1
|
Priya, Yadav N, Anand S, Banerjee J, Tripathi M, Chandra PS, Dixit AB. The multifaceted role of Wnt canonical signalling in neurogenesis, neuroinflammation, and hyperexcitability in mesial temporal lobe epilepsy. Neuropharmacology 2024; 251:109942. [PMID: 38570066 DOI: 10.1016/j.neuropharm.2024.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Epilepsy is a neurological disorder characterised by unprovoked, repetitive seizures caused by abnormal neuronal firing. The Wnt/β-Catenin signalling pathway is involved in seizure-induced neurogenesis, aberrant neurogenesis, neuroinflammation, and hyperexcitability associated with epileptic disorder. Wnt/β-Catenin signalling is crucial for early brain development processes including neuronal patterning, synapse formation, and N-methyl-d-aspartate receptor (NMDAR) regulation. Disruption of molecular networks such as Wnt/β-catenin signalling in epilepsy could offer encouraging anti-epileptogenic targets. So, with a better understanding of the canonical Wnt/-Catenin pathway, we highlight in this review the important elements of Wnt/-Catenin signalling specifically in Mesial Temporal Lobe Epilepsy (MTLE) for potential therapeutic targets.
Collapse
Affiliation(s)
- Priya
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Nitin Yadav
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Sneha Anand
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
2
|
Smith JL, Wertz J, Lippa A, Ping X, Jin X, Cook JM, Witkin JM, Cerne R. KRM-II-81 suppresses epileptifom activity across the neural network of cortical tissue from a patient with pharmacoresistant epilepsy. Heliyon 2024; 10:e23752. [PMID: 38223703 PMCID: PMC10784158 DOI: 10.1016/j.heliyon.2023.e23752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/27/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
A clinical case of a 19-year-old male patient with pharmacoresistant seizures occurring following parieto-occipital tumor-resection at age 6 is described. Seizure surgery work-up included prolonged video EEG monitoring and head CT without contrast. Seizure focus was localized to the left temporal lobe, and we felt that the patient was an excellent candidate for seizure surgery. The patient underwent a left frontotemporal craniotomy for removal of the seizure focus with intraoperative electrocorticography (ECoG) conducted pre and post resection. ECoG recordings pre- and post-resection confirmed resolution of seizure generation. Imaging obtained immediately postoperatively showed complete resection of the residual tumor with no evidence of recurrence in follow-ups. A year after the surgery the patient is seizure-free but remains on seizure medication. With the patient's consent the excised epileptogenic tissue was used for ex-vivo research studies. The microelectrode recordings confirmed epileptiform activity in the excised tissue incubated in excitatory artificial cerebrospinal fluid. The epileptiform activity in the epileptogenic tissue was suppressed by addition of KRM-II-81, a novel α2/3 subtype preferring GABAA receptor (GABAAR) potentiator with previously demonstrated antiepileptic efficacy in multiple animal models of epilepsy and with reduced potential for CNS side-effects compared to classical benzodiazepine GABAAR potentiators. These findings support the proposition that KRM-II-81 might reduce seizure burden in pharmacoresistant patients.
Collapse
Affiliation(s)
- Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
| | | | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - James M. Cook
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
- Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia
| |
Collapse
|
3
|
Dincer A, Herendeen J, Oster J, Kryzanski J. Resection of an occipital lobe epileptogenic network resulting in improvement of a visual field deficit: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2022; 4:CASE22210. [PMID: 36254354 PMCID: PMC9576032 DOI: 10.3171/case22210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Drug-resistant epilepsy leads to significant morbidity and mortality. Epilepsy surgery for resection of seizure foci is underused, particularly when a seizure focus is located in eloquent cortex. Epileptogenic networks may lead to neurological deficits out of proportion to a causative lesion. Disruption of the network may lead not only to seizure freedom but also reversal of a neurological deficit. OBSERVATIONS A 32-year-old male with new-onset generalized tonic-clonic seizure was found to have an occipital lobe cavernous malformation. On visual field testing, he was found to have a right-sided hemianopsia. He did not tolerate antiepileptic drugs and had a significant decline in quality of life. Resection was planned using intraoperative electrocorticography to remove the cavernous malformation and disrupt the epileptogenic network. Immediate and delayed postoperative visual field testing demonstrated improvement of the visual field deficit, with near resolution of the deficit 6 weeks postoperatively. LESSONS Epilepsy networks in eloquent cortex may cause deficits that improve after the causative lesion is resected and the network disrupted, a concept that is underreported in the literature. A subset of patients with frequent epileptiform activity and preoperative deficits may experience postoperative neurological improvement along with relief of seizures.
