1
|
Alnuqaydan AM, Eisa AA. Targeting Polyprotein to Design Potential Multiepitope Vaccine against Omsk Hemorrhagic Fever Virus (OHFV) by Evaluating Allergenicity, Antigenicity, and Toxicity Using Immunoinformatic Approaches. BIOLOGY 2024; 13:738. [PMID: 39336165 PMCID: PMC11429342 DOI: 10.3390/biology13090738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Omsk Hemorrhagic Fever Virus (OHFV) is an RNA virus with a single-stranded, positive-sense genome. It is classified under the Flaviviridae family. The genome of this virus is 98% similar to the Alkhurma hemorrhagic fever virus (AHFV), which belongs to the same family. Cases of the virus have been reported in various regions of Saudi Arabia. Both OHFV and AHFV have similarities in pathogenic polyprotein targets. No effective and licensed vaccines are available to manage OHFV infections. Therefore, an effective and safe vaccine is required that can activate protective immunity against OHFV. The current study aimed to design a multiepitope subunit vaccine against the OHFV utilizing several immunoinformatic tools. The polyprotein of OHFV was selected and potent antigenic, non-allergenic, and nontoxic cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and linear B-lymphocyte (LBL) epitopes were chosen. After screening, eight (8) CTL, five (5) HTL, and six (6) B cell epitopes were joined with each other using different linkers. Adjuvant human beta defensin-2 was also linked to the epitopes to increase vaccine antigenic and immunogenic efficiency. The designed vaccine was docked with Toll-like receptor 4 (TLR4) as it activates and induces primary and secondary immune responses against OHFV. Codon optimization was carried out, which resulted in a CAI value of 0.99 and 53.4% GC contents. In addition, the construct was blindly docked to the TLR4 immune receptor and subjected to conformational dynamics simulation analysis to interpret the intricate affinity and comprehend the time-dependent behavior. Moreover, it was predicted that immune responses to the developed vaccine construct reported formation of strong humoral and cellular immune cells. Therefore, the proposed vaccine may be considered in experimental assays to combat OHFV infections. Laboratory experiments for the above predictions are essential in order to evaluate the effectiveness, safety, and protective properties of the subject in question.
Collapse
Affiliation(s)
- Abdullah M Alnuqaydan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Meddina 30002, Saudi Arabia
| |
Collapse
|
2
|
Krejčová K, Krafcikova P, Klima M, Chalupska D, Chalupsky K, Zilecka E, Boura E. Structural and functional insights in flavivirus NS5 proteins gained by the structure of Ntaya virus polymerase and methyltransferase. Structure 2024; 32:1099-1109.e3. [PMID: 38781970 DOI: 10.1016/j.str.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Flaviviruses are single-stranded positive-sense RNA (+RNA) viruses that are responsible for several (re)emerging diseases such as yellow, dengue, or West Nile fevers. The Zika epidemic highlighted their dangerousness when a relatively benign virus known since the 1950s turned into a deadly pathogen. The central protein for their replication is NS5 (non-structural protein 5), which is composed of the N-terminal methyltransferase (MTase) domain and the C-terminal RNA-dependent RNA-polymerase (RdRp) domain. It is responsible for both RNA replication and installation of the 5' RNA cap. We structurally and biochemically analyzed the Ntaya virus MTase and RdRp domains and we compared their properties to other flaviviral NS5s. The enzymatic centers are well conserved across Flaviviridae, suggesting that the development of drugs targeting all flaviviruses is feasible. However, the enzymatic activities of the isolated proteins were significantly different for the MTase domains.
Collapse
Affiliation(s)
- Kateřina Krejčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic; Faculty of Sciences, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Petra Krafcikova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Karel Chalupsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Eva Zilecka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.
| |
Collapse
|
3
|
Mansfield KL, Schilling M, Sanders C, Holding M, Johnson N. Arthropod-Borne Viruses of Human and Animal Importance: Overwintering in Temperate Regions of Europe during an Era of Climate Change. Microorganisms 2024; 12:1307. [PMID: 39065076 PMCID: PMC11278640 DOI: 10.3390/microorganisms12071307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
The past three decades have seen an increasing number of emerging arthropod-borne viruses in temperate regions This process is ongoing, driven by human activities such as inter-continental travel, combined with the parallel emergence of invasive arthropods and an underlying change in climate that can increase the risk of virus transmission and persistence. In addition, natural events such as bird migration can introduce viruses to new regions. Despite the apparent regularity of virus emergence, arthropod-borne viruses circulating in temperate regions face the challenge of the late autumn and winter months where the arthropod vector is inactive. Viruses therefore need mechanisms to overwinter or they will fail to establish in temperate zones. Prolonged survival of arthropod-borne viruses within the environment, outside of both vertebrate host and arthropod vector, is not thought to occur and therefore is unlikely to contribute to overwintering in temperate zones. One potential mechanism is continued infection of a vertebrate host. However, infection is generally acute, with the host either dying or producing an effective immune response that rapidly clears the virus. There are few exceptions to this, although prolonged infection associated with orbiviruses such as bluetongue virus occurs in certain mammals, and viraemic vertebrate hosts therefore can, in certain circumstances, provide a route for long-term viral persistence in the absence of active vectors. Alternatively, a virus can persist in the arthropod vector as a mechanism for overwintering. However, this is entirely dependent on the ecology of the vector itself and can be influenced by changes in the climate during the winter months. This review considers the mechanisms for virus overwintering in several key arthropod vectors in temperate areas. We also consider how this will be influenced in a warming climate.
