1
|
Ding Z, Ge W, Xu X, Xu X, Sun Q, Xu X, Zhang J. A crucial role of adenosine deaminase in regulating gluconeogenesis in mice. J Biol Chem 2024; 300:107425. [PMID: 38823639 PMCID: PMC11231709 DOI: 10.1016/j.jbc.2024.107425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Adenosine deaminase (ADA) catalyzes the irreversible deamination of adenosine (ADO) to inosine and regulates ADO concentration. ADA ubiquitously expresses in various tissues to mediate ADO-receptor signaling. A significant increase in plasma ADA activity has been shown to be associated with the pathogenesis of type 2 diabetes mellitus. Here, we show that elevated plasma ADA activity is a compensated response to high level of ADO in type 2 diabetes mellitus and plays an essential role in the regulation of glucose homeostasis. Supplementing with more ADA, instead of inhibiting ADA, can reduce ADO levels and decrease hepatic gluconeogenesis. ADA restores a euglycemic state and recovers functional islets in db/db and high-fat streptozotocin diabetic mice. Mechanistically, ADA catabolizes ADO and increases Akt and FoxO1 phosphorylation independent of insulin action. ADA lowers blood glucose at a slower rate and longer duration compared to insulin, delaying or blocking the incidence of insulinogenic hypoglycemia shock. Finally, ADA suppresses gluconeogenesis in fasted mice and insulin-deficient diabetic mice, indicating the ADA regulating gluconeogenesis is a universal biological mechanism. Overall, these results suggest that ADA is expected to be a new therapeutic target for diabetes.
Collapse
Affiliation(s)
- Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Xiaogang Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Xiaodong Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Qi Sun
- Department of Physiology, Bengbu Medical University, Bengbu, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China.
| |
Collapse
|
2
|
Cai X, Yang R, Shi W, Cai Y, Ma Z. Exploration of the common pathogenic link between COVID-19 and diabetic foot ulcers: An in silico approach. Health Sci Rep 2023; 6:e1686. [PMID: 37936615 PMCID: PMC10626003 DOI: 10.1002/hsr2.1686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
Background and Aims The Coronavirus Disease-19 (COVID-19) is posing an ongoing threat to human health. Patients of diabetic foot ulcer (DFU) are susceptible to COVID-19-induced adverse outcomes. Nevertheless, investigations into their mutual molecular mechanisms have been limited to date. In the present work, we tried to uncover the shared pathogenesis and regulatory gene targets of COVID-19 and DFU. Methods In this study, we chose GSE161281 as the COVID-19 data set, which contained severe acute respiratory syndrome coronavirus 2 infected human induced embryonic stem cell-derived peripheral neurons (n = 2) with uninfected controls (n = 2). The GSE134431 designated as the DFU data set, comprising full-thickness DFU (n = 13) and diabetic foot skin (n = 8) samples from diabetic patients. The differential expressed genes (DEGs) were identified from GSE161281 and GSE134431, and the common DEGs between COVID-19 and DFU were extracted. Multifactor regulatory network and co-expression network of the common DEGs were analyzed, along with candidate drug prediction. Results Altogether, six common DEGs (dickkopf-related protein 1 [DKK1], serine proteinase inhibitor A3 [SERPINA3], ras homolog family member D [RHOD], myelin protein zero like 3 [MPZL3], Claudin-11 [CLDN11], and epidermal growth factor receptor pathway substrate 8-like 1 [EPS8L1]) were found between COVID-19 and DFU. Functional analyses indicated that pathways of apoptotic and Wnt signaling may contribute to progression of COVID-19. Gene co-expression network implied the shared pathways of immune regulation and cytokine response participated collectively in the development of DFU and COVID-19. A multifactor regulatory network was constructed integrating the corresponding microRNAs (miRNAs) and transcription factors. Additionally, we proposed potential drug objects for the combined therapy. Conclusion Our study revealed the shared molecular mechanisms underlying COVID-19 and DFU. The identified pivotal targets and common pathways can provide new perspectives for further research and assist the development of management strategies in patients of DFU complicated with COVID-19.