Collapse
Affiliation(s)
| | | | - Joel Oster
- Neurology, Tufts Medical Center, Boston, Massachusetts
| | | |
Collapse
|
4
|
Servilha-Menezes G, Garcia-Cairasco N. A complex systems view on the current hypotheses of epilepsy pharmacoresistance. Epilepsia Open 2022; 7 Suppl 1:S8-S22. [PMID: 35253410 PMCID: PMC9340300 DOI: 10.1002/epi4.12588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/11/2022] Open
Abstract
Drug-resistant epilepsy remains to this day as a highly prevalent condition affecting around one-third of patients with epilepsy, despite all the research and the development of several new antiseizure medications (ASMs) over the last decades. Epilepsies are multifactorial complex diseases, commonly associated with psychiatric, neurological, and somatic comorbidities. Thus, to solve the puzzling problem of pharmacoresistance, the diagnosis and modeling of epilepsy and comorbidities need to change toward a complex system approach. In this review, we have summarized the sequence of events for the definition of epilepsies and comorbidities, the search for mechanisms, and the major hypotheses of pharmacoresistance, drawing attention to some of the many converging aspects between the proposed mechanisms, their supporting evidence, and comorbidities-related alterations. The use of systems biology applied to epileptology may lead to the discovery of new targets and the development of new ASMs, as may advance our understanding of the epilepsies and their comorbidities, providing much deeper insight on multidrug pharmacoresistance.
Collapse
Affiliation(s)
- Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo (FMRP-SP), Ribeirão Preto, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo (FMRP-SP), Ribeirão Preto, São Paulo, Brazil.,Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-SP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
5
|
Cerne R, Lippa A, Poe MM, Smith JL, Jin X, Ping X, Golani LK, Cook JM, Witkin JM. GABAkines - Advances in the discovery, development, and commercialization of positive allosteric modulators of GABA A receptors. Pharmacol Ther 2022; 234:108035. [PMID: 34793859 PMCID: PMC9787737 DOI: 10.1016/j.pharmthera.2021.108035] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022]
Abstract
Positive allosteric modulators of γ-aminobutyric acid-A (GABAA) receptors or GABAkines have been widely used medicines for over 70 years for anxiety, epilepsy, sleep, and other disorders. Traditional GABAkines like diazepam have safety and tolerability concerns that include sedation, motor-impairment, respiratory depression, tolerance and dependence. Multiple GABAkines have entered clinical development but the issue of side-effects has not been fully solved. The compounds that are presently being developed and commercialized include several neuroactive steroids (an allopregnanolone formulation (brexanolone), an allopregnanolone prodrug (LYT-300), Sage-324, zuranolone, and ganaxolone), the α2/3-preferring GABAkine, KRM-II-81, and the α2/3/5-preferring GABAkine PF-06372865 (darigabat). The neuroactive steroids are in clinical development for post-partum depression, intractable epilepsy, tremor, status epilepticus, and genetic epilepsy disorders. Darigabat is in development for epilepsy and anxiety. The imidazodiazepine, KRM-II-81 is efficacious in animal models for the treatment of epilepsy and post-traumatic epilepsy, acute and chronic pain, as well as anxiety and depression. The efficacy of KRM-II-81 in models of pharmacoresistant epilepsy, preventing the development of seizure sensitization, and in brain tissue of intractable epileptic patients bodes well for improved therapeutics. Medicinal chemistry efforts are also ongoing to identify novel and improved GABAkines. The data document gaps in our understanding of the molecular pharmacology of GABAkines that drive differential pharmacological profiles, but emphasize advancements in the ability to successfully utilize GABAA receptor potentiation for therapeutic gain in neurology and psychiatry.
