, the lipid A, has a lipidic nature, and the other two, the Core and the O-antigen, have a glycosidic nature, all of them with independent and synergistic functions. Lipid A is the "bioactive center" of LPS, responsible for its toxicity, and shows great variability along bacteria. In general, endotoxins have specific receptors at the cells, causing a wide immunoinflammatory response by inducing the release of pro-inflammatory cytokines and the production of matrix metalloproteinases. This response is not coordinated, favoring the dissemination of LPS through blood vessels, as well as binding mainly to Toll-like receptor 4 (TLR4) expressed in the host cells, leading to the destruction of the tissues and the detrimental effect in some systemic pathologies. Lipid A can also act as a TLRs antagonist eliciting immune deregulation. Although bacterial endotoxins have been extensively studied clinically and in a laboratory, their effects on the oral cavity and particularly on periodontium deserve special attention since they affect the connective tissue that supports the tooth, and can be linked to advanced medical conditions. This review addresses the distribution of endotoxins associated with periodontal pathogenic bacteria and its relationship with systemic diseases, as well as the effect of some therapeutic alternatives.
Collapse
Affiliation(s)
- Rosalia Marcano
- Department of Cell Biology, Histology and Pharmacology, Faculty of Medicine and INCYL, University of Valladolid, 47005 Valladolid, Spain;
| | - M. Ángeles Rojo
- Area of Experimental Sciences, Miguel de Cervantes European University, 47012 Valladolid, Spain;
| | - Damián Cordoba-Diaz
- Area of Pharmaceutics and Food Technology, Faculty of Pharmacy, and IUFI, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Manuel Garrosa
- Department of Cell Biology, Histology and Pharmacology, Faculty of Medicine and INCYL, University of Valladolid, 47005 Valladolid, Spain;
| |
Collapse
|
10
|
Marre ATDO, Domingues RMCP, Lobo LA. Adhesion of anaerobic periodontal pathogens to extracellular matrix proteins. Braz J Microbiol 2020; 51:1483-1491. [PMID: 32557245 PMCID: PMC7688880 DOI: 10.1007/s42770-020-00312-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular matrix (ECM) proteins are highly abundant in the human body and can be found in various tissues, most prominently in connective tissue and basement membrane. For invasive bacterial pathogens, these structures function as physical barriers that block access to underlying tissues. The ability to bind and degrade these barriers is important for the establishment of infections and migration to other body sites. In the oral cavity, the ECM and the basement membrane (BM) are important components of the Junctional epithelium (JE) that closes the gap between the teeth surface and the mucosa. In periodontitis, the JE is breached by invading pathogenic bacteria, particularly strict anaerobic species. In periodontitis, invading microorganisms induce an unregulated and destructive host response through polymicrobial synergism and dysbiosis that attracts immune cells and contributes to the destruction of connective tissue and bone in the periodontal pocket. Colonization of the periodontal pocket is the first step to establish this infection, and binding to ECM is a major advantage in this site. Several species of strict anaerobic bacteria are implicated in acute and chronic periodontitis, and although binding to ECM proteins was studied in these species, few adhesins were identified so far, and the mechanisms involved in adhesion are largely unidentified. This review summarizes the data available on the interaction of strict anaerobic bacteria and components of the ECM.
