1
|
Arnett S, Chew SH, Leitner U, Hor JY, Paul F, Yeaman MR, Levy M, Weinshenker BG, Banwell BL, Fujihara K, Abboud H, Dujmovic Basuroski I, Arrambide G, Neubrand VE, Quan C, Melamed E, Palace J, Sun J, Asgari N, Broadley SA. Sex ratio and age of onset in AQP4 antibody-associated NMOSD: a review and meta-analysis. J Neurol 2024; 271:4794-4812. [PMID: 38958756 PMCID: PMC11319503 DOI: 10.1007/s00415-024-12452-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Aquaporin-4 (AQP4) antibody-associated neuromyelitis optica spectrum disorder (NMOSD) is an antibody-mediated inflammatory disease of the central nervous system. We have undertaken a systematic review and meta-analysis to ascertain the sex ratio and mean age of onset for AQP4 antibody associated NMOSD. We have also explored factors that impact on these demographic data. METHODS A systematic search of databases was conducted according to the PRISMA guidelines. Articles reporting sex distribution and age of onset for AQP4 antibody-associated NMSOD were reviewed. An initially inclusive approach involving exploration with regression meta-analysis was followed by an analysis of just AQP4 antibody positive cases. RESULTS A total of 528 articles were screened to yield 89 articles covering 19,415 individuals from 88 population samples. The female:male sex ratio was significantly influenced by the proportion of AQP4 antibody positive cases in the samples studied (p < 0.001). For AQP4 antibody-positive cases the overall estimate of the sex ratio was 8.89 (95% CI 7.78-10.15). For paediatric populations the estimate was 5.68 (95% CI 4.01-8.03) and for late-onset cases, it was 5.48 (95% CI 4.10-7.33). The mean age of onset was significantly associated with the mean life expectancy of the population sampled (p < 0.001). The mean age of onset for AQP4 antibody-positive cases in long-lived populations was 41.7 years versus 33.3 years in the remainder. CONCLUSIONS The female:male sex ratio and the mean age of onset of AQP4 antibody-associated NMOSD are significantly higher than MS. The sex ratio increases with the proportion of cases that are positive for AQP4 antibodies and the mean age of onset increases with population life expectancy.
Collapse
Affiliation(s)
- Simon Arnett
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia.
- Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia.
| | - Sin Hong Chew
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
- Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Unnah Leitner
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Jyh Yung Hor
- Department of Neurology, Penang General Hospital, George Town, Penang, Malaysia
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
- Department of Medicine, Divisions of Molecular Medicine & Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Michael Levy
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Brenda L Banwell
- Division of Child Neurology, Children's Hospital of Philadelphia, Department of Neurology and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Fukushima Medical University and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan
| | - Hesham Abboud
- Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | | | - Georgina Arrambide
- Neurology-Neuroimmunology Department, Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Veronika E Neubrand
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Chao Quan
- Department of Neurology, The National Centre for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Esther Melamed
- Dell Medical School, University of Texas, Austin, TX, USA
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, Oxford University Hospitals, Oxford, UK
