1
|
Samutrtai P, Yingchutrakul Y, Faikhruea K, Vilaivan T, Chaikeeratisak V, Chatwichien J, Krobthong S, Aonbangkhen C. Vernonia amygdalina Leaf Extract Induces Apoptosis in HeLa Cells: A Metabolomics and Proteomics Study. Pharmaceuticals (Basel) 2024; 17:1079. [PMID: 39204184 PMCID: PMC11360076 DOI: 10.3390/ph17081079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Medicinal plants produce various bioactive molecules with potential anti-cancer properties with favorable safety profiles. We aimed to investigate the comprehensive composition of Vernonia amygdalina leaf extract and its cytotoxic effects via apoptosis in HeLa cells. The metabolomics approach using LC-MS/MS was conducted to gather the metabolite profile of the extract. Proteomics was performed to understand the comprehensive mechanistic pathways of action. The apoptosis was visualized by cellular staining and the apoptotic proteins were evaluated. V. amygdalina leaf extract exhibited dose-dependent cytotoxic effects on both HeLa and Vero cells after 24 h of exposure in the MTT assay with the IC50 values of 0.767 ± 0.0334 and 4.043 ± 0.469 µg mL-1, respectively, which demonstrated a higher concentration required for Vero cell cytotoxicity. The metabolomic profile of 112 known metabolites specified that the majority of them were alkaloids, phenolic compounds, and steroids. Among these metabolites, deacetylvindoline and licochalcone B were suggested to implicate cytotoxicity. The cytotoxic pathways involved the response to stress and cell death which was similar to doxorubicin. The upstream regulatory proteins, phosphatase and tensin homolog deleted on chromosome ten (PTEN) and X-box binding protein 1 (XBP1), were significantly altered, supporting the regulation of apoptosis and cell death. The levels of apoptotic proteins, c-Jun N-terminal kinases (JNK), p53, and caspase-9 were significantly increased. The novel insights gained from the metabolomic profiling and proteomic pathway analysis of V. amygdalina leaf extract have identified crucial components related to apoptosis induction, highlighting its potential to develop future chemotherapy.
Collapse
Affiliation(s)
- Pawitrabhorn Samutrtai
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Kriangsak Faikhruea
- Organic Synthesis Research Unit (OSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (K.F.); (T.V.)
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit (OSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (K.F.); (T.V.)
| | - Vorrapon Chaikeeratisak
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Jaruwan Chatwichien
- Program in Chemical Sciences, Chulabhorn Graduate Institute (CGI), Bangkok 10210, Thailand;
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (C.A.)
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (C.A.)
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Khalkho JP, Beck A, Priyanka, Panda B, Chandra R. Microbial allies: exploring fungal endophytes for biosynthesis of terpenoid indole alkaloids. Arch Microbiol 2024; 206:340. [PMID: 38960981 DOI: 10.1007/s00203-024-04067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
Terpenoid indole alkaloids (TIAs) are natural compounds found in medicinal plants that exhibit various therapeutic activities, such as antimicrobial, anti-inflammatory, antioxidant, anti-diabetic, anti-helminthic, and anti-tumor properties. However, the production of these alkaloids in plants is limited, and there is a high demand for them due to the increasing incidence of cancer cases. To address this research gap, researchers have focused on optimizing culture media, eliciting metabolic pathways, overexpressing genes, and searching for potential sources of TIAs in organisms other than plants. The insufficient number of essential genes and enzymes in the biosynthesis pathway is the reason behind the limited production of TIAs. As the field of natural product discovery from biological species continues to grow, endophytes are being investigated more and more as potential sources of bioactive metabolites with a variety of chemical structures. Endophytes are microorganisms (fungi, bacteria, archaea, and actinomycetes), that exert a significant influence on the metabolic pathways of both the host plants and the endophytic cells. Bio-prospection of fungal endophytes has shown the discovery of novel, high-value bioactive compounds of commercial significance. The discovery of therapeutically significant secondary metabolites has been made easier by endophytic entities' abundant but understudied diversity. It has been observed that fungal endophytes have better intermediate processing ability due to cellular compartmentation. This paper focuses on fungal endophytes and their metabolic ability to produce complex TIAs, recent advancements in this area, and addressing the limitations and future perspectives related to TIA production.
Collapse
Affiliation(s)
- Jaya Prabha Khalkho
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Abhishek Beck
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Priyanka
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Banishree Panda
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ramesh Chandra
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
3
|
Nabaei M, Amooaghaie R, Ghorbanpour M, Ahadi A. Crosstalk between melatonin and nitric oxide restrains Cadmium-induced oxidative stress and enhances vinblastine biosynthesis in Catharanthus roseus (L) G Don. PLANT CELL REPORTS 2024; 43:139. [PMID: 38735908 DOI: 10.1007/s00299-024-03229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
KEY MESSAGE Nitric oxide functions downstream of the melatonin in adjusting Cd-induced osmotic and oxidative stresses, upregulating the transcription of D4H and DAT genes, and increasing total alkaloid and vincristine contents. A few studies have investigated the relationship between melatonin (MT) and nitric oxide (NO) in regulating defensive responses. However, it is still unclear how MT and NO interact to regulate the biosynthesis of alkaloids and vincristine in leaves of Catharanthus roseus (L.) G. Don under Cd stress. Therefore, this context was explored in the present study. Results showed that Cd toxicity (200 µM) induced oxidative stress, decreased biomass, Chl a, and Chl b content, and increased the content of total alkaloid and vinblastine in the leaves. Application of both MT (100 µM) and sodium nitroprusside (200 µM SNP, as NO donor) enhanced endogenous NO content and accordingly increased metal tolerance index, the content of total alkaloid and vinblastine. It also upregulated the transcription of two respective genes (D4H and DAT) under non-stress and Cd stress conditions. Moreover, the MT and SNP treatments reduced the content of H2O2 and malondialdehyde, increased the activities of superoxide dismutase and ascorbate peroxidase, enhanced proline accumulation, and improved relative water content in leaves of Cd-exposed plants. The scavenging NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (cPTIO) averted the effects of MT on the content of total alkaloid and vinblastine and antioxidative responses. Still, the effects conferred by NO on attributes mentioned above were not significantly impaired by p-chlorophenylalanine (p-CPA as an inhibitor of MT biosynthesis). These findings and multivariate analyses indicate that MT motivated terpenoid indole alkaloid biosynthesis and mitigated Cd-induced oxidative stress in the leaves of periwinkle in a NO-dependent manner.
Collapse
Affiliation(s)
- Masoomeh Nabaei
- Plant Science Department, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Rayhaneh Amooaghaie
- Plant Science Department, Faculty of Science, Shahrekord University, Shahrekord, Iran.
- Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran.
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Alimohammad Ahadi
- Genetic Department, Science Faculty, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
4
|
Li D, Liu Y, Chen G, Yan Y, Bai Z. The SmERF1b-like regulates tanshinone biosynthesis in Salvia miltiorrhiza hairy root. AOB PLANTS 2024; 16:plad086. [PMID: 38249522 PMCID: PMC10799320 DOI: 10.1093/aobpla/plad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/03/2023] [Indexed: 01/23/2024]
Abstract
The ethylene response factor family genes are involved in the regulation of secondary metabolism in Salvia miltiorrhiza, but the mechanism underlying this regulation remains elusive. In the present study, based on the cDNA library of S. miltiorrhiza, an AP2/ERF gene was cloned and named SmERF1b-like. This gene exhibited a significant response to exogenous ethylene supply, such that ethylene remarkably upregulated SmERF1b-like expression levels in the leaves of S. miltiorrhiza. Subcellular localization showed that SmERF1b-like is located in the nucleus. Furthermore, SmERF1b-like showed a binding affinity with a GCC-box motif in the promoter region of genes associated with tanshinone biosynthesis in S. miltiorrhiza. Overexpression of SmERF1b-like in hairy roots of S. miltiorrhiza substantially upregulated SmCPS1 and SmKSL1 expression levels, resulting in increased biosynthesis of tanshinone I and cryptotanshinone contents. This finding provides valuable theoretical support for the utilization of a plant genetic engineering strategy to enhance S. miltiorrhiza resources.