Collapse
Affiliation(s)
- Andressa Temperine de Oliveira Marre
- Medical Microbiology Department, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro - UFRJ, CCS - Centro de Ciências da Saúde, 373 Avenida Carlos Chagas Filho, Bloco I - sala I2-06, Cidade Universitária, Rio de Janeiro, 21941-902, Brazil
| | - Regina M C P Domingues
- Medical Microbiology Department, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro - UFRJ, CCS - Centro de Ciências da Saúde, 373 Avenida Carlos Chagas Filho, Bloco I - sala I2-06, Cidade Universitária, Rio de Janeiro, 21941-902, Brazil
| | - Leandro A Lobo
- Medical Microbiology Department, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro - UFRJ, CCS - Centro de Ciências da Saúde, 373 Avenida Carlos Chagas Filho, Bloco I - sala I2-06, Cidade Universitária, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
11
|
Zhang S, Kong C, Yang Y, Cai S, Li X, Cai G, Ma Y. Human oral microbiome dysbiosis as a novel non-invasive biomarker in detection of colorectal cancer. Am J Cancer Res 2020; 10:11595-11606. [PMID: 33052235 PMCID: PMC7545992 DOI: 10.7150/thno.49515] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
Background: The oral microbiome may play an important role in colorectal carcinogenesis. However, few studies have investigated the association between oral microbiome and the development of colorectal cancer (CRC). We aimed to investigate whether oral health-colorectal tumor association has an underlying microbial basis, in the quest for novel non-invasive biomarkers for CRC. Methods: We collected oral swab samples from 161 patients with CRC, 34 patients with colorectal adenoma (CRA), and 58 healthy volunteers. The oral microbiota was assessed using 16S rRNA sequencing. We characterized oral microbiome, identified microbial markers, constructed and validated colorectal tumor (CRA and CRC) classifier. Results: Oral microbial composition and diversity were significantly different among the three groups, and the CRA group had the highest diversity. Analysis of the functional potential of oral microbiota demonstrated that the pathway involving cell motility was overrepresented in the CRA and CRC groups relative to that in the healthy controls. Moreover, a random forest model was constructed based on oral microbial markers, which could distinguish the colorectal tumor groups from the healthy controls and achieve a powerful classification potential in the discovery and validation cohorts. Conclusion: This study suggests a potential association between oral microbiome dysbiosis and colorectal cancer. Oral microbiota-based biomarkers may be helpful in predicting the risks for the development of CRA and CRC.
Collapse
|
12
|
Contribution of aging oral microbiota in getting neurodegenerative diseases. REVIEWS IN MEDICAL MICROBIOLOGY 2020. [DOI: 10.1097/mrm.0000000000000245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Balmasova IP, Tsarev VN, Arutyunov SD, Babayev EA. [Filifactor alocis and its role in the etiology of chronic periodontitis]. STOMATOLOGII︠A︡ 2020; 99:78-82. [PMID: 32608955 DOI: 10.17116/stomat20209903178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The review is devoted to the analysis of modern ideas about the role of bacteria Filifactor alocis in the etiology of chronic periodontitis. The study of these bacteria, discovered in 1985, is complicated by the difficulty of their detection with cultural methods. According to modern researches, the bacteria F.alocis with good reason can be included in the red complex of periodontal pathogens as the most important pathogens of chronic periodontitis. F.alocis is a synergist of such a key pathogen Porphyromonas gingivalis, as well as a frequent satellite of Fusobacterium nucleatum and, somewhat less frequently, Aggregatibacter actinomycetemcomitans. F.alocis is practically not found in healthy people (except for smokers), with a high frequency accompanies the aggressive course of periodontal disease, and also recorded in endodontitis. Due to the ability to participate in the metabolism of arginine, expressed protease activity, a wide range of virulence factors, F.alocis not only colonizes the periodontal tissues, but also significantly affects the formation of the community of periodontal microorganisms (including viruses), contributing to their invasion of epithelial tissues. F. alocis has a number of unique properties, including resistance to oxidative stress conditions in the home defeat, induction of apoptosis of epithelial cells, extracellular matrix degradation of periodontal tissues, activation of proinflammatory cytokines formulation in sites of its presence, suppression of protective reactions of neutrophilic granulocytes, inhibition of the process of complement activation.