- Department Clinical Neurology, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Jing Sun
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
- Institute of Integrated Intelligence and Systems, Nathan Campus, Griffith University, Nathan, QLD, Australia
- Rural Health Research Institute, Charles Sturt University, Bathurst, NSW, Australia
| | - Nasrin Asgari
- Department of Neurology, Slagelse Hospital, Slagelse, Denmark
- Institutes of Regional Health Research and Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Simon A Broadley
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
- Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| |
Collapse
|
3
|
Dhar N, Kumar M, Tiwari A, Samanta R, Bhadoria AS, Vivekanandhan S, Saxena S, Kumar N. Comparison of clinico-radiological profile, optical coherence tomography parameters, and outcome in MOGAD and Neuromyelitis optica spectrum disorder subtypes: A prospective observational study. J Neurosci Rural Pract 2023; 14:239-251. [PMID: 37181176 PMCID: PMC10174138 DOI: 10.25259/jnrp_8_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/04/2023] [Indexed: 02/25/2023] Open
Abstract
Objectives The objectives of the study were to compare the clinico-radiological profile, optical coherence tomography (OCT) parameters and outcome in Myelin Oligodendrocyte Glycoprotein-IgG-associated disorders (MOGAD) and Neuromyelitis Optica Spectrum disorder subtypes. Materials and Methods This prospective study involved collection of data regarding neurological assessment, neuroimaging, cerebrospinal fluid analysis, OCT parameters, treatment and outcome. Disease severity and disability were assessed using Expanded Disability Status Scale and modified Rankin scale. Patients were categorized into aquaporin-4 (AQP4+), MOGAD, and double negative (DN; both AQP4 and MOG negative). Results Among 31 patients included, 42% were AQP4+, 32.2% were MOGAD, and 25.7% were DN. The median age at onset was comparable (AQP4+ vs. MOGAD vs. DN = 28 years vs. 24.4 years vs. 31.5years; P = 0.31). Females predominated in AQP4+ compared to MOGAD group (76.9% vs. 30%; P = 0.02). Majority of patients (73.5%) had a relapsing course with a median of two (range = 1-9) relapses. Ninety-nine demyelinating events occurred: Transverse myelitis (TM) in 60/99 (60.6%), optic neuritis (ON) in 43/99 (43.4%), area postrema (AP) syndrome in 20/99 (20.1%), and optico-spinal syndrome in 10/99 (10.1%). ON was common in MOGAD than AQP4+ patients (58.6% vs. 32.1%; P = 0.03). Spinal cord and brain lesions on magnetic resonance imaging (MRI) were seen in 90.3% and 54.8% patients, respectively. A significantly higher proportion of AQP4+ patients showed longitudinally extensive transverse myelitis as compared to MOGAD group (69.2 % vs. 20 %; P = 0.04), specifically involving dorsal cord (92.3% vs. 50%; P = 0.02). MRI brain lesions, especially involving AP, was frequent in DN than MOGAD (47.1% vs. 6.9%; P = 0.003) and AQP4+ (47.1% vs. 18.9%; P = 0.03) patients. AQP4+ group showed significant nasal RNFL thinning on OCT (P = 0.04). Although 6-month good functional outcome was better in MOGAD than DN and AQP4+ (80% vs. 71.4% vs. 41.7%) groups, they were comparable (P = 0.13). Conclusion Nearly three-fourth of our patients showed a relapsing course, with TM being the most common clinical presentation. AQP4+ group showed female preponderance, frequent dorsal cord longitudinally extensive transverse myelitis, less frequent ON, and greater nasal RNFL thinning compared to MOGAD group. MRI brain lesions were more common in DN patients. All three groups exhibited good response to pulse corticosteroids and showed a comparable functional outcome at 6-month follow-up.