Collapse
Affiliation(s)
- Karen L. Mansfield
- Vector Borne Diseases, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, UK; (K.L.M.); (M.S.)
| | - Mirjam Schilling
- Vector Borne Diseases, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, UK; (K.L.M.); (M.S.)
| | | | - Maya Holding
- Virology and Pathogenesis Group, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK;
| | - Nicholas Johnson
- Vector Borne Diseases, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, UK; (K.L.M.); (M.S.)
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
4
|
Finke F, Hungerland J, Solov'yov IA, Schuhmann F. Different receptor models show differences in ligand binding strength and location: a computational drug screening for the tick-borne encephalitis virus. Mol Divers 2024:10.1007/s11030-024-10850-8. [PMID: 38739227 DOI: 10.1007/s11030-024-10850-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/16/2024] [Indexed: 05/14/2024]
Abstract
The tick-borne encephalitis virus (TBE) is a neurotrophic disease that has spread more rapidly throughout Europe and Asia in the past few years. At the same time, no cure or specific therapy is known to battle the illness apart from vaccination. To find a pharmacologically relevant drug, a computer-aided drug screening was initiated. Such a procedure probes a possible binding of a drug to the RNA Polymerase of TBE. The crystal structure of the receptor, however, includes missing and partially modeled regions, which rendered the structure incomplete and of questionable use for a thorough drug screening procedure. The quality of the receptor model was addressed by studying three putative structures created. We show that the choice of receptor models greatly influences the binding affinity of potential drug molecules and that the binding location could also be significantly impacted. We demonstrate that some drug candidates are unsuitable for one model but show decent results for another. Without any prejudice on the three employed receptor models, the study reveals the imperative need to investigate the receptor structure before drug binding is probed whether experimentally or computationally.
Collapse
Affiliation(s)
- Felicitas Finke
- Institute of Physics, Carl von Ossietzky Universität, Carl-von-Ossietzky-Str. 9-11, 26129, Oldenburg, Germany
| | - Jonathan Hungerland
- Institute of Physics, Carl von Ossietzky Universität, Carl-von-Ossietzky-Str. 9-11, 26129, Oldenburg, Germany
| | - Ilia A Solov'yov
- Institute of Physics, Carl von Ossietzky Universität, Carl-von-Ossietzky-Str. 9-11, 26129, Oldenburg, Germany.
- Research Centre for Neurosensory Science, Carl von Ossietzky Universität, Carl-von-Ossietzky-Str. 9-11, 26129, Oldenburg, Germany.
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany.
| | - Fabian Schuhmann
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark.
| |
Collapse
|
5
|
Srichawla BS, Manan MR, Kipkorir V, Dhali A, Diebel S, Sawant T, Zia S, Carrion-Alvarez D, Suteja RC, Nurani K, Găman MA. Neuroinvasion of emerging and re-emerging arboviruses: A scoping review. SAGE Open Med 2024; 12:20503121241229847. [PMID: 38711470 PMCID: PMC11072077 DOI: 10.1177/20503121241229847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/16/2024] [Indexed: 05/08/2024] Open
Abstract
Background Arboviruses are RNA viruses and some have the potential to cause neuroinvasive disease and are a growing threat to global health. Objectives Our objective is to identify and map all aspects of arbovirus neuroinvasive disease, clarify key concepts, and identify gaps within our knowledge with appropriate future directions related to the improvement of global health. Methods Sources of Evidence: A scoping review of the literature was conducted using PubMed, Scopus, ScienceDirect, and Hinari. Eligibility Criteria: Original data including epidemiology, risk factors, neurological manifestations, neuro-diagnostics, management, and preventive measures related to neuroinvasive arbovirus infections was obtained. Sources of evidence not reporting on original data, non-English, and not in peer-reviewed journals were removed. Charting Methods: An initial pilot sample of 30 abstracts were reviewed by all authors and a Cohen's kappa of κ = 0.81 (near-perfect agreement) was obtained. Records were manually reviewed by two authors using the Rayyan QCRI software. Results A total of 171 records were included. A wide array of neurological manifestations can occur most frequently, including parkinsonism, encephalitis/encephalopathy, meningitis, flaccid myelitis, and Guillain-Barré syndrome. Magnetic resonance imaging of the brain often reveals subcortical lesions, sometimes with diffusion restriction consistent with acute ischemia. Vertical transmission of arbovirus is most often secondary to the Zika virus. Neurological manifestations of congenital Zika syndrome, include microcephaly, failure to thrive, intellectual disability, and seizures. Cerebrospinal fluid analysis often shows lymphocytic pleocytosis, elevated albumin, and protein consistent with blood-brain barrier dysfunction. Conclusions Arbovirus infection with neurological manifestations leads to increased morbidity and mortality. Risk factors for disease include living and traveling in an arbovirus endemic zone, age, pregnancy, and immunosuppressed status. The management of neuroinvasive arbovirus disease is largely supportive and focuses on specific neurological complications. There is a need for therapeutics and currently, management is based on disease prevention and limiting zoonosis.