Collapse
Affiliation(s)
- I P Balmasova
- Moscow State Medical and Dental University named after A.I. Evdokimov, Moscow, Russia
| | - V N Tsarev
- Moscow State Medical and Dental University named after A.I. Evdokimov, Moscow, Russia
| | - S D Arutyunov
- Moscow State Medical and Dental University named after A.I. Evdokimov, Moscow, Russia
| | - E A Babayev
- Moscow State Medical and Dental University named after A.I. Evdokimov, Moscow, Russia
| |
Collapse
|
14
|
The effect of lipoxin A4 on E. coli LPS-induced osteoclastogenesis. Clin Oral Investig 2020; 25:957-969. [PMID: 32506323 PMCID: PMC7878239 DOI: 10.1007/s00784-020-03385-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Objectives The objective of the present study was to investigate the effect of lipoxin-type A4 (LXA4) on bacterial-induced osteoclastogenesis. Material and methods Human periodontal ligament cells (PDLCs) in coculture with osteoclast precursors (RAW264.7 cells) were exposed to bacterial stimulation with lipopolysaccharide (LPS) to induce inflammation. After 24 h, cells were treated to 100 ng/ml of LXA4 and 50 ng/ml of forymul peptide receptor 2 (FPR2/ALX) receptor antagonist (Boc-2). After 5 days, osteoclastic resorptive activity was assessed on calcium phosphate (CaP) synthetic bone substitute. Additionally, osteoclastic differentiation was evaluated using tartrate-resistant acid phosphatase (TRAP) staining, TRAP enzymatic activity assay, and on the expression of osteoclast-specific genes. Results We found that stimulation of in the osteoclasts with LPS-stimulated PDLCs induced a significant increase in tartrate-resistant acid phosphatase (TRAP) positive cells, higher resorptive activity, and enhanced expression of specific genes. Meanwhile, LXA4-treatment exhibited strong anti-inflammatory activity, and was able to reverse these inflammatory effects. Conclusions We conclude that (1) PDLCs are a potential target for treating bacterial-induced bone resorption in patients with periodontal disease, and (2) LXA4 is a suitable candidate for such therapy. Clinical relevance The results prove that lipoxins have a protective role in bacterial-induced periodontal inflammation and alveolar bone resorption, which can be translated into a clinical beneficial alterative treatment.
Collapse
|
15
|
Hickey NA, Shalamanova L, Whitehead KA, Dempsey-Hibbert N, van der Gast C, Taylor RL. Exploring the putative interactions between chronic kidney disease and chronic periodontitis. Crit Rev Microbiol 2020; 46:61-77. [PMID: 32046541 DOI: 10.1080/1040841x.2020.1724872] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) and chronic periodontitis (CP) are both common diseases, which are found disproportionately comorbid with each other and have been reported to have a detrimental effect on the progression of each respective disease. They have an overlap in risk factors and both are a source of systemic inflammation along with a wide selection of immunological and non-specific effects that can affect the body over the lifespan of the conditions. Previous studies have investigated the directionality of the relationship between these two diseases; however, there is a lack of literature that has examined how these diseases may be interacting at the localized and systemic level. This review discusses how oral microorganisms have the ability to translocate and have distal effects and provides evidence for microbial involvement in a systemic disease. Furthermore, it summarizes the reported local and systemic effects of CKD and CP and discusses how the interaction of these effects may be responsible for directionality associations reported.