Collapse
Affiliation(s)
- Dan Li
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi 716000, China
| | - Yu Liu
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi 716000, China
| | - Guoliang Chen
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi 716000, China
| | - Yan Yan
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi 716000, China
| | - Zhenqing Bai
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi 716000, China
| |
Collapse
|
5
|
Singh Chauhan AN, Mali G, Dua G, Samant P, Kumar A, Erande RD. [RhCp*Cl 2] 2-Catalyzed Indole Functionalization: Synthesis of Bioinspired Indole-Fused Polycycles. ACS OMEGA 2023; 8:27894-27919. [PMID: 37576617 PMCID: PMC10413382 DOI: 10.1021/acsomega.3c02510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023]
Abstract
Polycyclic fused indoles are ubiquitous in natural products and pharmaceuticals due to their immense structural diversity and biological inference, making them suitable for charting broader chemical space. Indole-based polycycles continue to be fascinating as well as challenging targets for synthetic fabrication because of their characteristic structural frameworks possessing biologically intriguing compounds of both natural and synthetic origin. As a result, an assortment of new chemical processes and catalytic routes has been established to provide unified access to these skeletons in a very efficient and selective manner. Transition-metal-catalyzed processes, in particular from rhodium(III), are widely used in synthetic endeavors to increase molecular complexity efficiently. In recent years, this has resulted in significant progress in reaching molecular scaffolds with enormous biological activity based on core indole skeletons. Additionally, Rh(III)-catalyzed direct C-H functionalization and benzannulation protocols of indole moieties were one of the most alluring synthetic techniques to generate indole-fused polycyclic molecules efficiently. This review sheds light on recent developments toward synthesizing fused indoles by cascade annulation methods using Rh(III)-[RhCp*Cl2]2-catalyzed pathways, which align with the comprehensive and sophisticated developments in the field of Rh(III)-catalyzed indole functionalization. Here, we looked at a few intriguing cascade-based synthetic designs catalyzed by Rh(III) that produced elaborate frameworks inspired by indole bioactivity. The review also strongly emphasizes mechanistic insights for reaching 1-2, 2-3, and 3-4-fused indole systems, focusing on Rh(III)-catalyzed routes. With an emphasis on synthetic efficiency and product diversity, synthetic methods of chosen polycyclic carbocycles and heterocycles with at least three fused, bridged, or spiro cages are reviewed. The newly created synthesis concepts or toolkits for accessing diazepine, indol-ones, carbazoles, and benzo-indoles, as well as illustrative privileged synthetic techniques, are included in the featured collection.
Collapse
Affiliation(s)
| | - Ghanshyam Mali
- Department
of Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342037, India
| | - Garima Dua
- Department
of Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342037, India
| | - Priya Samant
- Department
of Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342037, India
| | - Akhilesh Kumar
- Department
of Chemistry and Nano Science, Ewha Womans
University, Seoul 03760, Korea
| | - Rohan D. Erande
- Department
of Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342037, India
| |
Collapse
|
6
|
Banyal A, Tiwari S, Sharma A, Chanana I, Patel SKS, Kulshrestha S, Kumar P. Vinca alkaloids as a potential cancer therapeutics: recent update and future challenges. 3 Biotech 2023; 13:211. [PMID: 37251731 PMCID: PMC10209376 DOI: 10.1007/s13205-023-03636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Vinca alkaloids including vincristine, vinblastine, vindesine, and vinflunine are chemotherapeutic compounds commonly used to treat various cancers. Vinca alkaloids are one of the first microtubule-targeting agents to be produced and certified for the treatment of hematological and lymphatic neoplasms. Microtubule targeting agents like vincristine and vinblastine work by disrupting microtubule dynamics, causing mitotic arrest and cell death. The key issues facing vinca alkaloids applications include establishing an environment-friendly production technique based on microorganisms, as well as increasing bioavailability without causing harm to patient's health. The low yield of these vinca alkaloids from the plant and the difficulty of meeting their huge colossal demand around the globe prompted researchers to create a variety of approaches. Endophytes could thus be selected to produce beneficial secondary metabolites required for the biosynthesis of vinca alkaloids. This review covers the significant aspects of these vital drugs, from their discovery to the present day, in a concise manner. In addition, we emphasize the major hurdles that must be overcome in the coming years to improve vinca alkaloid's effectiveness.
Collapse
Affiliation(s)
- Aditya Banyal
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| | - Shubham Tiwari
- IMS Engineering College, Ghaziabad, Uttar Pradesh 201009 India
| | - Aparajita Sharma
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| | - Ishita Chanana
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| | - Sanjay Kumar Singh Patel
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 143-701 South Korea
| | - Saurabh Kulshrestha
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| | - Pradeep Kumar
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| |
Collapse
|
7
|
El-Beltagi HS, El-Sayed SM, Abdelhamid AN, Hassan KM, Elshalakany WA, Nossier MI, Alabdallah NM, Al-Harbi NA, Al-Qahtani SM, Darwish DBE, Abbas ZK, Ibrahim HA. Potentiating Biosynthesis of Alkaloids and Polyphenolic Substances in Catharanthus roseus Plant Using ĸ-Carrageenan. Molecules 2023; 28:molecules28083642. [PMID: 37110876 PMCID: PMC10143362 DOI: 10.3390/molecules28083642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Catharanthus roseus is a medicinal plant that produces indole alkaloids, which are utilized in anticancer therapy. Vinblastine and vincristine, two commercially important antineoplastic alkaloids, are mostly found in the leaves of Catharanthus roseus. ĸ-carrageenan has been proven as plant growth promoting substance for a number of medicinal and agricultural plants. Considering the importance of ĸ-carrageenan as a promoter of plant growth and phytochemical constituents, especially alkaloids production in Catharanthus roseus, an experiment was carried out to explore the effect of ĸ-carrageenan on the plant growth, phytochemicals content, pigments content, and production of antitumor alkaloids in Catharanthus roseus after planting. Foliar application of ĸ-carrageenan (at 0, 400, 600 and 800 ppm) significantly improved the performance of Catharanthus roseus. Phytochemical analysis involved determining the amount of total phenolics (TP), flavonoids (F), free amino acids (FAA), alkaloids (TAC) and pigments contents by spectrophotometer, minerals by ICP, amino acids, phenolic compounds and alkaloids (Vincamine, Catharanthine, Vincracine (Vincristine), and vinblastine) analysis uses HPLC. The results indicated that all examined ĸ-carrageenan treatments led to a significant (p ≤ 0.05) increase in growth parameters compared to the untreated plants. Phytochemical examination indicates that the spray of ĸ-carrageenan at 800 mg L-1 increased the yield of alkaloids (Vincamine, Catharanthine and Vincracine (Vincristine)) by 41.85 μg/g DW, total phenolic compounds by 3948.6 μg gallic/g FW, the content of flavonoids 951.3 μg quercetin /g FW and carotenoids content 32.97 mg/g FW as compared to the control. An amount of 400 ppm ĸ-carrageenan treatment gave the best contents of FAA, Chl a, Chl b and anthocyanin. The element content of K, Ca, Cu, Zn and Se increased by treatments. Amino acids constituents and phenolics compounds contents were altered by ĸ-carrageenan.
Collapse
Affiliation(s)
- Hossam S El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Salwa M El-Sayed
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Ahmed N Abdelhamid
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Karim M Hassan
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Walaa A Elshalakany
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Mona Ibrahim Nossier
- Soil and Water Department, Faculty of Agriculture 11241, Ain Shams University, Cairo 11566, Egypt
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Nadi Awad Al-Harbi
- Biology Department, University College of Tayma, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Salem Mesfir Al-Qahtani
- Biology Department, University College of Tayma, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Doaa Bahaa Eldin Darwish
- Biology department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt
| | - Zahid Khorshid Abbas
- Biology department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hemmat A Ibrahim
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
8
|
Dogra A, Kumar J. Biosynthesis of anticancer phytochemical compounds and their chemistry. Front Pharmacol 2023; 14:1136779. [PMID: 36969868 PMCID: PMC10034375 DOI: 10.3389/fphar.2023.1136779] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
Cancer is a severe health issue, and cancer cases are rising yearly. New anticancer drugs have been developed as our understanding of the molecular mechanisms behind diverse solid tumors, and metastatic malignancies have increased. Plant-derived phytochemical compounds target different oncogenes, tumor suppressor genes, protein channels, immune cells, protein channels, and pumps, which have attracted much attention for treating cancer in preclinical studies. Despite the anticancer capabilities of these phytochemical compounds, systemic toxicity, medication resistance, and limited absorption remain more significant obstacles in clinical trials. Therefore, drug combinations of new phytochemical compounds, phytonanomedicine, semi-synthetic, and synthetic analogs should be considered to supplement the existing cancer therapies. It is also crucial to consider different strategies for increased production of phytochemical bioactive substances. The primary goal of this review is to highlight several bioactive anticancer phytochemical compounds found in plants, preclinical research, their synthetic and semi-synthetic analogs, and clinical trials. Additionally, biotechnological and metabolic engineering strategies are explored to enhance the production of bioactive phytochemical compounds. Ligands and their interactions with their putative targets are also explored through molecular docking studies. Therefore, emphasis is given to gathering comprehensive data regarding modern biotechnology, metabolic engineering, molecular biology, and in silico tools.