Collapse
Affiliation(s)
- Xueyao Cai
- Department of Burn and Plastic SurgeryDongguan Tungwah HospitalDongguanChina
| | - Ruijin Yang
- Department of Burn and Plastic SurgeryDongguan Tungwah HospitalDongguanChina
| | - Wenjun Shi
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuchen Cai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhengzheng Ma
- Department of Burn and Plastic SurgeryDongguan Tungwah HospitalDongguanChina
| |
Collapse
|
3
|
Zhang Y, Han H, Qian Y, Wang Q, Jiang M. Advanced glycation end products promote the progression of chronic kidney diseases by targeting calpain 6. Amino Acids 2023:10.1007/s00726-023-03282-5. [PMID: 37243758 DOI: 10.1007/s00726-023-03282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Advanced glycation end products (AGEs) are produced by glycosylation or oxidation of proteins and lipids and are tightly involved in the chronic kidney disease (CKD) process. Calpain 6 (CAPN6) is a non-classical calpain that has been reported to be overexpressed in CKD. This study aimed to explore the effects of AGEs in CKD progress and their correlation with CAPN6. AGEs production was measured using ELISA. The CCK-8 assay was used to test cell proliferation. mRNA and protein levels were tested using qRT-PCR and western blot. The progress of glycolysis was tested by calculating the ATP and ECAR content in HK-2 cells. The expression of AGEs and CAPN6 was significantly increased in patients with CKD3, CKD4, and CKD5. AGEs treatment inhibited cell proliferation and glycolysis and accelerated apoptosis. Additionally, CAPN6 knockdown effectively reversed the effects of AGEs in HK-2 cells. In addition, overexpressed CAPN6 played similar role to AGEs, which suppressed cell proliferation and glycolysis and facilitated apoptosis. Moreover, the administration of 2-DG, a glycolysis inhibitor, counteracted the effects of CAPN6 silencing in HK-2 cells. Mechanistically, CAPN6 interacts with NF-κB and PDTC reduced CAPN6 expression in HK-2 cells. This investigation revealed that AGEs facilitate CKD development in vitro by modulating the expression of CAPN6.
Collapse
Affiliation(s)
- Yufan Zhang
- Department of TCM, Shanghai YangPu District KongJiang Hospital, ShuangYang Rd No. 480, YangPu District, Shanghai, 200093, China
| | - Haiqiong Han
- Shanghai Jiading District Jiangqiao Town Community Health Service Center, Rehabilitation Medicine Department, Jinyao Rd No. 100, Jiangqiao Town, Jiading District, Shanghai, China
| | - Yu Qian
- Department of Urology, Shanghai YangPu District KongJiang Hospital, ShuangYang Rd No. 480, YangPu District, Shanghai, 200093, China
| | - Qiong Wang
- Department of Out-Patient Emergency, Shanghai YangPu District KongJiang Hospital, ShuangYang Rd No. 480, YangPu District, Shanghai, 200093, China
| | - Minmin Jiang
- Geriatric Department, Shanghai YangPu District KongJiang Hospital, ShuangYang Rd No. 480, YangPu District, Shanghai, 200093, China.
| |
Collapse
|
4
|
Zhang YY, Gu LJ, Zhu N, Wang L, Cai MC, Jia JS, Rong S, Yuan WJ. Calpain 6 inhibits autophagy in inflammatory environments: A preliminary study on myoblasts and a chronic kidney disease rat model. Int J Mol Med 2021; 48:194. [PMID: 34435644 PMCID: PMC8416137 DOI: 10.3892/ijmm.2021.5027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
A non-classical calpain, calpain 6 (CAPN6), can inhibit skeletal muscle differentiation and regeneration. In the present study, the role of CAPN6 in the regulation of the autophagy of myoblasts in vitro was investigated. The underlying molecular events and the CAPN6 level in atrophic skeletal muscle in a rat model of chronic kidney disease (CKD) were also investigated. In vitro, CAPN6 was overexpressed, or knocked down, in rat L6 myoblasts to assess autophagy and related gene expression and co-localization. Subsequently, myoblasts were treated with a mixture of cytokines, and relative gene expression and autophagy were assessed. A rat model of CKD for muscle atrophy was established, and blood chemical level and the expression of CAPN6 in muscle were assessed. The data revealed that the knockdown of CAPN6 in rat myoblasts resulted in increased microtubule-associated protein 1 light chain 3 (LC3) levels, while its overexpression decreased LC3 levels and impaired autophagy. Additionally, it was observed that the co-localization of mammalian target of rapamycin (mTOR) and lysosomal-associated membrane protein 1 (LAMP1), a lysosomal marker, proteins was increased. In addition, mTOR, Raptor and α-tubulin (a marker of microtubules) increased in the CAPN6 overexpression group. However, inflammatory