Collapse
Affiliation(s)
- Bahadar S Srichawla
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Vincent Kipkorir
- Department of Human Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Arkadeep Dhali
- Department of Internal Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Sebastian Diebel
- Department of Family Medicine, Northern Ontario School of Medicine University, Sudbury, ON, Canada
| | - Tirtha Sawant
- Department of Neurology, Spartan Health Sciences University, Spartan Drive St, Saint Lucia
| | - Subtain Zia
- Department of Infectious Diseases, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Richard C Suteja
- Faculty of Medicine, Udayana University, Kampus Bukit, Jl, Raya Kampus Unud Jimbaran, Kec, Kuta Sel, Kabupaten Badung, Bukit Jimbaran, Bali, Indonesia
| | - Khulud Nurani
- Department of Human Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, București, Romania
- Bucharest, Romania and Department of Hematology, Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, București, Romania
| |
Collapse
|
6
|
Jung H, Choi CH, Lee M, Kim SY, Aknazarov B, Nyrgaziev R, Atabekova N, Jetigenov E, Chung YS, Lee HI. Molecular Detection and Phylogenetic Analysis of Tick-Borne Encephalitis Virus from Ticks Collected from Cattle in Kyrgyzstan, 2023. Viruses 2024; 16:107. [PMID: 38257807 PMCID: PMC10821214 DOI: 10.3390/v16010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Ticks are important vectors of the tick-borne encephalitis virus (TBEV). In Kyrgyzstan, the livestock farming trade and nomadic lifestyle enable tick-borne diseases to be imported from neighboring countries, but there are few relevant studies. In this study, we collected 40 ticks from cattle in Kyrgyzstan. Molecular marker analysis identified the ticks as Ixodes persulcatus (97.5%; n = 39) and Haemaphysalis punctata (2.5%; n = 1). Real-time PCR screening revealed two ticks to be positive for TBEV, but only one tick was amplified using nested PCR targeting the TBEV envelope (E) and non-structure 5 (NS5) gene. The obtained sequences belonged to the TBEV Siberian subtype and phylogenetic tree analysis results confirmed that the virus was related to the Bosnia strain. We also performed next-generation sequencing, which confirmed the TBEV Siberian subtype. Continuous research and surveillance of TBEV in Kyrgyzstan are required to provide further information on tick-borne diseases.
Collapse
Affiliation(s)
- Haneul Jung
- Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency (KDCA), Cheongju 28159, Republic of Korea; (H.J.); (S.-Y.K.)
| | - Chi-Hwan Choi
- Division of High-Risk Pathogens, Korea Disease Control and Prevention Agency (KDCA), Cheongju 28159, Republic of Korea; (C.-H.C.); (M.L.); (Y.-S.C.)
| | - Minji Lee
- Division of High-Risk Pathogens, Korea Disease Control and Prevention Agency (KDCA), Cheongju 28159, Republic of Korea; (C.-H.C.); (M.L.); (Y.-S.C.)
| | - Seong-Yoon Kim
- Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency (KDCA), Cheongju 28159, Republic of Korea; (H.J.); (S.-Y.K.)
| | - Bekbolsun Aknazarov
- Faculty of Veterinary Medicine, Kyrgyz National Agrarian University Named after K. I. Skryabin, Bishkek 720005, Kyrgyzstan; (B.A.); (R.N.); (N.A.); (E.J.)
| | - Rysbek Nyrgaziev
- Faculty of Veterinary Medicine, Kyrgyz National Agrarian University Named after K. I. Skryabin, Bishkek 720005, Kyrgyzstan; (B.A.); (R.N.); (N.A.); (E.J.)
| | - Nurzina Atabekova
- Faculty of Veterinary Medicine, Kyrgyz National Agrarian University Named after K. I. Skryabin, Bishkek 720005, Kyrgyzstan; (B.A.); (R.N.); (N.A.); (E.J.)
| | - Elmurat Jetigenov
- Faculty of Veterinary Medicine, Kyrgyz National Agrarian University Named after K. I. Skryabin, Bishkek 720005, Kyrgyzstan; (B.A.); (R.N.); (N.A.); (E.J.)