Collapse
|
9
|
Soltani N, Firouzabadi FN, Shafeinia A, Shirali M, Sadr AS. De Novo transcriptome assembly and differential expression analysis of catharanthus roseus in response to salicylic acid. Sci Rep 2022; 12:17803. [PMID: 36280677 PMCID: PMC9592577 DOI: 10.1038/s41598-022-20314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/12/2022] [Indexed: 01/19/2023] Open
Abstract
The anti-cancer vinblastine and vincristine alkaloids can only be naturally found in periwinkle (Catharanthus roseus). Both of these alkaloids' accumulations are known to be influenced by salicylic acid (SA). The transcriptome data to reveal the induction effect (s) of SA, however, seem restricted at this time. In this study, the de novo approach of transcriptome assembly was performed on the RNA-Sequencing (RNA-Seq) data in C. roseus. The outcome demonstrated that SA treatment boosted the expression of all the genes in the Terpenoid Indole Alkaloids (TIAs) pathway that produces the vinblastine and vincristine alkaloids. These outcomes supported the time-course measurements of vincristine alkaloid, the end product of the TIAs pathway, and demonstrated that SA spray had a positive impact on transcription and alkaloid synthesis. Additionally, the abundance of transcription factor families including bHLH, C3H, C2H2, MYB, MYB-related, AP2/ ERF, NAC, bZIP, and WRKY suggests a role for a variety of transcription families in response to the SA stimuli. Di-nucleotide and tri-nucleotide SSRs were the most prevalent SSR markers in microsatellite analyses, making up 39% and 34% of all SSR markers, respectively, out of the 77,192 total SSRs discovered.
Collapse
Affiliation(s)
- Narges Soltani
- Production Engineering and Plant Genetics Department, Faculty of Agriculture and Natural Resources, Lorestan University, P.O. Box 465, Khorramabad, Iran
| | - Farhad Nazarian Firouzabadi
- Production Engineering and Plant Genetics Department, Faculty of Agriculture and Natural Resources, Lorestan University, P.O. Box 465, Khorramabad, Iran.
| | - Alireza Shafeinia
- Department of Plant Production & Genetics, Faculty of Agriculture, Agricultural Sciences & Natural Resources, University of Khuzestan, Mollasani, Iran
| | - Masoud Shirali
- Agri-Food and Biosciences Institute, Hillsborough, BT26 6DR, UK
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5AJ, UK
| | - Ayeh Sadat Sadr
- South of Iran Aquaculture Research Institute (SIARI), Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Ahvaz, Iran.
| |
Collapse
|
10
|
Alwakil NH, Mohamad Annuar MS, Jalil M. Synergistic Effects of Plant Growth Regulators and Elicitors on α-Humulene and Zerumbone Production in Zingiber zerumbet Smith Adventitious Root Cultures. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154744. [PMID: 35897918 PMCID: PMC9331258 DOI: 10.3390/molecules27154744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/17/2022] [Indexed: 11/16/2022]
Abstract
Zingiber zerumbet, also known as ‘Lempoyang’, possesses various phytomedicinal properties, such as anticancer, antimicrobial, anti-inflammatory, antiulcer, and antioxidant properties. Secondary metabolites possessing such properties i.e., zerumbone and α-humulene, are found dominantly in the plant rhizome. Synergistic effects of plant growth hormones and elicitors on in vitro α-humulene and zerumbone production, and biomass growth, in adventitious root culture (AdRC) of Z. zerumbet cultivated in a two-stage culture are reported. The culture was induced by supplementation of 1.0 mg/L NAA and 2.0 mg/L IBA (dark), and subsequently maintained in medium supplemented with 1 mg/L NAA and 3 mg/L BAP (16:08 light-dark cycle), yielded the production of zerumbone at 3440 ± 168 µg/g and α-humulene at 3759 ± 798 µg/g. Synergistic elicitation by 400 μM methyl jasmonate (MeJa) and 400 μM salicylic acid (SA) resulted in a 13-fold increase in zerumbone (43,000 ± 200 µg/g), while 400 μM MeJa and 600 μM SA produced a 4.3-fold increase in α-humulene (15,800 ± 5100 µg/g) compared to control.
Collapse
Affiliation(s)
- Nurul Huda Alwakil
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (N.H.A.); (M.S.M.A.)
| | - Mohamad Suffian Mohamad Annuar
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (N.H.A.); (M.S.M.A.)
- Centre of Biotechnology for Agriculture Research (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Mahanom Jalil
- Centre of Biotechnology for Agriculture Research (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Foundation Studies in Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| |
Collapse
|
11
|
Zhou P, Chen M. Exploration of the Mechanisms of Differential Indole Alkaloid Biosynthesis in Dedifferentiated and Cambial Meristematic Cells of Catharanthus roseus Using Transcriptome Sequencing. Front Genet 2022; 13:867064. [PMID: 35873460 PMCID: PMC9305860 DOI: 10.3389/fgene.2022.867064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Catharanthus roseus produces terpenoid indole alkaloids (TIAs) of high medicinal importance. The current research focuses on finding an efficient production system such as cell suspension cultures for high TIA concentrations. Catharanthus roseus cambial meristematic cells (CMCs) offer multiple advantages over dedifferentiated cells (DDCs) regarding growth, homogeneity, and shear resistance. Our lab has established a CMC culture system induced by C. roseus cambium. We determined the concentrations of TIAs in CMCs and DDCs. CMCs produced significantly higher concentrations of total alkaloids, vindoline, vinblastine, catharanthine, and ajmalicine as compared to DDCs. We then performed Illumina HiSeq transcriptome sequencing of CMCs and DDCs and explored the differential transcriptomic signatures. Of the 96,004 unigenes, 9,564 were differentially expressed between the 2 cell suspension types. These differentially expressed genes (DEGs) were enriched in 137 KEGG pathways. Most importantly, genes from the indole alkaloid biosynthesis and the upstream pathways i.e., tryptophan metabolism, monoterpenoid biosynthesis, tropane, piperidine, and pyridine alkaloid biosynthesis, and terpenoid backbone biosynthesis showed differential transcriptomic signatures. Remarkably, the expression of genes associated with plant hormone biosynthesis, signaling, and MAPK signaling pathways was relatable to the different TIA concentrations in CMCs and DDCs. These results put forward multiple target genes, transcription factors, and regulators to develop a large-scale TIA production system using C. roseus CMCs.
Collapse
Affiliation(s)
- Pengfei Zhou
- School of Basic Medical Science, Guangdong Medical University, Dongguan, China
- *Correspondence: Pengfei Zhou,
| | - Mingxiang Chen
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
12
|
Sun H, Song H, Deng X, Liu J, Yang D, Zhang M, Wang Y, Xin J, Chen L, Liu Y, Yang M. Transcriptome-Wide Characterization of Alkaloids and Chlorophyll Biosynthesis in Lotus Plumule. FRONTIERS IN PLANT SCIENCE 2022; 13:885503. [PMID: 35677240 PMCID: PMC9168470 DOI: 10.3389/fpls.2022.885503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Lotus plumule is a green tissue in the middle of seeds that predominantly accumulates bisbenzylisoquinoline alkaloids (bis-BIAs) and chlorophyll (Chl). However, the biosynthetic mechanisms of these two metabolites remain largely unknown in lotus. This study used physiological and RNA sequencing (RNA-Seq) approaches to characterize the development and molecular mechanisms of bis-BIAs and Chl biosynthesis in lotus plumule. Physiological analysis revealed that exponential plumule growth occurred between 9 and 15 days after pollination (DAP), which coincided with the onset of bis-BIAs biosynthesis and its subsequent rapid accumulation. Transcriptome analysis of lotus plumule identified a total of 8,725 differentially expressed genes (DEGs), representing ~27.7% of all transcripts in the lotus genome. Sixteen structural DEGs, potentially associated with bis-BIAs biosynthesis, were identified. Of these, 12 encoded O-methyltransferases (OMTs) are likely involved in the methylation and bis-BIAs diversity in lotus. In addition, functionally divergent paralogous and redundant homologous gene members of the BIAs biosynthesis pathway, as well as transcription factors co-expressed with bis-BIAs and Chl biosynthesis genes, were identified. Twenty-two genes encoding 16 conserved enzymes of the Chl biosynthesis pathway were identified, with the majority being significantly upregulated by Chl biosynthesis. Photosynthesis and Chl biosynthesis pathways were simultaneously activated during lotus plumule development. Moreover, our results showed that light-driven Pchlide reduction is essential for Chl biosynthesis in the lotus plumule. These results will be useful for enhancing our understanding of alkaloids and Chl biosynthesis in plants.
Collapse
Affiliation(s)
- Heng Sun
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Heyun Song
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xianbao Deng
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Juan Liu
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Dong Yang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Minghua Zhang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Wang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia Xin
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Chen
- Center of Applied Biotechnology, Wuhan Institute of Bioengineering, Wuhan, China
| | - Yanling Liu
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Mei Yang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
13
|
Patel P, Patel V, Modi A, Kumar S, Shukla YM. Phyto-factories of anti-cancer compounds: a tissue culture perspective. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00203-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
Background
Cancer is one of the most critical but ubiquitous causes of death grappled from past decades. Widely used chemotherapy with cytotoxic activity blocks/ kills the cancer cell. The compounds targeted for anticancerous activity are either derived synthetically or naturally (through plants or microbial origin). Current day, versatile role of plants in medicinal field has been attributed to the secondary metabolites it produces, known for their anticancer activity. Therefore, discovery, identification and commercial production of such novel anticancer drugs is escalated and are centerpiece for pharmaceuticals.