Collapse
Affiliation(s)
- Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia.,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | | | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Lalit K. Golani
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - James M. Cook
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
6
|
Zhu J, Xu C, Zhang X, Qiao L, Wang X, Zhang X, Yan X, Ni D, Yu T, Zhang G, Li Y. Altered topological properties of brain functional networks in drug-resistant epilepsy patients with vagus nerve stimulators. Seizure 2021; 92:149-154. [PMID: 34521062 DOI: 10.1016/j.seizure.2021.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/19/2021] [Accepted: 09/05/2021] [Indexed: 11/15/2022] Open
Abstract
PURPOSE To explore abnormalities of topological properties in drug-resistant epilepsy (DRE) patients after vagus nerve stimulation (VNS) by analyzing brain functional networks using graph theory. METHODS Fifteen patients and eight healthy controls (HC) were scanned separately with resting-state functional magnetic resonance imaging (rs-fMRI). Graph theoretical analyses were chosen to compare the global (small-world parameters [γ, λ, σ, Cp, and Lp], and network efficiency [Eg and Eloc]), and nodal (BC, DC, and NE) properties in preoperative patients (EPpre), postoperative patients (EPpost) and HC. RESULTS HC, EPpre and EPpost all satisfied the criteria for small-world properties (σ > 1) within the sparsity range of 0.05-0.5. Compared with EPpre, EPpost performed higher in λ and Eloc but lower in γ, σ, and Cp. Compared with HC, EPpre exhibited decreased BC, DC or NE in the right inferior frontal gyrus, right superior temporal gyrus, bilateral cingulate gyri, right supplementary motor area, right superior occipital gyrus, right Heschl gyrus, and left calcarine fissure; increased BC in the left postcentral/precentral gyrus, right paracentral lobule, left rolandic operculum, and left supramarginal gyrus, and increased NE in the right caudate nucleus. Compared with EPpre, EPpost showed increased BC, DC or NE in the bilateral inferior frontal gyrus, right middle frontal gyrus, bilateral cingulate gyri, right superior temporal gyrus, and right Heschl gyrus and decreased BC in the left fusiform gyrus. CONCLUSION VNS downregulated small-world properties in DRE, and caused changes in some key nodes to reorganize the transmission ability of the large-scale network.
Collapse
Affiliation(s)
- Jin Zhu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Cuiping Xu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Xi Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Liang Qiao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Xueyuan Wang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Xiaohua Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Xiaoming Yan
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Duanyu Ni
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Yongjie Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China.
| |
Collapse
|
7
|
Garcia-Cairasco N, Podolsky-Gondim G, Tejada J. Searching for a paradigm shift in the research on the epilepsies and associated neuropsychiatric comorbidities. From ancient historical knowledge to the challenge of contemporary systems complexity and emergent functions. Epilepsy Behav 2021; 121:107930. [PMID: 33836959 DOI: 10.1016/j.yebeh.2021.107930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
In this review, we will discuss in four scenarios our challenges to offer possible solutions for the puzzle associated with the epilepsies and neuropsychiatric comorbidities. We need to recognize that (1) since quite old times, human wisdom was linked to the plural (distinct global places/cultures) perception of the Universe we are in, with deep respect for earth and nature. Plural ancestral knowledge was added with the scientific methods; however, their joint efforts are the ideal scenario; (2) human behavior is not different than animal behavior, in essence the product of Darwinian natural selection; knowledge of animal and human behavior are complementary; (3) the expression of human behavior follows the same rules that complex systems with emergent properties, therefore, we can measure events in human, clinical, neurobiological situations with complexity systems' tools; (4) we can use the semiology of epilepsies and comorbidities, their neural substrates, and potential treatments (including experimental/computational modeling, neurosurgical interventions), as a source and collection of integrated big data to predict with them (e.g.: machine/deep learning) diagnosis/prognosis, individualized solutions (precision medicine), basic underlying mechanisms and molecular targets. Once the group of symptoms/signals (with a myriad of changing