cytokines, such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, interferon (INF)-γ and lipopolysaccharides upregulated CAPN6 expression, inhibited L6 myoblast autophagy and stabilized mTOR activity. Furthermore, the animal model successfully mimicked human disease as regards an increase in body weight, and a reduction in muscle mass, cross-sectional area and blood biomarker concentrations; a slight increase in CAPN6 mRNA and protein levels in muscles was observed. Finally, the data of the present study suggested that CAPN6 reduced autophagy via the maintenance of mTOR signaling, which may play a role in CKD-related muscle atrophy. However, future studies are required to determine whether CAPN6 may be used as an intervention target for CKD-related skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yue Yue Zhang
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Li Jie Gu
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Nan Zhu
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Ling Wang
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Min Chao Cai
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Jie Shuang Jia
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Shu Rong
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Wei Jie Yuan
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
5
|
Identification of new BACE1 inhibitors for treating Alzheimer's disease. J Mol Model 2021; 27:58. [PMID: 33517514 DOI: 10.1007/s00894-021-04679-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a type of brain disorder, wherein a person experiences gradual memory loss, state of confusion, hallucination, agitation, and personality change. AD is marked by the presence of extracellular amyloid plaques and intracellular neurofibrillary tangles (NFTs) and synaptic losses. Increased cases of AD in recent times created a dire need to discover or identify chemical compounds that can cease the development of AD. This study focuses on finding potential drug molecule(s) active against β-secretase, also known as β-site amyloid precursor protein cleaving enzyme 1 (BACE1). Clustering analysis followed by phylogenetic studies on microarray datasets retrieved from GEO browser showed that BACE1 gene has genetic relatedness with the RCAN1 gene. A ligand library comprising 60 natural compounds retrieved from literature and 25 synthetic compounds collected from DrugBank were screened. Further, 350 analogues of potential parent compounds were added to the library for the docking purposes. Molecular docking studies identified 11-oxotigogenin as the best ligand molecule. The compound showed the binding affinity of - 11.1 Kcal/mole and forms three hydrogen bonds with Trp124, Ile174, and Arg176. The protein-ligand complex was subjected to 25 ns molecular dynamics simulation and the potential energy of the complex was found to be - 1.24579e+06 Kcal/mole. In this study, 11-oxotigogenin has shown promising results against BACE1, which is a leading cause of AD, hence warrants for in vitro and in vivo validation of the same. In addition, in silico identification of 11-oxotigogenin as a potential anti-AD compound paves the way for designing of chemical scaffolds to discover more potent BACE1 inhibitors.Graphical abstract.
Collapse
|
6
|
Chen L, Xiao D, Tang F, Gao H, Li X. CAPN6 in disease: An emerging therapeutic target (Review). Int J Mol Med 2020; 46:1644-1652. [PMID: 33000175 PMCID: PMC7521557 DOI: 10.3892/ijmm.2020.4734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
As a member of the calpain protein family, calpain6 (CAPN6) is highly expressed mainly in the placenta and embryos. It plays a number of important roles in cellular processes, such as the stabilization of microtubules, the main-tenance of cell stability, the control of cell movement and the inhibition of apoptosis. In recent years, various studies have found that CAPN6 is one of the contributing factors associated with the tumorigenesis of uterine tumors and osteosarcoma, and that CAPN6 participates in the development of tumors by promoting cell proliferation and angiogenesis, and by inhibiting apoptosis, which is mainly regulated by the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathway. Due to its abnormal cellular expression, CAPN6 has also been found to be associated with a number of diseases, such as white matter damage and muscular dystrophy. Therefore, CAPN6 may be a novel therapeutic target for these diseases. In the present review, the role of CAPN6 in disease and its possible use as a target in various therapies are discussed.