Main body
A biotechnological approach, principally tissue culture, leads the candidacy to be an alternative method for production of anticancer compounds. A wide range of bioactive agents like alkaloids, steroids, phenolics, saponins, flavonoids, and terpenoids are in huge demand commercially. Plant tissue culture applications are constructively more advantageous over conventional methods in terms of their continuous, controlled, aseptic production, large scale and de novo synthesis opportunity. Various bioreactors are used for mass cultivation of bioactive compound at commercial level. For example: stirred tank reactors are used for production of shikonin from Lithospermum erythrorhizon, vincristine from Catharanthus roseus, podophyllotoxin from Podophyllum etc. Strategies like callus culture, suspension culture and hairy root culture are opted for mass cultivation of these bioactives.
Conclusions
This review summarizes plant tissue culture as a promising strategy proven to be a colossal breakthrough in reliable and continuous production of existing and novel anticancer compounds and help in combating the increasing future demands.
Collapse
|
14
|
Abstract
![]()
Natural products
are the result of Nature’s exploration
of biologically relevant chemical space through evolution and an invaluable
source of bioactive small molecules for chemical biology and medicinal
chemistry. Novel concepts for the discovery of new bioactive compound
classes based on natural product structure may enable exploration
of wider biologically relevant chemical space. The pseudo-natural
product concept merges the relevance of natural product structure
with efficient exploration of chemical space by means of fragment-based
compound development to inspire the discovery of new bioactive chemical
matter through de novo combination of natural product
fragments in unprecedented arrangements. The novel scaffolds retain
the biological relevance of natural products but are not obtainable
through known biosynthetic pathways which can lead to new chemotypes
that may have unexpected or unprecedented bioactivities. Herein, we
cover the workflow of pseudo-natural product design and development,
highlight recent examples, and discuss a cheminformatic analysis in
which a significant portion of biologically active synthetic compounds
were found to be pseudo-natural products. We compare the concept to
natural evolution and discuss pseudo-natural products as the human-made
equivalent, i.e. the chemical evolution of natural product structure.
Collapse
Affiliation(s)
- Michael Grigalunas
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn Strasse 11, 44227, Dortmund, Germany
| | - Susanne Brakmann
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn Strasse 11, 44227, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
15
|
Qin R, Zhao Q, Han B, Zhu HP, Peng C, Zhan G, Huang W. Indole-Based Small Molecules as Potential Therapeutic Agents for the Treatment of Fibrosis. Front Pharmacol 2022; 13:845892. [PMID: 35250597 PMCID: PMC8888875 DOI: 10.3389/fphar.2022.845892] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
Indole alkaloids are widely distributed in nature and have been particularly studied because of their diverse biological activities, such as anti-inflammatory, anti-tumor, anti-bacterial, and anti-oxidant activities. Many kinds of indole alkaloids have been applied to clinical practice, proving that indole alkaloids are beneficial scaffolds and occupy a crucial position in the development of novel agents. Fibrosis is an end-stage pathological condition of most chronic inflammatory diseases and is characterized by excessive deposition of fibrous connective tissue components, ultimately resulting in organ dysfunction and even failure with significant morbidity and mortality. Indole alkaloids and indole derivatives can alleviate pulmonary, myocardial, renal, liver, and islet fibrosis through the suppression of inflammatory response, oxidative stress, TGF-β/Smad pathway, and other signaling pathways. Natural indole alkaloids, such as isorhynchophylline, evodiamine, conophylline, indirubin, rutaecarpine, yohimbine, and vincristine, are reportedly effective in organ fibrosis treatment. In brief, indole alkaloids with a wide range of pharmacological bioactivities are important candidate drugs for organ fibrosis treatment. The present review discusses the potential of natural indole alkaloids, semi-synthetic indole alkaloids, synthetic indole derivatives, and indole-contained metabolites in organ fibrosis treatment.
Collapse
Affiliation(s)
- Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wei Huang, ; Gu Zhan,
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wei Huang, ; Gu Zhan,
| |
Collapse
|
16
|
Kumar S, Singh B, Singh R. Catharanthus roseus (L.) G. Don: A review of its ethnobotany, phytochemistry, ethnopharmacology and toxicities. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114647. [PMID: 34562562 DOI: 10.1016/j.jep.2021.114647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Catharanthus roseus (L.) G. Don is a well known medicinal plant belonging to family Apocynaceae that have been traditionally used as medicine since ancient times. C. roseus is a well-recognized herbal medicine due to its anticancer bisindole alkaloids (vinblastine (111), vincristine (112) and vindesine (121)). In the Ayurvedic system of medicine, different parts of C. roseus are used in folklore herbal medicine for treatment of many types of cancer, diabetes, stomach disorders, kidney, liver and cardiovascular diseases. AIM OF THE STUDY The main idea behind this communication is to update comprehensively and analyze critically the traditional applications, phytochemistry, pharmacological activities, and toxicity of various extracts and isolated compounds from C. roseus. MATERIALS AND METHODS The presented data covers scientific works on C. roseus published across the world between 1967 and 2021 was searched from various international publishing houses using search engines as well as several traditional texts like Ayurveda and relevant books. Collected data from different sources was comprehensively summarized/analyzed for ethnomedicinal uses, phytochemistry, analytical chemistry, biological activities and toxicity studies of C. roseus. RESULTS AND DISCUSSION C. roseus has a wide range of applications in the traditional system of medicine especially in cancer and diabetes. During phytochemical investigation, total of 344 compounds including monoterpene indole alkaloids (MIAs) (110), bisindole alkaloids (35), flavonoids (34), phenolic acids (9) and volatile constituents (156) have been reported in the various extracts and fractions of different plant parts of C. roseus. The extracts and isolated compounds of C. roseus have to exhibit many pharmacological activities such as anticancer/cytotoxic, antidiabetic, antimicrobial, antioxidant, larvicidal and pupicidal. The comparative toxicity of extracts and bioactive compounds investigated in dose dependent manner. The investigation of toxicity showed that the both extracts and isolated compounds are safe to a certain limit beyond that they cause adverse effects. CONCLUSION This review is a comprehensive, critically analyzed summarization of sufficient baseline information of selected topics in one place undertaken till date on C. roseus for future works and drug discovery. The phytochemical investigation including biosynthetic pathways showed that the MIAs and bisindole alkaloids are major and characteristic class of compounds in this plant. The present data confirm that the extracts/fractions and their isolated alkaloids especially vinblastine (111) and vincristine (112) have a potent anticancer/cytotoxic and antidiabetic property and there is a need for further study with particular attention to the mechanisms of anticancer activity. In biosynthesis pathways of alkaloids especially bisindole alkaloids, some enzymes and rearrangement are unexposed therefore it is required to draw special attention. It also focuses on attracting the attention of scientific communities about the widespread biological activities of this species for its better utilization prospects in the near future.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, Ma. Kanshiram Government Degree College, Ninowa, (affiliated to Chhatrapati Shahu Ji Maharaj University (CSJM) Kanpur), Farrukhabad, 209602, Uttar Pradesh, India
| | - Bikarma Singh
- Botanic Garden Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Ramesh Singh
- Department of Botany, Government Degree College Bahua Dehat, (affiliated to Professor Rajendra Singh (Rajju Bhaiya) University Prayagraj), Fatehpur, 212663, Uttar Pradesh, India
| |
Collapse
|
17
|
Biosynthesis and Modulation of Terpenoid Indole Alkaloids in Catharanthus roseus: A Review of Targeting Genes and Secondary Metabolites. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The medicinal plant C. roseus synthesizes biologically active alkaloids via the terpenoid indole alkaloid (TIAs) biosynthetic pathway. Most of these alkaloids have high therapeutic value, such as vinblastine and vincristine. Plant signaling components, plant hormones, precursors, growth hormones, prenylated proteins, and transcriptomic factors regulate the complex networks of TIA biosynthesis. For many years, researchers have been evaluating the scientific value of the TIA biosynthetic pathway and its potential in commercial applications for market opportunities. Metabolic engineering has revealed the major blocks in metabolic pathways regulated at the molecular level, unknown structures, metabolites, genes, enzyme expression, and regulatory genes. Conceptually, this information is necessary to create transgenic plants and microorganisms for the commercial production of high-value dimer alkaloids, such as vinca alkaloids, vinblastine, and vincristine In this review, we present current knowledge of the regulatory mechanisms of these components in the C. roseus TIA pathway, from genes to metabolites.
Collapse
|
18
|
Mitra S, Prova SR, Sultana SA, Das R, Nainu F, Emran TB, Tareq AM, Uddin MS, Alqahtani AM, Dhama K, Simal-Gandara J. Therapeutic potential of indole alkaloids in respiratory diseases: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153649. [PMID: 34325978 DOI: 10.1016/j.phymed.2021.153649] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Indole alkaloids are very promising for potential therapeutic purposes and appear to be particularly effective against respiratory diseases. Several experimental studies have been performed, both in vivo and in vitro, to evaluate the effectiveness of indole alkaloids for the management of respiratory disorders, including asthma, emphysema, tuberculosis, cancer, and pulmonary fibrosis. PURPOSE The fundamental objective of this review was to summarize the in-depth therapeutic potential of indole alkaloids against various respiratory disorders. STUDY DESIGN In addition to describing the therapeutic potential, this review also evaluates the toxicity of these alkaloids, which have been utilized for therapeutic benefits but have demonstrated toxic consequences. Some indole alkaloids, including scholaricine, 19-epischolaricine, vallesamine, and picrinine, which are derived from the plant Alstonia scholaris, have shown toxic effects in non-rodent models. METHODS This review also discusses clinical studies exploring the therapeutic efficacy of indole alkaloids, which have confirmed the promising benefits observed in vivo and in vitro. RESULTS The indole alkaloidal compounds have shown efficacy in subjects with respiratory diseases. CONCLUSION The available data established both preclinical and clinical studies confirm the potential of indole alkaloids to treat the respiratory disorders.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Shajuthi Rahman Prova
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Sifat Ara Sultana
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, South Sulawesi 90245, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh.