| | - Yoon-Seok Chung
- Division of High-Risk Pathogens, Korea Disease Control and Prevention Agency (KDCA), Cheongju 28159, Republic of Korea; (C.-H.C.); (M.L.); (Y.-S.C.)
| | - Hee-Il Lee
- Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency (KDCA), Cheongju 28159, Republic of Korea; (H.J.); (S.-Y.K.)
| |
Collapse
|
7
|
Albinsson B, Hoffman T, Kolstad L, Bergström T, Bogdanovic G, Heydecke A, Hägg M, Kjerstadius T, Lindroth Y, Petersson A, Stenberg M, Vene S, Ellström P, Rönnberg B, Lundkvist Å. Seroprevalence of tick-borne encephalitis virus and vaccination coverage of tick-borne encephalitis, Sweden, 2018 to 2019. Euro Surveill 2024; 29:2300221. [PMID: 38214080 PMCID: PMC10785208 DOI: 10.2807/1560-7917.es.2024.29.2.2300221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/07/2023] [Indexed: 01/13/2024] Open
Abstract
BackgroundIn Sweden, information on seroprevalence of tick-borne encephalitis virus (TBEV) in the population, including vaccination coverage and infection, is scattered. This is largely due to the absence of a national tick-borne encephalitis (TBE) vaccination registry, scarcity of previous serological studies and use of serological methods not distinguishing between antibodies induced by vaccination and infection. Furthermore, the number of notified TBE cases in Sweden has continued to increase in recent years despite increased vaccination.AimThe aim was to estimate the TBEV seroprevalence in Sweden.MethodsIn 2018 and 2019, 2,700 serum samples from blood donors in nine Swedish regions were analysed using a serological method that can distinguish antibodies induced by vaccination from antibodies elicited by infection. The regions were chosen to reflect differences in notified TBE incidence.ResultsThe overall seroprevalence varied from 9.7% (95% confidence interval (CI): 6.6-13.6%) to 64.0% (95% CI: 58.3-69.4%) between regions. The proportion of vaccinated individuals ranged from 8.7% (95% CI: 5.8-12.6) to 57.0% (95% CI: 51.2-62.6) and of infected from 1.0% (95% CI: 0.2-3.0) to 7.0% (95% CI: 4.5-10.7). Thus, more than 160,000 and 1,600,000 individuals could have been infected by TBEV and vaccinated against TBE, respectively. The mean manifestation index was 3.1%.ConclusionA difference was observed between low- and high-incidence TBE regions, on the overall TBEV seroprevalence and when separated into vaccinated and infected individuals. The estimated incidence and manifestation index argue that a large proportion of TBEV infections are not diagnosed.
Collapse
Affiliation(s)
- Bo Albinsson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- These authors contributed equally to the work and share the first authorship
- Laboratory of Clinical Microbiology, Uppsala University Hospital, Uppsala, Sweden
| | - Tove Hoffman
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- These authors contributed equally to the work and share the first authorship
| | - Linda Kolstad
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Gordana Bogdanovic
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Heydecke
- Centre for Research and Development, Uppsala University, Region Gävleborg, Gävle, Sweden
| | - Mirja Hägg
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Ylva Lindroth
- Department of Laboratory Medicine, Medical Microbiology, Lund University, Skåne Laboratory Medicine, Lund, Sweden
| | - Annika Petersson
- Department of Clinical Chemistry and Transfusion Medicine, Växjö Central Hospital, Växjö, Sweden
| | - Marie Stenberg
- Laboratory Medical Center Gotland, Visby hospital, Visby, Sweden
| | - Sirkka Vene
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Patrik Ellström
- Laboratory of Clinical Microbiology, Uppsala University Hospital, Uppsala, Sweden
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Bengt Rönnberg
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Laboratory of Clinical Microbiology, Uppsala University Hospital, Uppsala, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Zhang C, Li Y, Samad A, He H, Ma H, Chen Y, Jin T. Kyasanur Forest disease virus NS3 helicase: Insights into structure, activity, and inhibitors. Int J Biol Macromol 2024; 254:127856. [PMID: 37924898 DOI: 10.1016/j.ijbiomac.2023.127856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Kyasanur Forest disease virus (KFDV), a tick-borne flavivirus prevalent in India, presents a serious threat to human health. KFDV NS3 helicase (NS3hel) is considered a potential drug target due to its involvement in the viral replication complex. Here, we resolved the crystal structures of KFDV NS3hel apo and its complex with three phosphate molecules, which indicates a conformational switch during ATP hydrolysis. Our data revealed that KFDV NS3hel has a higher binding affinity for dsRNA, and its intrinsic ATPase activity was enhanced by dsRNA while being inhibited by DNA. Through mutagenesis analysis, several residues within motifs I, Ia, III, V, and VI were identified to be crucial for NS3hel ATPase activity. Notably, the M419A mutation drastically reduced NS3hel ATPase activity. We propose that the methionine-aromatic interaction between residues M419 and W294, located on the surface of the RNA-binding channel, could be a target for the design of efficient inhibitor probes. Moreover, epigallocatechin gallate (EGCG), a tea-derived polyphenol, strongly inhibited NS3hel ATPase activity with an IC50 value of 0.8 μM. Our computational docking data show that EGCG binds at the predicted druggable hotspots of NS3hel. Overall, these findings contribute to the development and design of more effective and specific inhibitors.