Collapse
Affiliation(s)
- Nikita Dhar
- Department of Neurology, AIIMS, Rishikesh, Uttarakhand, India
| | - Mritunjai Kumar
- Department of Neurology, AIIMS, Rishikesh, Uttarakhand, India
| | - Ashutosh Tiwari
- Department of Neurology, AIIMS, Rishikesh, Uttarakhand, India
| | - Ramanuj Samanta
- Department of Ophthalmology, AIIMS, Rishikesh, Uttarakhand, India
| | - Ajeet Singh Bhadoria
- Department of Community and Family Medicine, AIIMS, Rishikesh, Uttarakhand, India
| | - S. Vivekanandhan
- Department of Biochemistry, AIIMS, Rishikesh, Uttarakhand, India
| | - Sudhir Saxena
- Department of Radiology, AIIMS, Rishikesh, Uttarakhand, India
| | - Niraj Kumar
- Department of Neurology, AIIMS, Rishikesh, Uttarakhand, India
| |
Collapse
|
7
|
Khalilidehkordi E, Clarke L, Arnett S, Bukhari W, Jimenez Sanchez S, O'Gorman C, Sun J, Prain KM, Woodhall M, Silvestrini R, Bundell CS, Abernethy D, Bhuta S, Blum S, Boggild M, Boundy K, Brew BJ, Brown M, Brownlee W, Butzkueven H, Carroll WM, Chen C, Coulthard A, Dale RC, Das C, Fabis-Pedrini MJ, Fulcher D, Gillis D, Hawke S, Heard R, Henderson APD, Heshmat S, Hodgkinson S, Kilpatrick TJ, King J, Kneebone C, Kornberg AJ, Lechner-Scott J, Lin MW, Lynch C, Macdonell RAL, Mason DF, McCombe PA, Pereira J, Pollard JD, Ramanathan S, Reddel SW, Shaw C, Spies J, Stankovich J, Sutton I, Vucic S, Walsh M, Wong RC, Yiu EM, Barnett MH, Kermode AG, Marriott MP, Parratt J, Slee M, Taylor BV, Willoughby E, Brilot F, Vincent A, Waters P, Broadley SA. Relapse Patterns in NMOSD: Evidence for Earlier Occurrence of Optic Neuritis and Possible Seasonal Variation. Front Neurol 2020; 11:537. [PMID: 32612571 PMCID: PMC7308484 DOI: 10.3389/fneur.2020.00537] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/14/2020] [Indexed: 11/13/2022] Open
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) and multiple sclerosis (MS) show overlap in their clinical features. We performed an analysis of relapses with the aim of determining differences between the two conditions. Cases of NMOSD and age- and sex-matched MS controls were collected from across Australia and New Zealand. Demographic and clinical information, including relapse histories, were recorded using a standard questionnaire. There were 75 cases of NMOSD and 101 MS controls. There were 328 relapses in the NMOSD cases and 375 in MS controls. Spinal cord and optic neuritis attacks were the most common relapses in both NMOSD and MS. Optic neuritis (p < 0.001) and area postrema relapses (P = 0.002) were more common in NMOSD and other brainstem attacks were more common in MS (p < 0.001). Prior to age 30 years, attacks of optic neuritis were more common in NMOSD than transverse myelitis. After 30 this pattern was reversed. Relapses in NMOSD were more likely to be treated with acute immunotherapies and were less likely to recover completely. Analysis by month of relapse in NMOSD showed a trend toward reduced risk of relapse in February to April compared to a peak in November to January (P = 0.065). Optic neuritis and transverse myelitis are the most common types of relapse in NMOSD and MS. Optic neuritis tends to occur more frequently in NMOSD prior to the age of 30, with transverse myelitis being more common thereafter. Relapses in NMOSD were more severe. A seasonal bias for relapses in spring-summer may exist in NMOSD.