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E32004 Ourense, Spain.
| |
Collapse
|
19
|
Negri S, Commisso M, Avesani L, Guzzo F. The case of tryptamine and serotonin in plants: a mysterious precursor for an illustrious metabolite. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5336-5355. [PMID: 34009335 DOI: 10.1093/jxb/erab220] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Indolamines are tryptophan-derived specialized metabolites belonging to the huge and ubiquitous indole alkaloids group. Serotonin and melatonin are the best-characterized members of this family, given their many hormonal and physiological roles in animals. Following their discovery in plants, the study of plant indolamines has flourished and their involvement in important processes, including stress responses, growth and development, and reproduction, has been proposed, leading to their classification as a new category of phytohormones. However, the complex indolamine puzzle is far from resolved, particularly the biological roles of tryptamine, the early serotonin precursor representing the central hub of many downstream indole alkaloids. Tryptophan decarboxylase, which catalyzes the synthesis of tryptamine, strictly regulates the flux of carbon and nitrogen from the tryptophan pool into the indolamine pathway. Furthermore, tryptamine accumulates to high levels in the reproductive organs of many plant species and therefore cannot be classed as a mere intermediate but rather as an end product with potentially important functions in fruits and seeds. This review summarizes current knowledge on the role of tryptamine and its close relative serotonin, emphasizing the need for a clear understanding of the functions of, and mutual relations between, these indolamines and their biosynthesis pathways in plants.
Collapse
Affiliation(s)
- Stefano Negri
- Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy
| |
Collapse
|
20
|
Khataee E, Karimi F, Razavi K. Different carbon sources and their concentrations change alkaloid production and gene expression in Catharanthus roseus shoots in vitro. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 48:40-53. [PMID: 32690131 DOI: 10.1071/fp19254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 06/29/2020] [Indexed: 05/24/2023]
Abstract
To compare the effects of different carbon sources on physiological aspects, especially medicinal alkaloid biosynthesis and related gene expression in Catharantus roseus (L.) G.Don, we employed sucrose and sorbitol with two concentrations (87.64 mM, the equimolar concentration of sucrose in MS basal medium, and 150 mM) on the plant's shoots in vitro in presence of 100 μM methyl jasmonate. The production of plant alkaloids including vincristine, vinblastine, ajmalicine, vindoline and catharantine and their biosynthetic and regulatory gene expression was measured. Both treatments had incremental effects on alkaloid production, upregulated the mitogen-activated protein kinase3 (MAPK3) and a downstream responsive transcription factor, ORCA3, which resulted in elevated transcript contents of the important genes in terpenoid indol alkaloids biosynthetic pathway including peroxidase1 (PRX1), geissoschizine synthase (GS), strictosidine synthase (STR) and deacetylvindoline acetyltransferase (DAT). Defensive responses such as antioxidant enzymes (catalase, peroxidase and superoxide dismutase) activities and non-enzymatic metabolites (total phenolics, flavonoids and carotenoids) contents increased under both treatments but the effects of sorbitol were stronger. Reduced fresh weight and chlorophylls contents, increased malondialdehyde (MDA) and carotenoid contents were shown after a week under all employed treatments. It seems that replacement of sucrose with sorbitol and also, increased concentrations of both carbon sources via increasing osmotic pressure make stressful conditions for the plant especially in longer times.
Collapse
Affiliation(s)
- Elham Khataee
- Department of Biology, Faculty of Basic Sciences, Shahed University, 3319118651, Tehran, Iran
| | - Farah Karimi
- Department of Biology, Faculty of Basic Sciences, Shahed University, 3319118651, Tehran, Iran; and Corresponding author.
| | - Khadijeh Razavi
- National institute of Genetic Engineering and Biotechnology, 1497716316, Tehran, Iran
| |
Collapse
|
21
|
The Therapeutic Prospects of Naturally Occurring and Synthetic Indole Alkaloids for Depression and Anxiety Disorders. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8836983. [PMID: 33123212 PMCID: PMC7585661 DOI: 10.1155/2020/8836983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022]
Abstract
Depression and anxiety are the most common disorders among all age groups. Several antidepressant drugs including benzodiazepine, antidepressant tricyclics, azapirone, noradrenaline reuptake inhibitors, serotonin selective reuptake inhibitors, serotonin, noradrenaline reuptake inhibitors, and monoamine oxidase inhibitors have been used to treat these psychiatric disorders. However, these antidepressants are generally synthetic agents and can cause a wide range of side effects. The potential efficacy of plant-derived alkaloids has been reviewed against various neurodegenerative diseases including Alzheimer's disease, Huntington disease, Parkinson's disease, schizophrenia, and epilepsy. However, data correlating the indole alkaloids and antidepressant activity are limited. Natural products, especially plants and the marine environment, are rich sources of potential new drugs. Plants possess a variety of indole alkaloids, and compounds that have an indole moiety are related to serotonin, which is a neurotransmitter that regulates brain function and cognition, which in turn alleviates anxiety, and ensures a good mood and happiness. The present review is a summary of the bioactive compounds from plants and marine sources that contain the indole moiety, which can serve as potent antidepressants. The prospects of naturally occurring as well as synthetic indole alkaloids for the amelioration of anxiety and depression-related disorders, structure-activity relationship, and their therapeutic prospects have been discussed.
Collapse
|
22
|
Soltani N, Nazarian-Firouzabadi F, Shafeinia A, Sadr AS, Shirali M. The expression of Terpenoid Indole Alkaloid (TIAs) pathway genes in Catharanthus roseus in response to salicylic acid treatment. Mol Biol Rep 2020; 47:7009-7016. [PMID: 32886329 DOI: 10.1007/s11033-020-05759-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/28/2020] [Indexed: 01/22/2023]
Abstract
Vinblastine and vincristine are two important anti-cancer drugs that are synthesized by the Terpenoid Indole Alkaloids (TIAs) pathway in periwinkle (Catharanthus roseus). The major challenge in the pharmaceutical industry is the low production rate of these Alkaloids. TIA pathway is affected by elicitors, such as salicylic acid (SA). This study aimed to investigate the expression pattern of some key genes in TIAs pathway under SA treatment. Foliar application of SA (0.01 and 0.1 mM) was used and leaves samples were taken at 0, 12, 18, 24 and 48 h after the treatment. qRT-PCR was used to investigate the expression pattern of Chorismate mutase (Cm), tryptophan decarboxylase (Tdc), Geraniol-10-hydroxylase (G10h), Secologanin synthase (Sls), Strictosidine synthase (Str), Desacetoxyvindoline-4-hydroxylase (D4h) and Deacetylvindoline-4-O-acetyltransferase (Dat) genes, following the SA treatment. The results of this experiment showed that transcript levels of Tdc, G10h, Sls, Str, D4h and Dat genes were significantly up-regulated in both SA concentration treatments. Furthermore, the highest transcript levels of Dat was observed after 48 h of the SA treatments. qRT-PCR results suggests that SA induces transcription of major genes involved in Alkaloids biosynthesis in Catharanthus roseus. It can be concluded that up-regulation of Tdc, G10h, Sls, Str, D4h and Dat genes can result in a higher production rate of Vinblastine and vincristine Alkaloids.