Collapse
Affiliation(s)
- Caiying Zhang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| | - Yuelong Li
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Abdus Samad
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Hongliang He
- Department of Infectious Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China; Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Huan Ma
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yang Chen
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Tengchuan Jin
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Department of Infectious Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China; Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei 230027, China; Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
9
|
Dabas R, Sharma N, Taksande AB, Prasad R, Munjewar PK, Wanjari MB. Breast Milk: A Potential Route of Tick-Borne Encephalitis Virus Transmission from Mother to Infant. Cureus 2023; 15:e41590. [PMID: 37559844 PMCID: PMC10407968 DOI: 10.7759/cureus.41590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/09/2023] [Indexed: 08/11/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a global public health concern, and understanding its transmission routes is crucial for effective prevention and control. While tick bites are the primary mode of TBEV transmission, emerging evidence suggests the potential for TBEV transmission through breast milk from infected mothers to their infants. This review article provides an overview of the current knowledge regarding TBEV transmission through breast milk and its clinical implications. It explores the presence and persistence of TBEV in breast milk, potential mechanisms of transmission, and the role of immune factors in facilitating or inhibiting viral transmission. The clinical outcomes and complications in infants infected with TBEV through breast milk are discussed, along with the epidemiological patterns and geographical considerations of this transmission mode. Preventive and management strategies are also addressed, including public health measures, risk assessment, and potential interventions. Future research directions are highlighted, emphasizing the need for further epidemiological studies, investigations into viral load dynamics, immune responses, and the development of preventive measures targeting TBEV transmission through breast milk. By expanding our knowledge in these areas, we can improve strategies to reduce the risk of TBEV transmission from mothers to infants and protect vulnerable populations.
Collapse
Affiliation(s)
- Rohit Dabas
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Nandita Sharma
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Avinash B Taksande
- Physiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Roshan Prasad
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pratiksha K Munjewar
- Medical Surgical Nursing, Smt. Radhikabai Meghe Memorial College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Mayur B Wanjari
- Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
10
|
Pustijanac E, Buršić M, Talapko J, Škrlec I, Meštrović T, Lišnjić D. Tick-Borne Encephalitis Virus: A Comprehensive Review of Transmission, Pathogenesis, Epidemiology, Clinical Manifestations, Diagnosis, and Prevention. Microorganisms 2023; 11:1634. [PMID: 37512806 PMCID: PMC10383662 DOI: 10.3390/microorganisms11071634] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV), a member of the Flaviviridae family, can cause serious infection of the central nervous system in humans, resulting in potential neurological complications and fatal outcomes. TBEV is primarily transmitted to humans through infected tick bites, and the viral agent circulates between ticks and animals, such as deer and small mammals. The occurrence of the infection aligns with the seasonal activity of ticks. As no specific antiviral therapy exists for TBEV infection, treatment approaches primarily focus on symptomatic relief and support. Active immunization is highly effective, especially for individuals in endemic areas. The burden of TBEV infections is increasing, posing a growing health concern. Reported incidence rates rose from 0.4 to 0.9 cases per 100,000 people between 2015 and 2020. The Baltic and Central European countries have the highest incidence, but TBE is endemic across a wide geographic area. Various factors, including social and environmental aspects, improved medical awareness, and advanced diagnostics, have contributed to the observed increase. Diagnosing TBEV infection can be challenging due to the non-specific nature of the initial symptoms and potential co-infections. Accurate diagnosis is crucial for appropriate management, prevention of complications, and effective control measures. In this comprehensive review, we summarize the molecular structure of TBEV, its transmission and circulation in natural environments, the pathogenesis of TBEV infection, the epidemiology and global distribution of the virus, associated risk factors, clinical manifestations, and diagnostic approaches. By improving understanding of these aspects, we aim to enhance knowledge and promote strategies for timely and accurate diagnosis, appropriate management, and the implementation of effective control measures against TBEV infections.
