1
|
Srivastava A, Kumar G, Kumar P, Srikrishna S, Chandra P, Singh VP. Thiazole-Based Silver Ion Sensor for Sequential Colorimetric Visualization of Epinephrine in the Brain Tissues of an Alzheimer's Disease Model of Mouse. ACS APPLIED BIO MATERIALS 2024; 7:3271-3282. [PMID: 38654595 DOI: 10.1021/acsabm.4c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A thiazole-based probe, N'-((2-aminothiazol-5-yl)methylene)benzohydrazide (TBH), has been efficiently synthesized and characterized for the selective and sensitive detection of the neurotransmitter epinephrine (EP). The sensing strategy is based on the use of TBH for sequential colorimetric sensing of Ag+ and EP via in situ formation of Ag nanoparticles (Ag NPs) from the TBH-Ag+ complex. The generated Ag NPs lead to a bathochromic shift in absorption maximum and a change in color of the solution from light brown to reddish brown. TBH-Ag+ shows remarkable selectivity toward EP versus other drugs, common cations, anions, and some biomolecules. Moreover, TBH-Ag+ has a low detection limit for EP at 1.2 nM. The coordination of TBH-Ag+ has been proposed based on Job's plot, Fourier transform infrared spectroscopy (FT-IR), high-resolution mass spectrometry (HRMS), 1H NMR titration, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray analysis (EDAX), and density functional theory (DFT) studies. The composition and morphology of the generated Ag NPs have been analyzed by XPS, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The proposed sensing mechanism for EP has been supported by XPS of Ag after the reaction. Further, the sensitivity of TBH-Ag+ toward EP in brain tissues of an Alzheimer's disease model of mouse has been evaluated. A thorough comparison was done for evaluation of the proposed method.
Collapse
Affiliation(s)
- Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Gautam Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prabhat Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - S Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Vinod P Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
2
|
Poletti S, Zanardi R, Mandelli A, Aggio V, Finardi A, Lorenzi C, Borsellino G, Carminati M, Manfredi E, Tomasi E, Spadini S, Colombo C, Drexhage HA, Furlan R, Benedetti F. Low-dose interleukin 2 antidepressant potentiation in unipolar and bipolar depression: Safety, efficacy, and immunological biomarkers. Brain Behav Immun 2024; 118:52-68. [PMID: 38367846 DOI: 10.1016/j.bbi.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024] Open
Abstract
Immune-inflammatory mechanisms are promising targets for antidepressant pharmacology. Immune cell abnormalities have been reported in mood disorders showing a partial T cell defect. Following this line of reasoning we defined an antidepressant potentiation treatment with add-on low-dose interleukin 2 (IL-2). IL-2 is a T-cell growth factor which has proven anti-inflammatory efficacy in autoimmune conditions, increasing thymic production of naïve CD4 + T cells, and possibly correcting the partial T cell defect observed in mood disorders. We performed a single-center, randomised, double-blind, placebo-controlled phase II trial evaluating the safety, clinical efficacy and biological responses of low-dose IL-2 in depressed patients with major depressive (MDD) or bipolar disorder (BD). 36 consecutively recruited inpatients at the Mood Disorder Unit were randomised in a 2:1 ratio to receive either aldesleukin (12 MDD and 12 BD) or placebo (6 MDD and 6 BD). Active treatment significantly potentiated antidepressant response to ongoing SSRI/SNRI treatment in both diagnostic groups, and expanded the population of T regulatory, T helper 2, and percentage of Naive CD4+/CD8 + immune cells. Changes in cell frequences were rapidly induced in the first five days of treatment, and predicted the later improvement of depression severity. No serious adverse effect was observed. This is the first randomised control trial (RCT) evidence supporting the hypothesis that treatment to strengthen the T cell system could be a successful way to correct the immuno-inflammatory abnormalities associated with mood disorders, and potentiate antidepressant response.