Collapse
Affiliation(s)
- Narges Soltani
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, P.O. Box 465, Khorramabad, Iran
| | - Farhad Nazarian-Firouzabadi
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, P.O. Box 465, Khorramabad, Iran.
| | - Alireza Shafeinia
- Production Engineering and Plant Genetics Department, Ramin Agriculture and Natural Resource University of Khuzestan, Mollasani, Iran
| | - Ayeh Sadat Sadr
- Aquaculture Research Center-South of Iran, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Ahvaz, Iran
| | - Masoud Shirali
- Agri-Food and Biosciences Institute, Hillsborough, BT26 6DR, UK
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5AJ, UK
| |
Collapse
|
23
|
Dugé de Bernonville T, Maury S, Delaunay A, Daviaud C, Chaparro C, Tost J, O’Connor SE, Courdavault V. Developmental Methylome of the Medicinal Plant Catharanthus roseus Unravels the Tissue-Specific Control of the Monoterpene Indole Alkaloid Pathway by DNA Methylation. Int J Mol Sci 2020; 21:E6028. [PMID: 32825765 PMCID: PMC7503379 DOI: 10.3390/ijms21176028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
Catharanthus roseus produces a wide spectrum of monoterpene indole alkaloids (MIAs). MIA biosynthesis requires a tightly coordinated pathway involving more than 30 enzymatic steps that are spatio-temporally and environmentally regulated so that some MIAs specifically accumulate in restricted plant parts. The first regulatory layer involves a complex network of transcription factors from the basic Helix Loop Helix (bHLH) or AP2 families. In the present manuscript, we investigated whether an additional epigenetic layer could control the organ-, developmental- and environmental-specificity of MIA accumulation. We used Whole-Genome Bisulfite Sequencing (WGBS) together with RNA-seq to identify differentially methylated and expressed genes among nine samples reflecting different plant organs and experimental conditions. Tissue specific gene expression was associated with specific methylation signatures depending on cytosine contexts and gene parts. Some genes encoding key enzymatic steps from the MIA pathway were found to be simultaneously differentially expressed and methylated in agreement with the corresponding MIA accumulation. In addition, we found that transcription factors were strikingly concerned by DNA methylation variations. Altogether, our integrative analysis supports an epigenetic regulation of specialized metabolisms in plants and more likely targeting transcription factors which in turn may control the expression of enzyme-encoding genes.
Collapse
Affiliation(s)
- Thomas Dugé de Bernonville
- Faculté des Sciences et Techniques, Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France;
| | - Stéphane Maury
- INRA, EA1207 USC1328 Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, F-45067 Orléans, France;
| | - Alain Delaunay
- INRA, EA1207 USC1328 Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, F-45067 Orléans, France;
| | - Christian Daviaud
- Laboratoire Epigénétique et Environnement, LEE, Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, F-92265 Evry, France; (C.D.); (J.T.)
| | - Cristian Chaparro
- CNRS, IFREMER, UMR5244 Interactions Hôtes-Pathogènes-Environnments, Université de Montpellier, Université de Perpignan Via Domitia, F-66860 Perpignan, France;
| | - Jörg Tost
- Laboratoire Epigénétique et Environnement, LEE, Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, F-92265 Evry, France; (C.D.); (J.T.)
| | - Sarah Ellen O’Connor
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, 07745 Jena, Germany;
| | - Vincent Courdavault
- Faculté des Sciences et Techniques, Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France;
| |
Collapse
|
24
|
Zhang Y, Bouwmeester HJ, Kappers IF. Combined transcriptome and metabolome analysis identifies defence responses in spider mite-infested pepper (Capsicum annuum). JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:330-343. [PMID: 31557301 PMCID: PMC6913709 DOI: 10.1093/jxb/erz422] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/05/2019] [Indexed: 05/09/2023]
Abstract
Plants regulate responses towards herbivory through fine-tuning of defence-related hormone production, expression of defence genes, and production of secondary metabolites. Jasmonic acid (JA) plays a key role in plant-herbivorous arthropod interactions. To understand how pepper (Capsicum annuum) responds to herbivory, leaf transcriptomes and metabolomes of two genotypes different in their susceptibility to spider mites were studied. Mites induced both JA and salicylic acid (SA) signalling. However, mite infestation and exogenous JA resulted in distinct transcriptome profiles. Compared with JA, mites induced fewer differentially expressed genes involved in metabolic processes (except for genes involved in the phenylpropanoid pathway) and lipid metabolic processes. Furthermore, pathogen-related defence responses including WRKY transcription factors were more strongly induced upon mite infestation, probably as a result of induced SA signalling. Untargeted analysis of secondary metabolites confirmed that JA treatment induced larger changes in metabolism than spider mite infestation, resulting in higher terpenoid and flavonoid production. The more resistant genotype exhibited a larger increase in endogenous JA and volatile and non-volatile secondary metabolites upon infestation, which could explain its stronger defence. Reasoning that in JA-SA antagonizing crosstalk, SA defences are prioritized over JA defences, we hypothesize that lack of SA-mediated repression of JA-induced defences could result in gain of resistance towards spider mites in pepper.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Harro J Bouwmeester
- Plant Hormone Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park, Amsterdam, The Netherlands
| | - Iris F Kappers
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg, Wageningen, The Netherlands
- Correspondence:
| |
Collapse
|
25
|
Zhang Y, Bouwmeester HJ, Kappers IF. Combined transcriptome and metabolome analysis identifies defence responses in spider mite-infested pepper (Capsicum annuum). JOURNAL OF EXPERIMENTAL BOTANY 2020. [PMID: 31557301 DOI: 10.5061/dryad.n34h180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plants regulate responses towards herbivory through fine-tuning of defence-related hormone production, expression of defence genes, and production of secondary metabolites. Jasmonic acid (JA) plays a key role in plant-herbivorous arthropod interactions. To understand how pepper (Capsicum annuum) responds to herbivory, leaf transcriptomes and metabolomes of two genotypes different in their susceptibility to spider mites were studied. Mites induced both JA and salicylic acid (SA) signalling. However, mite infestation and exogenous JA resulted in distinct transcriptome profiles. Compared with JA, mites induced fewer differentially expressed genes involved in metabolic processes (except for genes involved in the phenylpropanoid pathway) and lipid metabolic processes. Furthermore, pathogen-related defence responses including WRKY transcription factors were more strongly induced upon mite infestation, probably as a result of induced SA signalling. Untargeted analysis of secondary metabolites confirmed that JA treatment induced larger changes in metabolism than spider mite infestation, resulting in higher terpenoid and flavonoid production. The more resistant genotype exhibited a larger increase in endogenous JA and volatile and non-volatile secondary metabolites upon infestation, which could explain its stronger defence. Reasoning that in JA-SA antagonizing crosstalk, SA defences are prioritized over JA defences, we hypothesize that lack of SA-mediated repression of JA-induced defences could result in gain of resistance towards spider mites in pepper.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Harro J Bouwmeester
- Plant Hormone Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park, Amsterdam, The Netherlands
| | - Iris F Kappers
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg, Wageningen, The Netherlands
| |
Collapse
|
26
|
Abouzeid S, Hijazin T, Lewerenz L, Hänsch R, Selmar D. The genuine localization of indole alkaloids in Vinca minor and Catharanthus roseus. PHYTOCHEMISTRY 2019; 168:112110. [PMID: 31494345 DOI: 10.1016/j.phytochem.2019.112110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Based on the occurrence of indole alkaloids in so-called "chloroform leaf surface extracts", it was previously deduced that these alkaloids are present in the cuticle at the leaf surface of Catharanthus roseus and Vinca minor. As no symplastic markers were found in these extracts this deduction seemed to be sound. However, since chloroform is known to destroy biomembranes very rapidly, these data have to be judged with scepticism. We reanalyzed the alleged apoplastic localization of indole alkaloids by employing slightly acidic aqueous surface extracts and comparing the corresponding alkaloid patterns with those of aqueous total leaf extracts. Whereas in the "chloroform leaf surface extracts" all alkaloids are present in the same manner as in the total leaf extracts, no alkaloids occur in the aqueous leaf surface extracts. These results clearly show that chloroform had rapidly destroyed cell integrity, and the related extracts also contain the alkaloids genuinely accumulated within the protoplasm. The related decompartmentation was verified by the massively enhanced concentration of amino acids in aqueous surface extracts of chloroform treated leaves. Furthermore, the chloroform-induced cell disintegration was vividly visualized by confocal laser scanning microscopical analyses, which clearly displayed a strong decrease in the chlorophyll fluorescence in chloroform treated leaves. These findings unequivocally display that the indole alkaloids are not located in the apoplastic space, but exclusively are present symplastically within the cells of V. minor and C. roseus leaves. Accordingly, we have to presume that also other leaf surface extracts employing organic solvents have to be re-investigated.
Collapse
Affiliation(s)
- Sara Abouzeid
- Institute for Plant Biology, Technische Universität Braunschweig, Mendelssohnsstr. 4, 38106, Braunschweig, Germany; Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Tahani Hijazin
- Institute for Plant Biology, Technische Universität Braunschweig, Mendelssohnsstr. 4, 38106, Braunschweig, Germany
| | - Laura Lewerenz
- Institute for Plant Biology, Technische Universität Braunschweig, Mendelssohnsstr. 4, 38106, Braunschweig, Germany
| | - Robert Hänsch
- Institute for Plant Biology, Technische Universität Braunschweig, Humboldtstr. 1, 38106, Braunschweig, Germany
| | - Dirk Selmar
- Institute for Plant Biology, Technische Universität Braunschweig, Mendelssohnsstr. 4, 38106, Braunschweig, Germany.