Collapse
Affiliation(s)
- Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100 Pula, Croatia
| | - Moira Buršić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100 Pula, Croatia
| | - Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation and the Department of Health Metrics Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dubravka Lišnjić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| |
Collapse
|
11
|
Tang WD, Tang HL, Peng HR, Ren RW, Zhao P, Zhao LJ. Inhibition of tick-borne encephalitis virus in cell cultures by ribavirin. Front Microbiol 2023; 14:1182798. [PMID: 37378295 PMCID: PMC10291047 DOI: 10.3389/fmicb.2023.1182798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) belonging to arboviruses is a major member of zoonotic pathogens. TBEV infection causes severe human encephalitis without specific antiviral drugs. Due to its use of antiviral drug against a wide range of viruses, we investigated antiviral effect of ribavirin against TBEV in susceptible human cell lines A549 and SH-SY5Y. Ribavirin displayed minor cytotoxicity on multiple cell lines. Ribavirin obviously impaired TBEV replication and protected the infected cells from cytopathic effect. Importantly, ribavirin markedly inhibited TBEV propagation, as evidenced by impairment of TBEV production and viral RNA replication. Treatment with ribavirin (co-treatment and post-treatment) led to a dose-dependent reduction in TBEV titers as well as the viral RNA levels. Antiviral protein myxovirus resistance A mRNA expression was significantly up-regulated and signal transducer and activator of transcription 3 was activated in TBEV-infected A549 cells upon the ribavirin treatment. Induction of inflammatory cytokine tumor necrosis factor alpha by TBEV was decreased in A549 cells with the treatment of ribavirin, whereas interleukin 1 beta release appeared to be unaffected. These results suggest that ribavirin might represent a promising safe and effective antiviral drug against TBEV.
Collapse
Affiliation(s)
- Wan-Da Tang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Hai-Lin Tang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Hao-Ran Peng
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Rui-Wen Ren
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou, China
| | - Ping Zhao
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Lan-Juan Zhao
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
12
|
Yong HYF, Pastula DM, Kapadia RK. Diagnosing viral encephalitis and emerging concepts. Curr Opin Neurol 2023; 36:175-184. [PMID: 37078655 DOI: 10.1097/wco.0000000000001155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
PURPOSE OF REVIEW This review offers a contemporary clinical approach to the diagnosis of viral encephalitis and discusses recent advances in the field. The neurologic effects of coronaviruses, including COVID-19, as well as management of encephalitis are not covered in this review. RECENT FINDINGS The diagnostic tools for evaluating patients with viral encephalitis are evolving quickly. Multiplex PCR panels are now in widespread use and allow for rapid pathogen detection and potentially reduce empiric antimicrobial exposure in certain patients, while metagenomic next-generation sequencing holds great promise in diagnosing challenging and rarer causes of viral encephalitis. We also review topical and emerging infections pertinent to neuroinfectious disease practice, including emerging arboviruses, monkeypox virus (mpox), and measles. SUMMARY Although etiological diagnosis remains challenging in viral encephalitis, recent advances may soon provide the clinician with additional tools. Environmental changes, host factors (such as ubiquitous use of immunosuppression), and societal trends (re-emergence of vaccine preventable diseases) are likely to change the landscape of neurologic infections that are considered and treated in clinical practice.
Collapse
Affiliation(s)
- Heather Y F Yong
- Division of Neurology, Department of Clinical Neurosciences, University of Calgary, Cummings School of Medicine, Calgary, Alberta, Canada
| | - Daniel M Pastula
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - Ronak K Kapadia
- Division of Neurology, Department of Clinical Neurosciences, University of Calgary, Cummings School of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Potential Mammalian Vector-Borne Diseases in Live and Wet Markets in Indonesia and Myanmar. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Vector-borne diseases spread from wild animals and their associated ectoparasites to humans and domesticated animals. Wildlife markets are recognized as important areas where this transfer can take place. We assessed the potential for spreading vector-borne diseases in two live and wet markets in Myanmar (Mong La, on the Myanmar-China border) and Indonesia (Sukahaji in Bandung on the island of Java) by making an inventory of all live and freshly killed wild mammals for sale. For eight mammal families, we quantified the number of animals on offer, and we used a heatmap cluster analysis to map vector-borne diseases that these families may carry. In Myanmar, we observed large numbers of wild pigs and deer (potentially carrying West Nile and various encephalitis viruses) whereas in Indonesia we observed Old World fruit bats (potentially carrying Chikungunya and encephalitis viruses) and squirrels (potentially carrying West Nile and encephalitis viruses). The trade in Indonesia was dominated by live mammals offered for sale as pets, and only Old World fruit bats and squirrels traded for traditional Asian medicine were killed in the markets. The trade in Myanmar was more geared towards wild meat (e.g., wild pigs, deer, primates) and traditional Asian medicine (squirrels). The combined risks of vector-borne diseases spreading from traded animals to human health highlight the need for an integrated approach protecting public health, economic interests and biodiversity.