Collapse
Affiliation(s)
- Sara Poletti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy.
| | - Raffaella Zanardi
- Vita-Salute San Raffaele University, Milano, Italy; Mood Disorder Unit, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Alessandra Mandelli
- Clinical Neuroimmunology, Institute of Experimental Neurology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Veronica Aggio
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology, Institute of Experimental Neurology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Cristina Lorenzi
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | | | - Matteo Carminati
- Vita-Salute San Raffaele University, Milano, Italy; Mood Disorder Unit, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Elena Manfredi
- Vita-Salute San Raffaele University, Milano, Italy; Mood Disorder Unit, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Enrico Tomasi
- Hospital Pharmacy, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Sara Spadini
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Cristina Colombo
- Vita-Salute San Raffaele University, Milano, Italy; Mood Disorder Unit, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Hemmo A Drexhage
- Coordinator EU consortium MoodStratification, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Roberto Furlan
- Vita-Salute San Raffaele University, Milano, Italy; Clinical Neuroimmunology, Institute of Experimental Neurology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy
| |
Collapse
|
3
|
Krix S, Wilczynski E, Falgàs N, Sánchez-Valle R, Yoles E, Nevo U, Baruch K, Fröhlich H. Towards early diagnosis of Alzheimer's disease: advances in immune-related blood biomarkers and computational approaches. Front Immunol 2024; 15:1343900. [PMID: 38720902 PMCID: PMC11078023 DOI: 10.3389/fimmu.2024.1343900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Alzheimer's disease has an increasing prevalence in the population world-wide, yet current diagnostic methods based on recommended biomarkers are only available in specialized clinics. Due to these circumstances, Alzheimer's disease is usually diagnosed late, which contrasts with the currently available treatment options that are only effective for patients at an early stage. Blood-based biomarkers could fill in the gap of easily accessible and low-cost methods for early diagnosis of the disease. In particular, immune-based blood-biomarkers might be a promising option, given the recently discovered cross-talk of immune cells of the central nervous system with those in the peripheral immune system. Here, we give a background on recent advances in research on brain-immune system cross-talk in Alzheimer's disease and review machine learning approaches, which can combine multiple biomarkers with further information (e.g. age, sex, APOE genotype) into predictive models supporting an earlier diagnosis. In addition, mechanistic modeling approaches, such as agent-based modeling open the possibility to model and analyze cell dynamics over time. This review aims to provide an overview of the current state of immune-system related blood-based biomarkers and their potential for the early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Sophia Krix
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (b-it), University of Bonn, Bonn, Germany
| | - Ella Wilczynski
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Neus Falgàs
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Eti Yoles
- ImmunoBrain Checkpoint Ltd., Rechovot, Israel
| | - Uri Nevo
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Kuti Baruch
- ImmunoBrain Checkpoint Ltd., Rechovot, Israel
| | - Holger Fröhlich
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (b-it), University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Yang Q, Wang G, Zhang F. Role of Peripheral Immune Cells-Mediated Inflammation on the Process of Neurodegenerative Diseases. Front Immunol 2020; 11:582825. [PMID: 33178212 PMCID: PMC7593572 DOI: 10.3389/fimmu.2020.582825] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are characterized by progressive loss of selectively vulnerable neuronal populations, which contrasts with selectively static loss of neurons due to toxic or metabolic disorders. The mechanisms underlying their progressive nature remain unknown. To date, a timely and well-controlled peripheral inflammatory reaction is verified to be essential for neurodegenerative diseases remission. The influence of peripheral inflammation on the central nervous system is closely related to immune cells activation in peripheral blood. The immune cells activation participated in the uncontrolled and prolonged inflammation that drives the chronic progression of neurodegenerative diseases. Thus, the dynamic modulation of this peripheral inflammatory reaction by interrupting the vicious cycle might become a disease-modifying therapeutic strategy for neurodegenerative diseases. This review focused on the role of peripheral immune cells on the pathological progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Qiuyu Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Laboratory Animal Center and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Guoqing Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Laboratory Animal Center and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Laboratory Animal Center and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
5
|
Schwartz M, Peralta Ramos JM, Ben-Yehuda H. A 20-Year Journey from Axonal Injury to Neurodegenerative Diseases and the Prospect of Immunotherapy for Combating Alzheimer's Disease. THE JOURNAL OF IMMUNOLOGY 2020; 204:243-250. [PMID: 31907265 DOI: 10.4049/jimmunol.1900844] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