| |
Collapse
|
27
|
Dhiman N, Sharma NK, Thapa P, Sharma I, Kumar Swarnkar M, Chawla A, Shankar R, Bhattacharya A. De novo transcriptome provides insights into the growth behaviour and resveratrol and trans-stilbenes biosynthesis in Dactylorhiza hatagirea - An endangered alpine terrestrial orchid of western Himalaya. Sci Rep 2019; 9:13133. [PMID: 31511556 PMCID: PMC6739469 DOI: 10.1038/s41598-019-49446-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/22/2019] [Indexed: 11/18/2022] Open
Abstract
This is the first report on de novo transcriptome of Dactylorhiza hatagirea, a critically-endangered, terrestrial orchid of alpine Himalayas. The plant is acclaimed for medicinal properties but little is known about its secondary-metabolites profile or cues regulating their biosynthesis. De novo transcriptome analysis was therefore, undertaken to gain basic understanding on these aspects, while circumventing the acute limitation of plant material availability. 65,384 transcripts and finally, 37,371 unigenes were assembled de novo from a total of 236 million reads obtained from shoot, tuber and leaves of the plant. Dominance of differentially-expressing-genes (DEGs) related to cold-stress-response and plant-hormone-signal-transduction; and those involved in photosynthesis, sugar-metabolism and secondary-metabolite-synthesis provided insights into carbohydrate-partitioning in the plant during its preparation for freezing winter at natural habitat. DEGs of glucomannan, ascorbic acid, carotenoids, phylloquinone/naphthoquinones, indole alkaloids, resveratrol and stilbene biosynthesis revealed the secondary-metabolite profile of D. hatagirea. UHPLC results confirmed appreciable amounts of resveratrol and trans-stilbene in D. hatagirea tubers, for the first time. Expression analysis of 15 selected genes including those of phenylpropanoid pathway confirmed the validity of RNA-seq data. Opportunistic growth, temperature- and tissue-specific-differential-expression of secondary metabolite biosynthesis and stress tolerant genes were confirmed using clonal plants growing at 8, 15 and 25 °C.
Collapse
Affiliation(s)
- Nisha Dhiman
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P., India
- Academy of Scientific and Innovative Research(AcSIR), CSIR-Institute of Himalayan Bio-Resource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Nitesh Kumar Sharma
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P., India
- Academy of Scientific and Innovative Research(AcSIR), CSIR-Institute of Himalayan Bio-Resource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Pooja Thapa
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P., India
| | - Isha Sharma
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P., India
| | - Mohit Kumar Swarnkar
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P., India
| | - Amit Chawla
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P., India
- Academy of Scientific and Innovative Research(AcSIR), CSIR-Institute of Himalayan Bio-Resource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Ravi Shankar
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P., India.
- Academy of Scientific and Innovative Research(AcSIR), CSIR-Institute of Himalayan Bio-Resource Technology, Palampur, 176061, Himachal Pradesh, India.
| | - Amita Bhattacharya
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P., India.
- Academy of Scientific and Innovative Research(AcSIR), CSIR-Institute of Himalayan Bio-Resource Technology, Palampur, 176061, Himachal Pradesh, India.
| |
Collapse
|
28
|
Elicitation of pharmaceutical alkaloids biosynthesis by salicylic acid in marine microalgae Arthrospira platensis. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101597] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
29
|
Mohana Kumara P, Uma Shaanker R, Pradeep T. UPLC and ESI-MS analysis of metabolites of Rauvolfia tetraphylla L. and their spatial localization using desorption electrospray ionization (DESI) mass spectrometric imaging. PHYTOCHEMISTRY 2019; 159:20-29. [PMID: 30562679 DOI: 10.1016/j.phytochem.2018.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 05/22/2023]
Abstract
Rauvolfia tetraphylla L. (family Apocynaceae), often referred to as the wild snakeroot plant, is an important medicinal plant and produces a number of indole alkaloids in its seeds and roots. The plant is often used as a substitute for Ravuolfia serpentine (L.) Benth. ex Kurz known commonly as the Indian snakeroot plant or sarphagandha in the preparation of Ayurvedic formulations for a range of diseases including hypertension. In this study, we examine the spatial localization of the various indole alkaloids in developing fruits and plants of R. tetraphylla using desorption electrospray ionization mass spectrometry imaging (DESI-MSI). A semi-quantitative analysis of the various indole alkaloids was performed using UPLC-ESI/MS. DESI-MS images showed that the distribution of ajmalcine, yohimbine, demethyl serpentine and mitoridine are largely localized in the fruit coat while that for ajmaline is restricted to mesocarp of the fruit. At a whole plant level, the ESI-MS intensities of many of the ions were highest in the roots and lesser in the shoot region. Within the root tissue, except sarpagine and ajmalcine, all other indole alkaloids occurred in the epidermal and cortex tissues. In leaves, only serpentine, ajmalcine, reserpiline and yohimbine were present. Serpentine was restricted to the petiolar region of leaves. Principal component analysis based on the presence of the indole alkaloids, clearly separated the four tissues (stem, leaves, root and fruits) into distinct clusters. In summary, the DESI-MSI results indicated a clear tissue localization of the various indole alkaloids, in fruits, leaves and roots of R. tetraphylla. While it is not clear of how such localization is attained, we discuss the possible pathways of indole alkaloid biosynthesis and translocation during fruit and seedling development in R. tetraphylla. We also briefly discuss the functional significance of the spatial patterns in distribution of metabolites.
Collapse
Affiliation(s)
- P Mohana Kumara
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India; Center for Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, 560064, India.
| | - R Uma Shaanker
- School of Ecology and Conservation, Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, India
| | - T Pradeep
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
30
|
Casini A, Chang FY, Eluere R, King AM, Young EM, Dudley QM, Karim A, Pratt K, Bristol C, Forget A, Ghodasara A, Warden-Rothman R, Gan R, Cristofaro A, Borujeni AE, Ryu MH, Li J, Kwon YC, Wang H, Tatsis E, Rodriguez-Lopez C, O’Connor S, Medema MH, Fischbach MA, Jewett MC, Voigt C, Gordon DB. A Pressure Test to Make 10 Molecules in 90 Days: External Evaluation of Methods to Engineer Biology. J Am Chem Soc 2018; 140:4302-4316. [DOI: 10.1021/jacs.7b13292] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Arturo Casini
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Fang-Yuan Chang
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Raissa Eluere
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Andrew M. King
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Eric M. Young
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Quentin M. Dudley
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty Karim
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katelin Pratt
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Cassandra Bristol
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Anthony Forget
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Amar Ghodasara
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Robert Warden-Rothman
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Rui Gan
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Alexander Cristofaro
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Amin Espah Borujeni
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Min-Hyung Ryu
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Jian Li
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Yong-Chan Kwon
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - He Wang
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Evangelos Tatsis
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | - Sarah O’Connor
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Marnix H. Medema
- Bioinformatics Group, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Michael A. Fischbach
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Department of Bioengineering and Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, California 94305, United States
| | - Michael C. Jewett
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Christopher Voigt
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - D. Benjamin Gordon
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| |
Collapse
|
31
|
Zhang XN, Liu J, Liu Y, Wang Y, Abozeid A, Yu ZG, Tang ZH. Metabolomics Analysis Reveals that Ethylene and Methyl Jasmonate Regulate Different Branch Pathways to Promote the Accumulation of Terpenoid Indole Alkaloids in Catharanthus roseus. JOURNAL OF NATURAL PRODUCTS 2018; 81:335-342. [PMID: 29406718 DOI: 10.1021/acs.jnatprod.7b00782] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The medicinal plant Catharanthus roseus accumulates large numbers of terpenoid indole alkaloids (TIAs), including the pharmaceutically important vinblastine, vincristine, ajmalicine, and serpentine. The phytohormone ethylene or methyl jasmonate (MeJA) can markedly enhance alkaloid accumulation. The interaction between ethylene or MeJA in the regulation of TIA biosynthesis in C. roseus is unknown. Here, a metabolomics platform is reported that is based on liquid chromatography (LC) coupled with time-of-flight mass spectrometry to study candidate components for TIA biosynthesis, which is controlled by ethylene or MeJA in C. roseus. Multivariate analysis identified 16 potential metabolites mostly associated with TIA metabolic pathways and seven targeted metabolites, outlining the TIA biosynthesis metabolic networks controlled by ethylene or MeJA. Interestingly, ethylene and MeJA regulate the 2-C-methyl-d-erythritol 4-phosphate (MEP) and acetate-mevalonate (MVA) pathways through AACT and HMGS and through DXS, respectively, to induce TIA biosynthesis in C. roseus. Overall, both nontargeted and targeted metabolomics, as well as transcript analysis, were used to reveal that MeJA and ethylene control different metabolic networks to induce TIA biosynthesis.
Collapse
Affiliation(s)
- Xiao-Ning Zhang
- School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
- Department of Antibiotics, Heilongjiang Institute for Food and Drug Control , Harbin 150080, People's Republic of China
| | - Jia Liu
- Key Laboratory of Plant Ecology, Northeast Forestry University , Harbin 150040, People's Republic of China
| | - Yang Liu
- Key Laboratory of Plant Ecology, Northeast Forestry University , Harbin 150040, People's Republic of China
| | - Yu Wang
- Key Laboratory of Plant Ecology, Northeast Forestry University , Harbin 150040, People's Republic of China
| | - Ann Abozeid
- Key Laboratory of Plant Ecology, Northeast Forestry University , Harbin 150040, People's Republic of China
- Botany Department, Faculty of Science, Menoufia University , Shebin El-koom 32511, Egypt
| | - Zhi-Guo Yu
- School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Zhong-Hua Tang
- Key Laboratory of Plant Ecology, Northeast Forestry University , Harbin 150040, People's Republic of China
| |
Collapse
|
32
|
Gattu R, Bhattacharjee S, Mahato K, Khan AT. Electronic effect of substituents on anilines favors 1,4-addition totrans-β-nitrostyrenes: access toN-substituted 3-arylindoles and 3-arylindoles. Org Biomol Chem 2018; 16:3760-3770. [DOI: 10.1039/c8ob00736e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and an efficient method for the regioselective synthesis ofN-alkyl/aryl/H 3-arylindole derivatives fromN-substituted anilines andtrans-β-nitrostyrenes has been described using 10 mol% of bismuth(iii) triflate as a catalyst in acetonitrile at 80 °C.