Collapse
|
14
|
Cavalleri JV, Korbacska‐Kutasi O, Leblond A, Paillot R, Pusterla N, Steinmann E, Tomlinson J. European College of Equine Internal Medicine consensus statement on equine flaviviridae infections in Europe. Vet Med (Auckl) 2022; 36:1858-1871. [DOI: 10.1111/jvim.16581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Jessika‐M. V. Cavalleri
- Clinical Unit of Equine Internal Medicine, Department for Companion Animals and Horses University of Veterinary Medicine Vienna Vienna Austria
| | - Orsolya Korbacska‐Kutasi
- Clinical Unit of Equine Internal Medicine, Department for Companion Animals and Horses University of Veterinary Medicine Vienna Vienna Austria
- Department for Animal Breeding, Nutrition and Laboratory Animal Science University of Veterinary Medicine Budapest Hungary
- Hungarian Academy of Sciences—Szent Istvan University (MTA‐SZIE) Large Animal Clinical Research Group Üllő Dóra major Hungary
| | - Agnès Leblond
- EPIA, UMR 0346, Epidemiologie des maladies animales et zoonotiques, INRAE, VetAgro Sup University of Lyon Marcy l'Etoile France
| | - Romain Paillot
- School of Equine and Veterinary Physiotherapy Writtle University College Chelmsford UK
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine University of California Davis California USA
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Faculty of Medicine Ruhr University Bochum Bochum Germany
| | - Joy Tomlinson
- Baker Institute for Animal Health Cornell University College of Veterinary Medicine Ithaca New York USA
| |
Collapse
|
15
|
Ganzenberg S, Sieg M, Ziegler U, Pfeffer M, Vahlenkamp TW, Hörügel U, Groschup MH, Lohmann KL. Seroprevalence and Risk Factors for Equine West Nile Virus Infections in Eastern Germany, 2020. Viruses 2022; 14:v14061191. [PMID: 35746662 PMCID: PMC9229339 DOI: 10.3390/v14061191] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
West Nile virus (WNV) infections were first detected in Germany in 2018, but information about WNV seroprevalence in horses is limited. The study’s overall goal was to gather information that would help veterinarians, horse owners, and veterinary-, and public health- authorities understand the spread of WNV in Germany and direct protective measures. For this purpose, WNV seroprevalence was determined in counties with and without previously registered WNV infections in horses, and risk factors for seropositivity were estimated. The cohort consisted of privately owned horses from nine counties in Eastern Germany. A total of 940 serum samples was tested by competitive panflavivirus ELISA (cELISA), and reactive samples were further tested by WNV IgM capture ELISA and confirmed by virus neutralization test (VNT). Information about potential risk factors was recorded by questionnaire and analyzed by logistic regression. A total of 106 serum samples showed antibodies against flaviviruses by cELISA, of which six tested positive for WNV IgM. The VNT verified a WNV infection for 54 samples (50.9%), while 35 sera neutralized tick-borne encephalitis virus (33.0%), and eight sera neutralized Usutu virus (7.5%). Hence, seroprevalence for WNV infection was 5.8% on average and was significantly higher in counties with previously registered infections (p = 0.005). The risk factor analysis showed breed type (pony), housing in counties with previously registered infections, housing type (24 h turn-out), and presence of outdoor shelter as the main significant risk factors for seropositivity. In conclusion, we estimated the extent of WNV infection in the resident horse population in Eastern Germany and showed that seroprevalence was higher in counties with previously registered equine WNV infections.
Collapse
Affiliation(s)
- Stefanie Ganzenberg
- Department for Horses, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany;
| | - Michael Sieg
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany; (M.S.); (T.W.V.)
| | - Ute Ziegler
- Friedrich-Loeffler Institut (FLI), Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany; (U.Z.); (M.H.G.)
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany;
| | - Thomas W. Vahlenkamp
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany; (M.S.); (T.W.V.)
| | - Uwe Hörügel
- Animal Diseases Fund Saxony, Pferdegesundheitsdienst, 01099 Dresden, Germany;
| | - Martin H. Groschup
- Friedrich-Loeffler Institut (FLI), Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany; (U.Z.); (M.H.G.)
| | - Katharina L. Lohmann
- Department for Horses, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany;
- Correspondence: ; Tel.: +49-341-97-38224
| |
Collapse
|
16
|
Agarwal A, Sarma DK, Chaurasia D, Maan HS. Novel molecular approaches to combat vectors and vector-borne viruses: Special focus on RNA interference (RNAi) mechanisms. Acta Trop 2022; 233:106539. [PMID: 35623398 DOI: 10.1016/j.actatropica.2022.106539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Vector-borne diseases, such as dengue, chikungunya, zika, yellow fever etc pose significant burden among the infectious diseases globally, especially in tropical and sub-tropical regions. Globalization, deforestation, urbanization, climate change, uncontrolled population growth, inadequate waste management and poor vector-management infrastructure have all contributed to the expansion of vector habitats and subsequent increase in vector-borne diseases throughout the world. Conventional vector control methods, such as use of insecticides, have significant negative environmental repercussions in addition to developing resistance in vectors. Till date, a very few vaccines or antiviral therapies have been approved for the treatment of vector borne diseases. In this review, we have discussed emerging molecular approaches like CRISPR (clustered regularly interspaced short palindromic repeats)/Cas-9, sterile insect technique (SIT), release of insects carrying a dominant lethal (RIDL), Wolbachia (virus transmission blocking) and RNA interference (RNAi) to combat vector and vector-borne viruses. Due to the extensive advancements in RNAi research, a special focus has been given on its types, biogenesis, mechanism of action, delivery and experimental studies evaluating their application as anti-mosquito and anti-viral agent. These technologies appear to be highly promising in terms of contributing to vector control and antiviral drug development, and hence can be used to reduce global vector and vector-borne disease burden.