The understanding of the dialogue between the brain and the immune system has undergone dramatic changes over the last two decades, with immense impact on the perception of neurodegenerative diseases, mental dysfunction, and many other brain pathologic conditions. Accumulated results have suggested that optimal function of the brain is dependent on support from the immune system, provided that this immune response is tightly controlled. Moreover, in contrast to the previous prevailing dogma, it is now widely accepted that circulating immune cells are needed for coping with brain pathologies and that their optimal effect is dependent on their type, location, and activity. In this perspective, we describe our own scientific journey, reviewing the milestones in attaining this understanding of the brain-immune axis integrated with numerous related studies by others. We then explain their significance in demonstrating the possibility of harnessing the immune system in a well-controlled manner for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Michal Schwartz
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142; and .,Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Hila Ben-Yehuda
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
6
|
Parida R, Das S, Raju TR, Sathyaprabha TN. Human placental extract ameliorates cytokine and cytokine receptor signaling in the rat hippocampus upon Benzo[a]Pyrene exposure. J Chem Neuroanat 2019; 98:8-16. [PMID: 30862515 DOI: 10.1016/j.jchemneu.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/06/2019] [Accepted: 03/08/2019] [Indexed: 11/16/2022]
Abstract
Benzo[alpha]Pyrene (B[a]P) causes toxicity via Cytochrome P450 1A1 (CYP1A1) metabolic activity in the brain. Studies have shown that neuronal IL-2 and TNF-α are associated with the hippocampus development and regulation, but their association with the CYP1A1 activity remains unidentified. Limited action of human placental extract (HPE) in the activation of tissue repair and wound healing is known, but their role in B[a]P clearance in the hippocampus is not known so far. Our study has focused on two novel concepts: (1) association of CYP1A1 activity with the inflammatory response in the brain hippocampus and (2) role of HPE in the immunomodulatory mechanisms in the hippocampus upon B[a]P exposure at cytokine receptor and nuclear level. Intrathecal administration of different concentrations of B[a]P and HPE into male wistar rat pups has been conducted. An increased CYP1A1 activity was observed in the presence of 0.25 μM B[a]P alone but in case of HPE followed by 0.25 μM B[a]P, it was equal to control. Herein we report that 5 μl of 0.1 gm HPE followed by 0.25 μM B[a]P administration enabled down-regulation of IL-2 and TNF-α levels in the hippocampus thereby modulating TNFR2 and IL2Rγc signals via NF-κB activation. Besides, localization of IL-2, TNF-α, IL2Rγc, TNFR1 and TNFR2 in the CA1, CA3 and DG regions of the hippocampus are also depicted. Altogether, these findings will project the clinical importance of HPE in the neuroinflammation suppression in the hippocampus developed due to B[a]P toxicity.
Collapse
Affiliation(s)
- Rajeshwari Parida
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, Karnataka, India
| | - Sanjay Das
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, Karnataka, India
| | - Trichur R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, Karnataka, India
| | - Talakad N Sathyaprabha
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, Karnataka, India.
| |
Collapse
|
7
|
Fraga VG, Guimarães HC, Teixeira AL, Barbosa MT, Carvalho MG, Caramelli P, Gomes KB. Polymorphisms in cytokine genes influence cognitive and functional performance in a population aged 75 years and above. Int J Geriatr Psychiatry 2017; 32:1401-1410. [PMID: 27891653 DOI: 10.1002/gps.4627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To investigate the frequency of the cytokine single nucleotide polymorphisms (SNPs) tumor necrosis factor (TNF)-α -308G > A, tumor growth factor (TGF)-β1 codon +10C > T, TGF-β1 codon +25G > C, interleukin (IL)-10 -1082A > G, IL-10 -819C > T, IL-10 -592C > A, IL-6 -174G > C, and IFN-γ +874T > A in a sample of healthy and cognitively impaired elderlies and to verify the probable association between these SNPs and cognitive and functional performance of subjects aged 75 years and above. METHODS 259 Brazilian subjects were included, comprising 81 with cognitive impairment no dementia (CIND) and 54 demented seniors (together made up the cognitively impaired group, CI) and 124 age-matched and gender-matched cognitively healthy controls (CHS). The genotyping was performed by multiplex polymerase chain reaction. The cognitive performance was evaluated by Mini-Mental State Examination Brief Cognitive Screening Battery. The functional performance was accessed by Functional Activities Questionnaire. RESULTS The CClower genotype of TGF-β1 codon +25G > C was frequent in both patient groups. The TThigher genotype of INF-γ +874T > A was less frequent in the dementia group. IL-10 haplotypes of lower expression were more frequent among CIND and demented patients. In CI, individuals with genetic variants that produce higher expression of TGF-β1, INF-γ, and IL-10 showed better normalized cognitive performance. Additionally, the Alower allele of INF-γ +874T > A was related to worse functional performance in CI, while the Alower allele of TNF-α -308G > A was associated with better cognitive and functional scores in the CIND group. CONCLUSIONS Our findings suggest a potential role for certain cytokine SNPs in the development of CIND and dementia, which may influence the functional and cognitive performance of these patients. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Vanessa G Fraga
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Henrique C Guimarães