Collapse
Affiliation(s)
- Lin Chen
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dongqiong Xiao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fajuan Tang
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hu Gao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xihong Li
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
7
|
Striessnig E, Bora JK. Under-Five Child Growth and Nutrition Status: Spatial Clustering of Indian Districts. SPATIAL DEMOGRAPHY 2020. [DOI: 10.1007/s40980-020-00058-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractVariation in human growth and the genetic and environmental factors that are influencing it have been described worldwide. The objective of this study is to assess the geographical variance of under-five nutritional status and its related covariates across Indian districts. We use the most recent fourth round of the Indian National Family Health Survey conducted in 2015–2016, which for the first time offers district level information. We employ principal component analysis (PCA) on the demographic and socio-economic determinants of childhood morbidity and conduct hierarchical clustering analysis to identify geographical patterns in nutritional status at the district level. Our results reveal strong geographical clustering among the districts of India, often crossing state borders. Throughout most of Southern India, children are provided with relatively better conditions for growth and improved nutritional status, as compared to districts in the central, particularly rural parts of India along the so called “tribal belt”. Here is also where girls are on average measured to have less weight and height compared to boys. Looking at average weight, as well as the proportion of children that suffer from underweight and wasting, north-eastern Indian districts offer living conditions more conducive to healthy child development. The geographical clustering of malnutrition, as well as below-average child height and weight coincides with high poverty, low female education, lower BMI among mothers, higher prevalence of both parity 4 + and teenage pregnancies. The present study highlights the importance of combining PCA and cluster analysis in studying variation in under-five child growth and of conducting this analysis at the district level. We identify the geographical areas, where children are under severe risk of undernutrition, stunting and wasting and contribute to formulating policies to improve child nutrition in India.
Collapse
|
8
|
Dall'Alba G, Casa PL, Notari DL, Adami AG, Echeverrigaray S, de Avila E Silva S. Analysis of the nucleotide content of Escherichia coli promoter sequences related to the alternative sigma factors. J Mol Recognit 2018; 32:e2770. [PMID: 30458580 DOI: 10.1002/jmr.2770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 01/26/2023]
Abstract
Promoters are DNA sequences located upstream of the transcription start site of genes. In bacteria, the RNA polymerase enzyme requires additional subunits, called sigma factors (σ) to begin specific gene transcription in distinct environmental conditions. Currently, promoter prediction still poses many challenges due to the characteristics of these sequences. In this paper, the nucleotide content of Escherichia coli promoter sequences, related to five alternative σ factors, was analyzed by a machine learning technique in order to provide profiles according to the σ factor which recognizes them. For this, the clustering technique was applied since it is a viable method for finding hidden patterns on a data set. As a result, 20 groups of sequences were formed, and, aided by the Weblogo tool, it was possible to determine sequence profiles. These found patterns should be considered for implementing computational prediction tools. In addition, evidence was found of an overlap between the functions of the genes regulated by different σ factors, suggesting that DNA structural properties are also essential parameters for further studies.
Collapse
Affiliation(s)
- Gabriel Dall'Alba
- Department of Life Sciences, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Pedro Lenz Casa
- Department of Life Sciences, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Daniel Luis Notari
- Department of Exact Sciences, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Andre Gustavo Adami
- Department of Exact Sciences, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Sergio Echeverrigaray
- Department of Life Sciences, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Scheila de Avila E Silva
- Department of Exact Sciences, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Chen R, Chen M, Xiao Y, Liang Q, Cai Y, Chen L, Fang M. Bioinformatics analysis of microRNAs related to blood stasis syndrome in diabetes mellitus patients. Biosci Rep 2018; 38:BSR20171208. [PMID: 29437903 PMCID: PMC5861324 DOI: 10.1042/bsr20171208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 12/26/2022] Open
Abstract
In traditional Chinese medicine (TCM), blood stasis syndrome (BSS) is mainly manifested by the increase of blood viscosity, platelet adhesion rate and aggregation, and the change of microcirculation, resulting in vascular endothelial injury. It is an important factor in the development of diabetes mellitus (DM). The aim of the present study was to screen out the potential candidate microRNAs (miRNAs) in DM patients with BSS by high-throughput sequencing (HTS) and bioinformatics analysis. Human umbilical vein endothelial cells (HUVECs) were incubated with 10% human serum to establish models of DM with BSS, DM without BSS (NBS), and normal control (NC). Total RNA of each sample was extracted and sequenced by the Hiseq2000 platform. Differentially expressed miRNAs (DE-miRNAs) were screened between samples and compared with known changes in mRNA abundance. Target genes of miRNAs were predicted by softwares. Gene Ontology (GO) and pathway enrichment analysis of the target genes were conducted. According to the significantly enriched GO annotations and pathways (P-value ≤ 0.001), we selected the key miRNAs of DM with BSS. It showed that the number of DE-miRNAs in BSS was 32 compared with non-blood stasis syndrome (NBS) and NC. The potential candidate miRNAs were chosen from GO annotations in which target genes were significantly enriched (-log10 (P-value) > 5), which included miR-140-5p, miR-210, miR-362-5p, miR-590-3p, and miR-671-3p. The present study screened out the potential candidate miRNAs in DM patients with BSS by HTS and bioinformatics analysis. The miRNAs will be helpful to provide valuable suggestions on clinical studies of DM with BSS at the gene level.