definitions and interpretations over time) and their specific sequences are determined, in epileptology research and clinical settings, the use of modern and contemporary techniques such as neuroanatomical maps, surface electroencephalogram and stereoelectroencephalography (SEEG) and imaging (MRI, BOLD, DTI, SPECT/PET), neuropsychological testing, among others, are auxiliary in the determination of the best electroclinical hypothesis, and help design a specific treatment, usually as the first attempt, with available pharmacological resources. On top of ancient knowledge, currently known and potentially new antiepileptic drugs, alternative treatments and mechanisms are usually produced as a consequence of the hard, multidisciplinary, and integrated studies of clinicians, surgeons, and basic scientists, all over the world. The existence of pharmacoresistant patients, calls for search of other solutions, being along the decades the surgeries the most common interventions, such as resective procedures (i.e., selective or standard lobectomy, lesionectomy), callosotomy, hemispherectomy and hemispherotomy, added by vagus nerve stimulation (VNS), deep brain stimulation (DBS), neuromodulation, and more recently focal minimal or noninvasive ablation. What is critical when we consider the pharmacoresistance aspect with the potential solution through surgery, is still the pursuit of localization-dependent regions (e.g.: epileptogenic zone (EZ)), in order to decide, no matter how sophisticated are the brain mapping tools (EEG and MRI), the size and location of the tissue to be removed. Mimicking the semiology and studying potential neural mechanisms and molecular targets - by means of experimental and computational modeling - are fundamental steps of the whole process. Concluding, with the conjunction of ancient knowledge, coupled to critical and creative contemporary, scientific (not dogmatic) clinical/surgical, and experimental/computational contributions, a better world and of improved quality of life can be offered to the people with epilepsy and neuropsychiatric comorbidities, who are still waiting (as well as the scientists) for a paradigm shift in epileptology, both in the Basic Science, Computational, Clinical, and Neurosurgical Arenas. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Norberto Garcia-Cairasco
- Laboratório de Neurofisiologia e Neuroetologia Experimental, Departmento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto. Brazil; Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Guilherme Podolsky-Gondim
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Julian Tejada
- Departamento de Psicologia, Universidade Federal de Sergipe, Brazil.
| |
Collapse
|
8
|
Knutson DE, Smith JL, Ping X, Jin X, Golani LK, Li G, Tiruveedhula VVNPB, Rashid F, Mian MY, Jahan R, Sharmin D, Cerne R, Cook JM, Witkin JM. Imidazodiazepine Anticonvulsant, KRM-II-81, Produces Novel, Non-diazepam-like Antiseizure Effects. ACS Chem Neurosci 2020; 11:2624-2637. [PMID: 32786313 DOI: 10.1021/acschemneuro.0c00295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The need for improved medications for the treatment of epilepsy and chronic pain is essential. Epileptic patients typically take multiple antiseizure drugs without complete seizure freedom, and chronic pain is not fully managed with current medications. A positive allosteric modulator (PAM) of α2/3-containing GABAA receptors (5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazole[1,5-α][1,4]diazepin-3-yl) oxazole or KRM-II-81 (8) is a lead compound in a series of imidazodiazepines. We previously reported that KRM-II-81 produces broad-based anticonvulsant and antinociceptive efficacy in rodent models and provides a wider margin over motoric side effects than that of other GABAA receptor PAMs. The present series of experiments was designed to fill key missing gaps in prior preclinical studies assessing whether KRM-II-81 could be further differentiated from nonselective GABAA receptor PAMs using the anticonvulsant diazepam (DZP) as a comparator. In multiple chemical seizure provocation models in mice, KRM-II-81 was either equally or more efficacious than DZP. Most strikingly, KRM-II-81 but not DZP blocked the development of seizure sensitivity to the chemoconvulsants cocaine and pentylenetetrazol in seizure kindling models. These and predecessor data have placed KRM-II-81 into consideration for clinical development requiring the manufacture of kilogram amounts of good manufacturing practice material. We describe here a novel synthetic route amenable to kilogram quantity production. The new biological and chemical data provide key steps forward in the development of KRM-II-81 (8) as an improved treatment option for patients suffering from epilepsy.