Collapse
Affiliation(s)
- Ankita Agarwal
- State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal 462001, Madhya Pradesh, India.
| | - Devojit Kumar Sarma
- ICMR-National Institute for Research in Environmental Health, Bhopal 462030, Madhya Pradesh, India
| | - Deepti Chaurasia
- State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal 462001, Madhya Pradesh, India
| | - Harjeet Singh Maan
- State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal 462001, Madhya Pradesh, India
| |
Collapse
|
17
|
Wagner E, Shin A, Tukhanova N, Turebekov N, Nurmakhanov T, Sutyagin V, Berdibekov A, Maikanov N, Lezdinsh I, Shapiyeva Z, Shevtsov A, Freimüller K, Peintner L, Ehrhardt C, Essbauer S. First Indications of Omsk Haemorrhagic Fever Virus beyond Russia. Viruses 2022; 14:v14040754. [PMID: 35458484 PMCID: PMC9030969 DOI: 10.3390/v14040754] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 01/27/2023] Open
Abstract
Omsk haemorrhagic fever virus (OHFV) is the agent leading to Omsk haemorrhagic fever (OHF), a viral disease currently only known in Western Siberia in Russia. The symptoms include fever, headache, nausea, muscle pain, cough and haemorrhages. The transmission cycle of OHFV is complex. Tick bites or contact with infected small mammals are the main source of infection. The Republic of Kazakhstan is adjacent to the endemic areas of OHFV in Russia and febrile diseases with haemorrhages occur throughout the country—often with unclear aetiology. In this study, we examined human cerebrospinal fluid samples of patients with suspected meningitis or meningoencephalitis with unknown origins for the presence of OHFV RNA. Further, reservoir hosts such as rodents and ticks from four Kazakhstan regions were screened for OHFV RNA to clarify if this virus could be the causative agent for many undiagnosed cases of febrile diseases in humans in Kazakhstan. Out of 130 cerebrospinal fluid samples, two patients (1.53%) originating from Almaty city were positive for OHFV RNA. Screening of tick samples revealed positive pools from different areas in the Akmola region. Of the caught rodents, 1.1% out of 621 were positive for OHFV at four trapping areas from the West Kazakhstan region. In this paper, we present a broad investigation of the spread of OHFV in Kazakhstan in human cerebrospinal fluid samples, rodents and ticks. Our study shows for the first time that OHFV can not only be found in the area of Western Siberia in Russia, but can also be detected up to 1.600 km away in the Almaty region in patients and natural foci.
Collapse
Affiliation(s)
- Edith Wagner
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, 07743 Jena, Germany; (E.W.); (C.E.)
- Department of Virology and Intracellular Agents, Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (K.F.); (S.E.)
| | - Anna Shin
- Center for International Health, University Hospital, LMU, 80336 Munich, Germany; (A.S.); (N.T.)
- Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Almaty 050000, Kazakhstan; (N.T.); (T.N.)
| | - Nur Tukhanova
- Center for International Health, University Hospital, LMU, 80336 Munich, Germany; (A.S.); (N.T.)
- Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Almaty 050000, Kazakhstan; (N.T.); (T.N.)
| | - Nurkeldi Turebekov
- Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Almaty 050000, Kazakhstan; (N.T.); (T.N.)
| | - Talgat Nurmakhanov
- Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Almaty 050000, Kazakhstan; (N.T.); (T.N.)
| | - Vitaliy Sutyagin
- Antiplague Station Taldykorgan, Branch Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Taldykorgan 040000, Kazakhstan; (V.S.); (A.B.); (I.L.)
| | - Almas Berdibekov
- Antiplague Station Taldykorgan, Branch Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Taldykorgan 040000, Kazakhstan; (V.S.); (A.B.); (I.L.)
| | - Nurbek Maikanov
- Oral Antiplague Station, Branch Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Oral 090002, Kazakhstan;
| | - Ilmars Lezdinsh
- Antiplague Station Taldykorgan, Branch Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Taldykorgan 040000, Kazakhstan; (V.S.); (A.B.); (I.L.)
| | - Zhanna Shapiyeva
- Scientific Practical Center of Sanitary Epidemiological Expertise and Monitoring, Almaty 050000, Kazakhstan;
| | | | - Klaus Freimüller
- Department of Virology and Intracellular Agents, Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (K.F.); (S.E.)
| | - Lukas Peintner
- Department of Virology and Intracellular Agents, Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (K.F.); (S.E.)
- Correspondence: ; Tel.: +49-89-992-692-3813
| | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, 07743 Jena, Germany; (E.W.); (C.E.)
| | - Sandra Essbauer
- Department of Virology and Intracellular Agents, Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (K.F.); (S.E.)
| |
Collapse
|