Collapse
Affiliation(s)
- Ruixue Chen
- School of Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Minghao Chen
- Reproductive Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong 511400, China
| | - Ya Xiao
- School of Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qiuer Liang
- School of Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yunfei Cai
- School of Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Liguo Chen
- School of Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Meixia Fang
- Institute of Laboratory Animals, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
10
|
VanderJagt TA, Neugebauer MH, Morgan M, Bowden DW, Shah VO. Epigenetic profiles of pre-diabetes transitioning to type 2 diabetes and nephropathy. World J Diabetes 2015; 6:1113-1121. [PMID: 26265998 PMCID: PMC4530325 DOI: 10.4239/wjd.v6.i9.1113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/04/2015] [Accepted: 07/14/2015] [Indexed: 02/05/2023] Open
Abstract
AIM: To examine DNA methylation profiles in a longitudinal comparison of pre-diabetes mellitus (Pre-DM) subjects who transitioned to type 2 diabetes mellitus (T2DM).
METHODS: We performed DNA methylation study in bisulphite converted DNA from Pre-DM (n = 11) at baseline and at their transition to T2DM using Illumina Infinium HumanMethylation27 BeadChip, that enables the query of 27578 individual cytosines at CpG loci throughout the genome, which are focused on the promoter regions of 14495 genes.
RESULTS: There were 694 CpG sites hypomethylated and 174 CpG sites hypermethylated in progression from Pre-DM to T2DM, representing putative genes involved in glucose and fructose metabolism, inflammation, oxidative and mitochondrial stress, and fatty acid metabolism. These results suggest that this high throughput platform is able to identify hundreds of prospective CpG sites associated with diverse genes that may reflect differences in Pre-DM compared with T2DM. In addition, there were CpG hypomethylation changes associated with a number of genes that may be associated with development of complications of diabetes, such as nephropathy. These hypomethylation changes were observed in all of the subjects.
CONCLUSION: These data suggest that some epigenomic changes that may be involved in the progression of diabetes and/or the development of complications may be apparent at the Pre-DM state or during the transition to diabetes. Hypomethylation of a number of genes related to kidney function may be an early marker for developing diabetic nephropathy.
Collapse
|
11
|
Assessment of glomerular filtration rate based on alterations of serum brain-derived neurotrophic factor in type 2 diabetic subjects treated with amlodipine/benazepril or valsartan/hydrochlorothiazide. DISEASE MARKERS 2015; 2015:780743. [PMID: 25918454 PMCID: PMC4397057 DOI: 10.1155/2015/780743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is associated with sympathetic activation. However, the effects of BDNF on diabetic nephropathy are unknown. The aim of this study was to assess the estimated glomerular filtration rates (eGFRs) and changes in serum BDNF levels in type 2 diabetic subjects treated with antihypertensive medications. METHODS In this randomized, double-blind clinical trial, type 2 diabetic subjects with hypertension were assigned to either the benazepril/amlodipine or valsartan/hydrochlorothiazide treatment groups for a 16-week period. The post hoc analyses were based on increased or decreased serum BDNF levels. RESULTS Of the 153 enrolled subjects, the changes in eGFR were significantly and inversely correlated with those in BDNF in the 76 subjects treated with valsartan/hydrochlorothiazide (r = -0.264, P = 0.021) but not in the 77 subjects treated with benazepril/amlodipine (r = -0.025, P = 0.862). The 45 subjects with increased BDNF following valsartan/hydrochlorothiazide treatment exhibited a significantly reduced eGFR (-8.8 ± 14.9 mL/min/1.73 m(2); P < 0.001). Multivariate regression analysis revealed that increased serum BDNF represents an independent factor for reduced eGFR (95% confidence interval between -0.887 and -0.076, P = 0.020). CONCLUSIONS Increased serum BDNF is associated with reduced eGFR in type 2 diabetic subjects treated with valsartan/hydrochlorothiazide but not with amlodipine/benazepril.