Collapse
Affiliation(s)
- Daniel E. Knutson
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery, Peyton Manning Hospital for Children Ascension St. Vincent, Indianapolis, Indiana 46260, United States
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, Indiana 46202,United States
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, Indiana 46202,United States
| | - Lalit K. Golani
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Guanguan Li
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - V. V. N. Phani Babu Tiruveedhula
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Farjana Rashid
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Md Yeunus Mian
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Rajwana Jahan
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Dishary Sharmin
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Peyton Manning Hospital for Children Ascension St. Vincent, Indianapolis, Indiana 46260, United States
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - James M. Cook
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Jeffrey M. Witkin
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
- Laboratory of Antiepileptic Drug Discovery, Peyton Manning Hospital for Children Ascension St. Vincent, Indianapolis, Indiana 46260, United States
- Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, Indiana 46260, United States
| |
Collapse
|
9
|
Sharma AK, Sane HM, Kulkarni PP, Gokulchandran N, Biju H, Badhe PB. Autologous bone marrow mononuclear cell transplantation in patients with chronic traumatic brain injury- a clinical study. CELL REGENERATION (LONDON, ENGLAND) 2020; 9:3. [PMID: 32588151 PMCID: PMC7306831 DOI: 10.1186/s13619-020-00043-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/21/2020] [Indexed: 12/14/2022]
Abstract
Background Chronic Traumatic Brain Injury (TBI) is one of the common causes of longterm disability worldwide. Cell transplantation has gained attention as a prospective therapeutic option for neurotraumatic disorders like TBI. The postulated mechanism of cell transplantation which includes angiogenesis, axonal regeneration, neurogenesis and synaptic remodeling, may tackle the pathology of chronic TBI and improve overall functioning. Methods To study the effects of cell transplantation, 50 patients with chronic TBI were enrolled in an open label non-randomized study. The intervention included intrathecal transplantation of autologous bone marrow mononuclear cells and neurorehabilitation. Mean follow up duration was 22 months. Fifteen patients underwent second dose of cell transplantation, 6 months after their first intervention. Percentage analysis was performed to analyze the symptomatic improvements in the patients. Functional independence measure (FIM) was used as an outcome measure to evaluate the functional changes in the patients. Statistical tests were applied on the pre-intervention and post-intervention scores for determining the significance. Comparative Positron Emission Tomography- computed tomography (PET CT) scans were performed in 10 patients to monitor the effect of intervention on brain function. Factors such as age, multiple doses, time since injury and severity of injury were also analyzed to determine their effect on the outcome of cell transplantation. Adverse events were monitored throughout the follow up period. Results Overall 92% patients showed improvements in symptoms such as sitting and standing balance, voluntary control, memory, oromotor skills lower limb activities, ambulation, trunk & upper limb activity, speech, posture, communication, psychological status, cognition, attention and concentration, muscle tone, coordination, activities of daily living. A statistically significant (at p ≤ 0.05 with p-value 0) improvement was observed in the scores of FIM after intervention on the Wilcoxon signed rank test. Better outcome of the intervention was found in patients with mild TBI, age less than 18 years and time since injury less than 5 years. Ten patients who underwent a repeat PET CT scan brain showed improved brain metabolism in areas which correlated to the symptomatic changes. Two patients had an episode of seizures which was managed with medication. They both had an abnormal EEG before the intervention and 1 of them had previous history and was on antiepileptics. No other major adverse events were recorded. Conclusion This study demonstrates the safety and efficacy of cell transplantation in chronic TBI on long term follow up. Early intervention in younger age group of patients with mild TBI showed the best outcome in this study. In combination with neurorehabilitation, cell transplantation can enhance functional recovery and improve quality of life of patients with chronic TBI. PET CT scan brain should be explored as a monitoring tool to study the efficacy of intervention.