Collapse
Affiliation(s)
- Niall A Hickey
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Liliana Shalamanova
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Kathryn A Whitehead
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Nina Dempsey-Hibbert
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Christopher van der Gast
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Rebecca L Taylor
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
16
|
Ozga AT, Gilby I, Nockerts RS, Wilson ML, Pusey A, Stone AC. Oral microbiome diversity in chimpanzees from Gombe National Park. Sci Rep 2019; 9:17354. [PMID: 31758037 PMCID: PMC6874655 DOI: 10.1038/s41598-019-53802-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022] Open
Abstract
Historic calcified dental plaque (dental calculus) can provide a unique perspective into the health status of past human populations but currently no studies have focused on the oral microbial ecosystem of other primates, including our closest relatives, within the hominids. Here we use ancient DNA extraction methods, shotgun library preparation, and next generation Illumina sequencing to examine oral microbiota from 19 dental calculus samples recovered from wild chimpanzees (Pan troglodytes schweinfurthii) who died in Gombe National Park, Tanzania. The resulting sequences were trimmed for quality, analyzed using MALT, MEGAN, and alignment scripts, and integrated with previously published dental calculus microbiome data. We report significant differences in oral microbiome phyla between chimpanzees and anatomically modern humans (AMH), with chimpanzees possessing a greater abundance of Bacteroidetes and Fusobacteria, and AMH showing higher Firmicutes and Proteobacteria. Our results suggest that by using an enterotype clustering method, results cluster largely based on host species. These clusters are driven by Porphyromonas and Fusobacterium genera in chimpanzees and Haemophilus and Streptococcus in AMH. Additionally, we compare a nearly complete Porphyromonas gingivalis genome to previously published genomes recovered from human gingiva to gain perspective on evolutionary relationships across host species. Finally, using shotgun sequence data we assessed indicators of diet from DNA in calculus and suggest exercising caution when making assertions related to host lifestyle. These results showcase core differences between host species and stress the importance of continued sequencing of nonhuman primate microbiomes in order to fully understand the complexity of their oral ecologies.
Collapse
Affiliation(s)
- Andrew T Ozga
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA. .,Institute of Human Origins, Arizona State University, Tempe, Arizona, USA. .,Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, Florida, USA.
| | - Ian Gilby
- Institute of Human Origins, Arizona State University, Tempe, Arizona, USA.,School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Rebecca S Nockerts
- Department of Anthropology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael L Wilson
- Department of Anthropology, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anne Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Anne C Stone
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA.,Institute of Human Origins, Arizona State University, Tempe, Arizona, USA.,School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
17
|
Flemer B, Warren RD, Barrett MP, Cisek K, Das A, Jeffery IB, Hurley E, O‘Riordain M, Shanahan F, O‘Toole PW. The oral microbiota in colorectal cancer is distinctive and predictive. Gut 2018; 67:1454-1463. [PMID: 28988196 PMCID: PMC6204958 DOI: 10.1136/gutjnl-2017-314814] [Citation(s) in RCA: 401] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Microbiota alterations are linked with colorectal cancer (CRC) and notably higher abundance of putative oral bacteria on colonic tumours. However, it is not known if colonic mucosa-associated taxa are indeed orally derived, if such cases are a distinct subset of patients or if the oral microbiome is generally suitable for screening for CRC. METHODS We profiled the microbiota in oral swabs, colonic mucosae and stool from individuals with CRC (99 subjects), colorectal polyps (32) or controls (103). RESULTS Several oral taxa were differentially abundant in CRC compared with controls, for example, Streptococcus and Prevotellas pp. A classification model of oral swab microbiota distinguished individuals with CRC or polyps from controls (sensitivity: 53% (CRC)/67% (polyps); specificity: 96%). Combining the data from faecal microbiota and oral swab microbiota increased the sensitivity of this model to 76% (CRC)/88% (polyps). We detected similar bacterial networks in colonic microbiota and oral microbiota datasets comprising putative oral biofilm forming bacteria. While these taxa were more abundant in CRC, core networks between pathogenic, CRC-associated oral bacteria such as Peptostreptococcus, Parvimonas and Fusobacterium were also detected in healthy controls. High abundance of Lachnospiraceae was negatively associated with the colonisation of colonic tissue with oral-like bacterial networks suggesting a protective role for certain microbiota types against CRC, possibly by conferring colonisation resistance to CRC-associated oral taxa and possibly mediated through habitual diet. CONCLUSION The heterogeneity of CRC may relate to microbiota types that either predispose or provide resistance to the disease, and profiling the oral microbiome may offer an alternative screen for detecting CRC.