Collapse
|
12
|
Haghvirdizadeh P, Mohamed Z, Abdullah NA, Haghvirdizadeh P, Haerian MS, Haerian BS. KCNJ11: Genetic Polymorphisms and Risk of Diabetes Mellitus. J Diabetes Res 2015; 2015:908152. [PMID: 26448950 PMCID: PMC4584059 DOI: 10.1155/2015/908152] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 11/18/2014] [Accepted: 11/27/2014] [Indexed: 01/12/2023] Open
Abstract
Diabetes mellitus (DM) is a major worldwide health problem and its prevalence has been rapidly increasing in the last century. It is caused by defects in insulin secretion or insulin action or both, leading to hyperglycemia. Of the various types of DM, type 2 occurs most frequently. Multiple genes and their interactions are involved in the insulin secretion pathway. Insulin secretion is mediated through the ATP-sensitive potassium (KATP) channel in pancreatic beta cells. This channel is a heteromeric protein, composed of four inward-rectifier potassium ion channel (Kir6.2) tetramers, which form the pore of the KATP channel, as well as sulfonylurea receptor 1 subunits surrounding the pore. Kir6.2 is encoded by the potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11) gene, a member of the potassium channel genes. Numerous studies have reported the involvement of single nucleotide polymorphisms of the KCNJ11 gene and their interactions in the susceptibility to DM. This review discusses the current evidence for the contribution of common KCNJ11 genetic variants to the development of DM. Future studies should concentrate on understanding the exact role played by these risk variants in the development of DM.
Collapse
Affiliation(s)
- Polin Haghvirdizadeh
- Pharmacogenomics Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Zahurin Mohamed
- Pharmacogenomics Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nor Azizan Abdullah
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Monir Sadat Haerian
- Shahid Beheshti University of Medical Sciences, P.O. Box 19395-4763, Tehran, Iran
- Food and Drug Control Reference Labs Center (FDCRLC), Ministry of Health and Medical Education, Tehran 131456-8784, Iran
| | - Batoul Sadat Haerian
- Pharmacogenomics Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- *Batoul Sadat Haerian:
| |
Collapse
|
13
|
Diabetic nephropathy induces changes in the proteome of human urinary exosomes as revealed by label-free comparative analysis. J Proteomics 2014; 96:92-102. [DOI: 10.1016/j.jprot.2013.10.037] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 10/24/2013] [Accepted: 10/29/2013] [Indexed: 12/12/2022]
|
14
|
Zheng Z, Wu J, Wang R, Zeng Y. Diabetes mellitus may induce cardiovascular disease by decreasing neuroplasticity. FUNCTIONAL NEUROLOGY 2014; 29:7-13. [PMID: 25014044 PMCID: PMC4172250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Neuroplasticity has been defined "the ability of the nervous system to respond to intrinsic or extrinsic stimuli by reorganizing its structure, function and connections". The nervous system monitors and coordinates internal organ function. Thus neuroplasticity may be associated with the pathogenesis of other diseases besides neuropsychiatric diseases. Decreased neuroplasticity is associated with cardiovascular disease (CVD) and a disease related to decreased neuroplasticity may confer a greater CVD risk. Diabetes mellitus (DM) is related to CVD and DM induces decreased neuroplasticity, which is manifested as depression, Alzheimer's disease and diabetic neuropathy. Therefore we conclude that DM may induce CVD by decreasing neuroplasticity.