Collapse
Affiliation(s)
- Alok K Sharma
- Department of Medical Services, NeuroGen Brain & Spine Institute, Plot 19, Sector 40, Next to Seawood Grand Central Station (W), Off Palm Beach Road, Nerul, Navi Mumbai, 400706, India
| | - Hemangi M Sane
- Department Of Research & Development, NeuroGen Brain & Spine Institute, Plot 19, Sector 40, Next to Seawood Grand Central Station [W], Off Palm Beach Road, Nerul, Navi Mumbai, 400706, India
| | - Pooja P Kulkarni
- Department Of Research & Development, NeuroGen Brain & Spine Institute, Plot 19, Sector 40, Next to Seawood Grand Central Station [W], Off Palm Beach Road, Nerul, Navi Mumbai, 400706, India.
| | - Nandini Gokulchandran
- Department of Medical Services, NeuroGen Brain & Spine Institute, Plot 19, Sector 40, Next to Seawood Grand Central Station (W), Off Palm Beach Road, Nerul, Navi Mumbai, 400706, India
| | - Hema Biju
- Department of Neurorehabilitation, NeuroGen Brain & Spine Institute, Plot 19, Sector 40, Next to Seawood Grand Central Station [W], Off Palm Beach Road, Nerul, Navi Mumbai, 400706, India
| | - Prerna B Badhe
- Department of Regenerative Laboratory Services, NeuroGen Brain & Spine Institute, Plot 19, Sector 40, Next to Seawood Grand Central Station [W], Off Palm Beach Road, Nerul, Navi Mumbai, 400706, India
| |
Collapse
|
10
|
Witkin JM, Li G, Golani LK, Xiong W, Smith JL, Ping X, Rashid F, Jahan R, Cerne R, Cook JM, Jin X. The Positive Allosteric Modulator of α2/3-Containing GABA A Receptors, KRM-II-81, Is Active in Pharmaco-Resistant Models of Epilepsy and Reduces Hyperexcitability after Traumatic Brain Injury. J Pharmacol Exp Ther 2020; 372:83-94. [PMID: 31694876 PMCID: PMC6927408 DOI: 10.1124/jpet.119.260968] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022] Open
Abstract
The imidizodiazepine, 5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)oxazole (KRM-II-81), is selective for α2/3-containing GABAA receptors. KRM-II-81 dampens seizure activity in rodent models with enhanced efficacy and reduced motor-impairment compared with diazepam. In the present study, KRM-II-81 was studied in assays designed to detect antiepileptics with improved chances of impacting pharmaco-resistant epilepsies. The potential for reducing neural hyperactivity weeks after traumatic brain injury was also studied. KRM-II-81 suppressed convulsions in corneal-kindled mice. Mice with kainate-induced mesial temporal lobe seizures exhibited spontaneous recurrent hippocampal paroxysmal discharges that were significantly reduced by KRM-II-81 (15 mg/kg, orally). KRM-II-81 also decreased convulsions in rats undergoing amygdala kindling in the presence of lamotrigine (lamotrigine-insensitive model) (ED50 = 19 mg/kg, i.p.). KRM-II-81 reduced focal and generalized seizures in a kainate-induced chronic epilepsy model in rats (20 mg/kg, i.p., three times per day). In mice with damage to the left cerebral cortex by controlled-cortical impact, enduring neuronal hyperactivity was dampened by KRM-II-81 (10 mg/kg, i.p.) as observed through in vivo two-photon imaging of layer II/III pyramidal neurons in GCaMP6-expressing transgenic mice. No notable side effects emerged up to doses of 300 mg/kg KRM-II-81. Molecular modeling studies were conducted: docking in the binding site of the α1β3γ2L GABAA receptor showed that replacing the C8 chlorine atom of alprazolam with the acetylene of KRM-II-81 led to loss of the key interaction with α1His102, providing a structural rationale for its low affinity for α1-containing GABAA receptors compared with benzodiazepines such as alprazolam. Overall, these findings predict that KRM-II-81 has improved therapeutic potential for epilepsy and post-traumatic epilepsy. SIGNIFICANCE STATEMENT: We describe the effects of a relatively new orally bioavailable small molecule in rodent models of pharmaco-resistant epilepsy and traumatic brain injury. KRM-II-81 is more potent and generally more efficacious than standard-of-care antiepileptics. In silico docking experiments begin to describe the structural basis for the relative lack of motor impairment induced by KRM-II-81. KRM-II-81 has unique structural and anticonvulsant effects, predicting its potential as an improved antiepileptic drug and novel therapy for post-traumatic epilepsy.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Guanguan Li
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Lalit K Golani
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Wenhui Xiong
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Jodi L Smith
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Xingjie Ping
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Farjana Rashid
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Rajwana Jahan
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Rok Cerne
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - James M Cook
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Xiaoming Jin
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| |
Collapse
|
11
|