Collapse
Affiliation(s)
- Radhakrishna Gattu
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039
- India
| | | | - Karuna Mahato
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039
- India
| | - Abu T. Khan
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039
- India
| |
Collapse
|
33
|
Powell JJ, Carere J, Sablok G, Fitzgerald TL, Stiller J, Colgrave ML, Gardiner DM, Manners JM, Vogel JP, Henry RJ, Kazan K. Transcriptome analysis of Brachypodium during fungal pathogen infection reveals both shared and distinct defense responses with wheat. Sci Rep 2017; 7:17212. [PMID: 29222453 PMCID: PMC5722949 DOI: 10.1038/s41598-017-17454-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/26/2017] [Indexed: 11/09/2022] Open
Abstract
Fusarium crown rot (FCR) of wheat and barley, predominantly caused by the fungal pathogen Fusarium pseudograminearum, is a disease of economic significance. The quantitative nature of FCR resistance within cultivated wheat germplasm has significantly limited breeding efforts to enhanced FCR resistance in wheat. In this study, we characterized the molecular responses of Brachypodium distachyon (Brachypodium hereafter) to F. pseudograminearum infection using RNA-seq to determine whether Brachypodium can be exploited as a model system towards better understanding of F. pseudograminearum-wheat interaction. The transcriptional response to infection in Brachypodium was strikingly similar to that previously reported in wheat, both in shared expression patterns of wheat homologs of Brachypodium genes and functional overlap revealed through comparative gene ontology analysis in both species. Metabolites produced by various biosynthetic pathways induced in both wheat and Brachypodium were quantified, revealing a high degree of overlap between these two species in metabolic response to infection but also showed Brachypodium does not produce certain defence-related metabolites found in wheat. Functional analyses of candidate genes identified in this study will improve our understanding of resistance mechanisms and may lead to the development of new strategies to protect cereal crops from pathogen infection.
Collapse
Affiliation(s)
- Jonathan J Powell
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, Queensland, 4067, Australia.
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), University of Queensland, St Lucia, 4067, Queensland, Australia.
| | - Jason Carere
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, Queensland, 4067, Australia
| | - Gaurav Sablok
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Sydney, Australia
| | - Timothy L Fitzgerald
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, Queensland, 4067, Australia
| | - Jiri Stiller
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, Queensland, 4067, Australia
| | - Michelle L Colgrave
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, Queensland, 4067, Australia
| | - Donald M Gardiner
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, Queensland, 4067, Australia
| | - John M Manners
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, Black Mountain, Australian Capital Territory, 2601, Australia
| | - John P Vogel
- Joint Genome Institute, United States Department of Energy, Walnut Creek, CA, 94598, USA
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), University of Queensland, St Lucia, 4067, Queensland, Australia
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, Queensland, 4067, Australia.
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), University of Queensland, St Lucia, 4067, Queensland, Australia.
| |
Collapse
|
34
|
Changes in structure and function of bacterial communities during coconut leaf vermicomposting. Antonie van Leeuwenhoek 2017; 110:1339-1355. [DOI: 10.1007/s10482-017-0894-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/27/2017] [Indexed: 12/21/2022]
|
35
|
Chen X, Gao C, Guo L, Hu G, Luo Q, Liu J, Nielsen J, Chen J, Liu L. DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. Chem Rev 2017; 118:4-72. [DOI: 10.1021/acs.chemrev.6b00804] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiulai Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liang Guo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qiuling Luo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jens Nielsen
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark
| | - Jian Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
36
|
Affiliation(s)
- Ganapathy Sivakumar
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, USA
| |
Collapse
|
37
|
[Dedicated to Prof. T. Okada and Prof. T. Nishioka: data science in chemistry]Classification of Alkaloid Compounds Based on Subring Skeleton (SRS) Profiling: On Finding Relationship of Compounds with Metabolic Pathways. JOURNAL OF COMPUTER AIDED CHEMISTRY 2017. [DOI: 10.2751/jcac.18.58] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Schläger S, Dräger B. Exploiting plant alkaloids. Curr Opin Biotechnol 2016; 37:155-164. [DOI: 10.1016/j.copbio.2015.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 12/20/2022]
|
39
|
Liu C, Zhou L, Jiang D, Gu Y. Multicomponent Reactions of Aldo-X Bifunctional Reagent α-Oxoketene Dithioacetals and Indoles or Amines: Divergent Synthesis of Dihydrocoumarins, Quinolines, Furans, and Pyrroles. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201500497] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Changhui Liu
- Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; 1037 Luoyu road Hongshan District Wuhan 430074 China
| | - Li Zhou
- Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; 1037 Luoyu road Hongshan District Wuhan 430074 China
| | - Dan Jiang
- Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; 1037 Luoyu road Hongshan District Wuhan 430074 China
| | - Yanlong Gu
- Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; 1037 Luoyu road Hongshan District Wuhan 430074 China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Lanzhou 730000 P.R. China
| |
Collapse
|
40
|
Pathania S, Bagler G, Ahuja PS. Differential Network Analysis Reveals Evolutionary Complexity in Secondary Metabolism of Rauvolfia serpentina over Catharanthus roseus. FRONTIERS IN PLANT SCIENCE 2016; 7:1229. [PMID: 27588023 PMCID: PMC4988974 DOI: 10.3389/fpls.2016.01229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 08/02/2016] [Indexed: 05/07/2023]
Abstract
Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites.
Collapse
Affiliation(s)
- Shivalika Pathania
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial ResearchPalampur, India
- *Correspondence: Shivalika Pathania
| | - Ganesh Bagler
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial ResearchPalampur, India
- Center for Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi)New Delhi, India
- Centre for Biologically Inspired System Science, Indian Institute of Technology JodhpurJodhpur, India
- Dhirubhai Ambani Institute of Information and Communication TechnologyGandhinagar, India
- Ganesh Bagler
| | - Paramvir S. Ahuja
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial ResearchPalampur, India
- Indian Institute of Science Education and Research (IISER) MohaliMohali, India
| |
Collapse
|
41
|
He Y, Yan H, Hua W, Huang Y, Wang Z. Selection and Validation of Reference Genes for Quantitative Real-time PCR in Gentiana macrophylla. FRONTIERS IN PLANT SCIENCE 2016; 7:945. [PMID: 27446172 PMCID: PMC4925707 DOI: 10.3389/fpls.2016.00945] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/14/2016] [Indexed: 05/03/2023]
Abstract
Real time quantitative PCR (RT-qPCR or qPCR) has been extensively applied for analyzing gene expression because of its accuracy, sensitivity, and high throughput. However, the unsuitable choice of reference gene(s) can lead to a misinterpretation of results. We evaluated the stability of 10 candidates - five traditional housekeeping genes (UBC21, GAPC2, EF-1α4, UBQ10, and UBC10) and five novel genes (SAND1, FBOX, PTB1, ARP, and Expressed1) - using the transcriptome data of Gentiana macrophylla. Common statistical algorithms ΔC t, GeNorm, NormFinder, and BestKeeper were run with samples collected from plants under various experimental conditions. For normalizing expression levels from tissues at different developmental stages, GAPC2 and UBC21 had the highest rankings. Both SAND1 and GAPC2 proved to be the optimal reference genes for roots from plants exposed to abiotic stresses while EF-1α4 and SAND1 were optimal when examining expression data from the leaves of stressed plants. Based on a comprehensive ranking of stability under different experimental conditions, we recommend that SAND1 and EF-1α4 are the most suitable overall. In this study, to find a suitable reference gene and its real-time PCR assay for G. macrophylla DNA content quantification, we evaluated three target genes including WRKY30, G10H, and SLS, through qualitative and absolute quantitative PCR with leaves under elicitors stressed experimental conditions. Arbitrary use of reference genes without previous evaluation can lead to a misinterpretation of the data. Our results will benefit future research on the expression of genes related to secoiridoid biosynthesis in this species under different experimental conditions.
Collapse
Affiliation(s)
- Yihan He
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
- School of Geography and Life Science, Qinghai Normal UniversityXining, China
| | - Hailing Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
| | - Wenping Hua
- Department of Life Sciences, Shaanxi XueQian Normal UniversityXi’an, China
| | - Yaya Huang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
| | - Zhezhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
- *Correspondence: Zhezhi Wang,
| |
Collapse
|