Collapse
Affiliation(s)
- Zhihua Zheng
- Guangdong Province Pharmaceutical Association, Guangzhou, China
| | - Junyan Wu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruolun Wang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingtong Zeng
- Guangdong General Hospital & Guangdong Academy of Medical Science, Guangzhou, China
| |
Collapse
|
15
|
Javadi S, Asri-Rezaei S, Allahverdizadeh M. Interrelationship of βeta-2 microglobulin, blood urea nitrogen and creatinine in streptozotocin-induced diabetes mellitus in rabbits. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2014; 5:7-11. [PMID: 25568686 PMCID: PMC4279662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 11/17/2013] [Accepted: 03/15/2014] [Indexed: 10/28/2022]
Abstract
Measurement of serum creatinine (Cr) and blood urea nitrogen (BUN) are used as indicators of glomerular filtration rate. The increased levels of these biomarkers are usually detectable at advanced stages of kidney complications. The aim of this study was to find the interrelationship of beta-2 microglobulin (β2M), BUN and Cr in streptozotocin (STZ)-induced diabetes mellitus in rabbits. Diabetes was induced by a single intraperitoneal (IP) injection of 65 mg kg(-1) of STZ in rabbits. The levels of serum insulin, glucose and three above mentioned biomarkers were measured one day before (day -1) and on days 1-3 after injection of STZ and continued weekly to the end of the experiment (12 weeks). A statistically significant increase of serum β2M, BUN, Cr and glucose levels, and a significant decrease of insulin levels were observed in diabetic animals. However, β2M levels increased as early as one day after STZ injection compared to Cr and BUN that elevated at day two, suggesting a probable diagnostic advantage of β2M over currently used biomarkers in diabetic related kidney complications.
Collapse
Affiliation(s)
- Shahram Javadi
- Correspondence: Shahram Javadi. DVM, PhD, Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran. E-mail:
| | | | | |
Collapse
|
16
|
|
17
|
Chen YL, Kuo MH, Lin PY, Chuang WL, Hsu CC, Chu PY, Lee CH, Huang THM, Leu YW, Hsiao SH. ENSA expression correlates with attenuated tumor propagation in liver cancer. Biochem Biophys Res Commun 2013; 442:56-61. [DOI: 10.1016/j.bbrc.2013.10.165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 10/31/2013] [Indexed: 01/15/2023]
|
18
|
Gadd45α: a novel diabetes-associated gene potentially linking diabetic cardiomyopathy and baroreflex dysfunction. PLoS One 2012; 7:e49077. [PMID: 23227140 PMCID: PMC3515561 DOI: 10.1371/journal.pone.0049077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/04/2012] [Indexed: 01/04/2023] Open
Abstract
Both diabetic cardiomyopathy (DCM) and baroreflex dysfunction independently contribute to sudden cardiac death (SCD), however the inherent connections between them under diabetic state remains unclear. As microRNAs (miRNAs) have been reported to participate in various physiological and pathological processes, we presume they may also be involved in DCM and DM-induced impairment of baroreflex sensitivity. Two sets of gene expression profiles data from streptozotocin (STZ)-induced diabetic heart and diabetic dorsal root ganglia (DDRG) were retrieved from GEO and ArrayExpress. Co-differentially-expressed genes in diabetic heart and DDRG were identified by t test and intersection analysis. Human Protein Reference Database (HPRD) was applied to find direct interacting proteins of Gadd45α. Differentially-expressed miRNAs in left ventricle from 4-week STZ-induced diabetic rats were screened by miRNA microarray. Expression of miR-499 and its regulating effect on Gadd45α were then verified by quantitative real-time PCR (qRT-PCR), western blot, computational predication, and dual-luciferase reporter analysis. Four co-differentially-expressed genes in DCM and DDRG were identified. Among these genes, Gadd45α has 16 direct interacting proteins and 11 of them are documentedly associated with DM. Accompanied with significantly increased miR-499 expression, Gadd45α expression was increased at mRNA level but decreased at protein level in both diabetic heart and nucleus ambiguous. Furthermore, miR-499 was confirmed negatively regulating Gadd45α by targeting its 3'UTR. Collectively, reduced Gadd45α protein expression by forced miR-499 expression indicated it's a diabetes-associated gene which might potentially be involved in both DCM and DM-induced baroreflex dysfunction.
Collapse
|