Scholl T, Mühlebner A, Ricken G, Gruber V, Fabing A, Samueli S, Gröppel G, Dorfer C, Czech T, Hainfellner JA, Prabowo AS, Reinten RJ, Hoogendijk L, Anink JJ, Aronica E, Feucht M. Impaired oligodendroglial turnover is associated with myelin pathology in focal cortical dysplasia and tuberous sclerosis complex. Brain Pathol 2017; 27:770-780. [PMID: 27750396 PMCID: PMC5697648 DOI: 10.1111/bpa.12452] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/06/2016] [Indexed: 12/19/2022] Open
Abstract
Conventional antiepileptic drugs suppress the excessive firing of neurons during seizures. In drug-resistant patients, treatment failure indicates an alternative important epileptogenic trigger. Two epilepsy-associated pathologies show myelin deficiencies in seizure-related brain regions: Focal Cortical Dysplasia IIB (FCD) and cortical tubers in Tuberous Sclerosis Complex (TSC). Studies uncovering white matter-pathology mechanisms are therefore urgently needed to gain more insight into epileptogenesis, the propensity to maintain seizures, and their associated comorbidities such as cognitive defects. We analyzed epilepsy surgery specimens of FCD IIB (n = 22), TSC (n = 8), and other malformations of cortical development MCD (n = 12), and compared them to autopsy and biopsy cases (n = 15). The entire lesional pathology was assessed using digital immunohistochemistry, immunofluorescence and western blotting for oligodendroglial lineage, myelin and mTOR markers, and findings were correlated to clinical parameters. White matter pathology with depleted myelin and oligodendroglia were found in 50% of FCD IIB and 62% of TSC cases. Other MCDs had either a normal content or even showed reactive oligodendrolial hyperplasia. Furthermore, myelin deficiency was associated with increased mTOR expression and the lower amount of oligodendroglia was linked with their precursor cells (PDGFRa). The relative duration of epilepsy (normalized to age) also correlated positively to mTOR activation and negatively to myelination. Decreased content of oligodendroglia and missing precursor cells indicated insufficient oligodendroglial development, probably mediated by mTOR, which may ultimately lead to severe myelin loss. In terms of disease management, an early and targeted treatment could restore normal myelin development and, therefore, alter seizure threshold and improve cognitive outcome.
Collapse
Affiliation(s)
- Theresa Scholl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Angelika Mühlebner
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Gerda Ricken
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Victoria Gruber
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Anna Fabing
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Sharon Samueli
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Gudrun Gröppel
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Czech
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | | | - Avanita S Prabowo
- Department of (Neuro) Pathology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Roy J Reinten
- Department of (Neuro) Pathology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Lisette Hoogendijk
- Department of (Neuro) Pathology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Jasper J Anink
- Department of (Neuro) Pathology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Centre, Amsterdam, The Netherlands.,Swammerdam Institute for Life Sciences, Centre for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Martha Feucht
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Talevi A. Computational approaches for innovative antiepileptic drug discovery. Expert Opin Drug Discov 2016; 11:1001-16. [DOI: 10.1080/17460441.2016.1216965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Carmona-Aparicio L, Pérez-Cruz C, Zavala-Tecuapetla C, Granados-Rojas L, Rivera-Espinosa L, Montesinos-Correa H, Hernández-Damián J, Pedraza-Chaverri J, Sampieri AIII, Coballase-Urrutia E, Cárdenas-Rodríguez N. Overview of Nrf2 as Therapeutic Target in Epilepsy. Int J Mol Sci 2015; 16:18348-67. [PMID: 26262608 PMCID: PMC4581249 DOI: 10.3390/ijms160818348] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/15/2015] [Accepted: 07/23/2015] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is a biochemical state of imbalance in the production of reactive oxygen and nitrogen species and antioxidant defenses. It is involved in the physiopathology of degenerative and chronic neuronal disorders, such as epilepsy. Experimental evidence in humans and animals support the involvement of oxidative stress before and after seizures. In the past few years, research has increasingly focused on the molecular pathways of this process, such as that involving transcription factor nuclear factor E2-related factor 2 (Nrf2), which plays a central role in the regulation of antioxidant response elements (ARE) and modulates cellular redox status. The aim of this review is to present experimental evidence on the role of Nrf2 in this neurological disorder and to further determine the therapeutic impact of Nrf2 in epilepsy.