Collapse
Affiliation(s)
- Burkhardt Flemer
- APC Microbiome Institue, University College Cork, National University of Ireland, Cork, Ireland,Schools of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - Ryan D Warren
- APC Microbiome Institue, University College Cork, National University of Ireland, Cork, Ireland
| | - Maurice P Barrett
- APC Microbiome Institue, University College Cork, National University of Ireland, Cork, Ireland,Schools of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | | | | | - Ian B Jeffery
- APC Microbiome Institue, University College Cork, National University of Ireland, Cork, Ireland,Schools of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - Eimear Hurley
- Schools of Microbiology, University College Cork, National University of Ireland, Cork, Ireland,Department of Dentistry, University College Cork, National University of Ireland, Cork, Ireland
| | - Micheal O‘Riordain
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Institue, University College Cork, National University of Ireland, Cork, Ireland,Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - Paul W O‘Toole
- APC Microbiome Institue, University College Cork, National University of Ireland, Cork, Ireland,Schools of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| |
Collapse
|
18
|
Coretti L, Cuomo M, Florio E, Palumbo D, Keller S, Pero R, Chiariotti L, Lembo F, Cafiero C. Subgingival dysbiosis in smoker and non‑smoker patients with chronic periodontitis. Mol Med Rep 2017; 15:2007-2014. [PMID: 28260061 PMCID: PMC5364964 DOI: 10.3892/mmr.2017.6269] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/12/2016] [Indexed: 01/28/2023] Open
Abstract
Periodontitis is one of the most common oral inflammatory diseases, and results in connective tissue degradation and gradual tooth loss. It manifests with formation of periodontal pockets, in which anaerobic and Gram‑negative bacteria proliferate rapidly. Consequently, alteration of the subgingival microbiota is considered the primary etiologic agent of periodontitis. Previous studies have reported that smokers are at increased risk of periodontal disease, in both prevalence and severity, indicating that smoking is a risk factor for the onset and progression of the pathology. In the present study, 16S rRNA sequencing was employed to assess the subgingival microbiota in 6 smoker patients with chronic periodontitis, 6 non‑smoker patients with chronic periodontitis and 8 healthy controls. The results demonstrated significant alterations in the microbial structure of periodontitis patients. High relative abundance of Parvimonans, Desulfubulbus, Paludibacter, Haemophilus, and Sphaerochaeta genera characterized subgingival microbiota of periodontitis patients, both smokers and non‑smokers. Due to the high precision and sensitivity of the 16S rRNA sequencing method, analysis for low‑abundant genera (including Pedobacter, Granulicatella, Paracoccus, Atopobium, Bifidobacterium, Coprococcus, Oridobacteriu, Peptococcus, Oscillospira and Akkermansia) was feasible, and revealed novel phylotypes associated with periodontitis. Of note, a major microbial community alteration was evident in smoker patients, suggesting an association between smoking and severity of subgingival dysbiosis. The present study confirmed that chronic periodontitis is a polymicrobial disease where changes in the equilibrium of subgingival microbiota contribute to severity of pathology.
Collapse
Affiliation(s)
- Lorena Coretti
- Institute of Experimental Endocrinology and Oncology, National Research Council, I-80131 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| | - Mariella Cuomo
- Institute of Experimental Endocrinology and Oncology, National Research Council, I-80131 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| | - Ermanno Florio
- Institute of Experimental Endocrinology and Oncology, National Research Council, I-80131 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| | - Domenico Palumbo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| | - Simona Keller
- Institute of Experimental Endocrinology and Oncology, National Research Council, I-80131 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| | - Raffaela Pero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| | - Lorenzo Chiariotti
- Institute of Experimental Endocrinology and Oncology, National Research Council, I-80131 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| | - Francesca Lembo
- Department of Pharmacy, University of Naples Federico II, I-80131 Naples, Italy