Collapse
Affiliation(s)
- Elham Khalilidehkordi
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Southport, QLD, Australia
| | - Laura Clarke
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Southport, QLD, Australia
| | - Simon Arnett
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Southport, QLD, Australia
| | - Wajih Bukhari
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Southport, QLD, Australia
| | - Sofia Jimenez Sanchez
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Southport, QLD, Australia
| | - Cullen O'Gorman
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Southport, QLD, Australia
| | - Jing Sun
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Southport, QLD, Australia
| | - Kerri M Prain
- Division of Immunology, HSQ Pathology Queensland Central Laboratory, Herston, QLD, Australia
| | - Mark Woodhall
- Nuffield Department of Clinical Neurosciences, John Radcliffe Infirmary, University of Oxford, Oxford, United Kingdom
| | - Roger Silvestrini
- Department of Immunopathology, Westmead Hospital, Westmead, NSW, Australia
| | - Christine S Bundell
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA, Australia
| | - David Abernethy
- Department of Neurology, Wellington Hospital, Newtown, United Kingdom
| | - Sandeep Bhuta
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Southport, QLD, Australia
| | - Stefan Blum
- Department of Neurology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Mike Boggild
- Department of Neurology, Townsville University Hospital, Douglas, QLD, Australia
| | - Karyn Boundy
- Department of Neurology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Bruce J Brew
- Peter Duncan Neurosciences Unit, Centre for Applied Medical Research and Department of Neurology, St Vincent's Hospital, University of New South Wales, Darlinghurst, NSW, Australia
| | - Matthew Brown
- Institute of Health Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Wallace Brownlee
- Department of Neurology, Auckland City Hospital, Grafton, New Zealand
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - William M Carroll
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, WA, Australia
| | - Celia Chen
- Flinders Medical Centre, Flinders University, Bedford Park, SA, Australia
| | - Alan Coulthard
- School of Medicine, Royal Brisbane and Women's Hospital, University of Queensland, Herston, QLD, Australia
| | - Russell C Dale
- Westmead Clinical School, Westmead Hospital, University of Sydney, Westmead, NSW, Australia
| | - Chandi Das
- Department of Neurology, Canberra Hospital, Garran, ACT, Australia
| | - Marzena J Fabis-Pedrini
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, WA, Australia
| | - David Fulcher
- Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW, Australia
| | - David Gillis
- Division of Immunology, HSQ Pathology Queensland Central Laboratory, Herston, QLD, Australia
| | - Simon Hawke
- Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW, Australia
| | - Robert Heard
- Westmead Clinical School, Westmead Hospital, University of Sydney, Westmead, NSW, Australia
| | | | - Saman Heshmat
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Southport, QLD, Australia
| | - Suzanne Hodgkinson
- South Western Sydney Medical School, Liverpool Hospital, University of New South Wales, Liverpool, NSW, Australia
| | - Trevor J Kilpatrick
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - John King
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Chris Kneebone
- Department of Neurology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Andrew J Kornberg
- School of Paediatrics, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | | | - Ming-Wei Lin
- Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW, Australia
| | | | | | - Deborah F Mason
- Department of Neurology, Christchurch Hospital, Christchurch, New Zealand
| | - Pamela A McCombe
- Centre for Clinical Research, Royal Brisbane and Women's Hospital, University of Queensland, Herston, QLD, Australia
| | - Jennifer Pereira
- School of Medicine, University of Auckland, Grafton, New Zealand
| | - John D Pollard
- Department of Neurology, Westmead Hospital, Westmead, NSW, Australia
| | - Sudarshini Ramanathan
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at the Children's Hospital, Westmead, NSW, Australia
| | - Stephen W Reddel
- Brain and Mind Research Institute, University of Sydney, Camperdown, NSW, Australia
| | - Cameron Shaw
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Judith Spies
- Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW, Australia
| | - James Stankovich
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Ian Sutton
- Department of Neurology, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Steve Vucic
- Westmead Clinical School, Westmead Hospital, University of Sydney, Westmead, NSW, Australia
| | - Michael Walsh
- Department of Neurology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Richard C Wong
- Division of Immunology, HSQ Pathology Queensland Central Laboratory, Herston, QLD, Australia
| | - Eppie M Yiu
- School of Paediatrics, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Michael H Barnett
- Brain and Mind Research Institute, University of Sydney, Camperdown, NSW, Australia
| | - Allan G Kermode
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, WA, Australia
| | - Mark P Marriott
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - John Parratt
- Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW, Australia
| | - Mark Slee
- Flinders Medical Centre, Flinders University, Bedford Park, SA, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Ernest Willoughby
- Department of Neurology, Auckland City Hospital, Grafton, New Zealand
| | - Fabienne Brilot
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at the Children's Hospital, Westmead, NSW, Australia
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, John Radcliffe Infirmary, University of Oxford, Oxford, United Kingdom
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, John Radcliffe Infirmary, University of Oxford, Oxford, United Kingdom
| | - Simon A Broadley
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Southport, QLD, Australia
| |
Collapse
|