Collapse
Affiliation(s)
- Liliana Carmona-Aparicio
- Laboratory of Neurochemistry (Neurosciences), National Institute of Pediatrics, D.F. 04530, Mexico; E-Mail:
| | - Claudia Pérez-Cruz
- Laboratory of Neuroplasticity and Neurodegeneration, Cinvestav, D.F. 07360, Mexico; E-Mail:
| | - Cecilia Zavala-Tecuapetla
- Laboratory of Physiology of the Reticular Formation, National Institute of Neurology and Neurosurgery-MVS, D.F. 14269, Mexico; E-Mail:
| | - Leticia Granados-Rojas
- Laboratory of Neurochemistry (Neurosciences), National Institute of Pediatrics, D.F. 04530, Mexico; E-Mail:
| | | | | | - Jacqueline Hernández-Damián
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, D.F. 04150, Mexico; E-Mails: (J.H.-D.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, D.F. 04150, Mexico; E-Mails: (J.H.-D.); (J.P.-C.)
| | - Aristides III Sampieri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, D.F. 04150, Mexico; E-Mails: (J.H.-D.); (J.P.-C.)
| | - Elvia Coballase-Urrutia
- Laboratory of Neurochemistry (Neurosciences), National Institute of Pediatrics, D.F. 04530, Mexico; E-Mail:
| | - Noemí Cárdenas-Rodríguez
- Laboratory of Neurochemistry (Neurosciences), National Institute of Pediatrics, D.F. 04530, Mexico; E-Mail:
| |
Collapse
|
14
|
Liu SY, Yang XL, Chen B, Hou Z, An N, Yang MH, Yang H. Clinical outcomes and quality of life following surgical treatment for refractory epilepsy: a systematic review and meta-analysis. Medicine (Baltimore) 2015; 94:e500. [PMID: 25674741 PMCID: PMC4602736 DOI: 10.1097/md.0000000000000500] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Surgery for refractory epilepsy is widely used but the efficacy of this treatment for providing a seizure-free outcome and better quality of life remains unclear.This study aimed to update current evidence and to evaluate the effects of surgery on quality of life in patients with refractory epilepsy.A systematic review and meta-analysis of the literature were conducted and selected studies included 2 groups of refractory epilepsy patients, surgical and nonsurgical.The studies were assessed using the Newcastle-Ottawa Scale. The primary outcome was the seizure-free rate. The secondary outcome was quality of life. Adverse events were also reviewed.After screening, a total of 20 studies were selected: 8 were interventional, including 2 randomized controlled trials, and 12 were observational. All of the studies comprised 1959 patients with refractory epilepsy. The seizure-free rates were significantly higher for patients who received surgery compared with the patients who did not; the combined odds ratio was 19.35 (95% CI = 12.10-30.95, P < 0.001). After adjusting for publication bias the combined odds ratio was 10.25 (95% CI = 5.84-18.00). In both the interventional and observational studies, patients treated surgically had a significantly better quality of life compared with the patients not treated surgically. Complications were listed in 3 studies and the rates were similar in surgical and nonsurgical patients.Our meta-analysis found that for patients with refractory epilepsy, surgical treatment appears to provide a much greater likelihood of seizure-free outcome than nonsurgical treatment, although there is a need for more studies, particularly randomized studies, to confirm this conclusion. Based on more limited data, surgical treatment also appeared to provide a better quality of life and did not seem to increase complications.
Collapse
Affiliation(s)
- Shi-Yong Liu
- From the Epilepsy Center of PLA, Department of Neurosurgery, Xinqiao Hospital, the Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
15
|
|