| | - Carlo Cafiero
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, I-80131 Naples, Italy
| |
Collapse
|
19
|
Ibrahim M, Subramanian A, Anishetty S. Comparative pan genome analysis of oral Prevotella species implicated in periodontitis. Funct Integr Genomics 2017; 17:513-536. [PMID: 28236274 DOI: 10.1007/s10142-017-0550-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/19/2017] [Accepted: 01/30/2017] [Indexed: 12/20/2022]
Abstract
Prevotella is part of the oral bacterial community implicated in periodontitis. Pan genome analyses of eight oral Prevotella species, P. dentalis, P. enoeca, P. fusca, P. melaninogenica, P. denticola, P. intermedia 17, P. intermedia 17-2 and P. sp. oral taxon 299 are presented in this study. Analysis of the Prevotella pan genome revealed features such as secretion systems, resistance to oxidative stress and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems that enable the bacteria to adapt to the oral environment. We identified the presence of type VI secretion system (T6SS) in P. fusca and P. intermedia strains. For some VgrG and Hcp proteins which were not part of the core T6SS loci, we used gene neighborhood analysis and identified putative effector proteins and putative polyimmunity loci in P. fusca and polymorphic toxin systems in P. intermedia strains. Earlier studies have identified the presence of Por secretion system (PorSS) in P. gingivalis, P. melaninogenica and P. intermedia. We noted the presence of their homologs in six other oral Prevotella studied here. We suggest that in Prevotella, PorSS is used to secrete cysteine proteases such as interpain and C-terminal domain containing proteins with a "Por_secre_tail" domain. We identified subtype I-B CRISPR-Cas system in P. enoeca. Putative CRISPR-Cas system subtypes for 37 oral Prevotella and 30 non-oral Prevotella species were also predicted. Further, we performed a BLASTp search of the Prevotella proteins which are also conserved in the red-complex pathogens, against the human proteome to identify potential broad-spectrum drug targets. In summary, the use of a pan genome approach enabled identification of secretion systems and defense mechanisms in Prevotella that confer adaptation to the oral cavity.
Collapse
Affiliation(s)
- Maziya Ibrahim
- Centre for Biotechnology, Anna University, Chennai, 600025, India
| | | | | |
Collapse
|
20
|
Hiranmayi KV, Sirisha K, Ramoji Rao MV, Sudhakar P. Novel Pathogens in Periodontal Microbiology. J Pharm Bioallied Sci 2017; 9:155-163. [PMID: 28979069 PMCID: PMC5621177 DOI: 10.4103/jpbs.jpbs_288_16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Periodontitis is a polymicrobial disease caused by complex interactions between distinct pathogens in a biofilm resulting in the destruction of periodontal tissues. It seems evident that unknown microorganisms might be involved in onset or progression of periodontitis. For many decades, research in the field of oral microbiology failed to identify certain subgingival microbiota due to technical limitations but, over a period of 12 years using molecular approaches and sequencing techniques, it became feasible to reveal the existence of new periodontal pathogens. Therefore, it is evident that in addition to conventional periodontal pathogens, other microbes might be involved in onset and progression of periodontitis. The novel pathogens enlisted under periodontal phylogeny include Cryptobacterium curtum, Dialister pneumosintes, Filifactor alocis, Mitsuokella dentalis, Slackia exigua, Selenomonas sputigena, Solobacterium moorei, Treponema lecithinolyticum, and Synergistes. The polymicrobial etiology of periodontitis has been elucidated by comprehensive techniques, and studies throwing light on the possible virulence mechanisms possessed by these novel periodontal pathogens are enlisted.
Collapse
Affiliation(s)
- K Vidya Hiranmayi
- Post Graduate Student, Department of Periodontics and Implantology, Drs S and NR Siddhartha Institute of Dental Sciences, Krishna District, Andhra Pradesh, India
| | - K Sirisha
- Reader, Department of Periodontics and Implantology, Drs S and NR Siddhartha Institute of Dental Sciences, Krishna District, Andhra Pradesh, India
| | - M V Ramoji Rao
- HOD, Department of Periodontics and Implantology, Drs S and NR Siddhartha Institute of Dental Sciences, Krishna District, Andhra Pradesh, India
| | - P Sudhakar
- Post Graduate Student, Department of Periodontics and Implantology, Drs S and NR Siddhartha Institute of Dental Sciences, Krishna District, Andhra Pradesh, India
| |
Collapse
|