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Antônio L Teixeira
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maira T Barbosa
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria G Carvalho
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Caramelli
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina B Gomes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
8
|
Horgusluoglu E, Nudelman K, Nho K, Saykin AJ. Adult neurogenesis and neurodegenerative diseases: A systems biology perspective. Am J Med Genet B Neuropsychiatr Genet 2017; 174:93-112. [PMID: 26879907 PMCID: PMC4987273 DOI: 10.1002/ajmg.b.32429] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022]
Abstract
New neurons are generated throughout adulthood in two regions of the brain, the olfactory bulb and dentate gyrus of the hippocampus, and are incorporated into the hippocampal network circuitry; disruption of this process has been postulated to contribute to neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. Known modulators of adult neurogenesis include signal transduction pathways, the vascular and immune systems, metabolic factors, and epigenetic regulation. Multiple intrinsic and extrinsic factors such as neurotrophic factors, transcription factors, and cell cycle regulators control neural stem cell proliferation, maintenance in the adult neurogenic niche, and differentiation into mature neurons; these factors act in networks of signaling molecules that influence each other during construction and maintenance of neural circuits, and in turn contribute to learning and memory. The immune system and vascular system are necessary for neuronal formation and neural stem cell fate determination. Inflammatory cytokines regulate adult neurogenesis in response to immune system activation, whereas the vasculature regulates the neural stem cell niche. Vasculature, immune/support cell populations (microglia/astrocytes), adhesion molecules, growth factors, and the extracellular matrix also provide a homing environment for neural stem cells. Epigenetic changes during hippocampal neurogenesis also impact memory and learning. Some genetic variations in neurogenesis related genes may play important roles in the alteration of neural stem cells differentiation into new born neurons during adult neurogenesis, with important therapeutic implications. In this review, we discuss mechanisms of and interactions between these modulators of adult neurogenesis, as well as implications for neurodegenerative disease and current therapeutic research. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emrin Horgusluoglu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kelly Nudelman
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrew J. Saykin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
9
|
Wang Y, Cai B, Shao J, Wang TT, Cai RZ, Ma CJ, Han T, Du J. Genistein suppresses the mitochondrial apoptotic pathway in hippocampal neurons in rats with Alzheimer's disease. Neural Regen Res 2016; 11:1153-8. [PMID: 27630702 PMCID: PMC4994461 DOI: 10.4103/1673-5374.187056] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Genistein is effective against amyloid-β toxicity, but the underlying mechanisms are unclear. We hypothesized that genistein may protect neurons by inhibiting the mitochondrial apoptotic pathway, and thereby play a role in the prevention of Alzheimer’s disease. A rat model of Alzheimer’s disease was established by intraperitoneal injection of D-galactose and intracerebral injection of amyloid-β peptide (25–35). In the genistein treatment groups, a 7-day pretreatment with genistein (10, 30, 90 mg/kg) was given prior to establishing Alzheimer’s disease model, for 49 consecutive days. Terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling assay demonstrated a reduction in apoptosis in the hippocampus of rats treated with genistein. Western blot analysis showed that expression levels of capase-3, Bax and cytochrome c were decreased compared with the model group. Furthermore, immunohistochemical staining revealed reductions in cytochrome c and Bax immunoreactivity in these rats. Morris water maze revealed a substantial shortening of escape latency by genistein in Alzheimer’s disease rats. These findings suggest that genistein decreases neuronal loss in the hippocampus, and improves learning and memory ability. The neuroprotective effects of genistein are associated with the inhibition of the mitochondrial apoptotic pathway, as shown by its ability to reduce levels of caspase-3, Bax and cytochrome c.
Collapse
Affiliation(s)
- Yan Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province, China; Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui Province, China
| | - Biao Cai
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province, China; Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui Province, China
| | - Jing Shao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province, China; Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui Province, China
| | - Ting-Ting Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province, China; Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui Province, China
| | - Run-Ze Cai
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Chang-Ju Ma
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Tao Han
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Jun Du
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| |
Collapse
|
10
|
Echeverria V, Yarkov A, Aliev G. Positive modulators of the α7 nicotinic receptor against neuroinflammation and cognitive impairment in Alzheimer's disease. Prog Neurobiol 2016; 144:142-57. [DOI: 10.1016/j.pneurobio.2016.01.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 11/07/2015] [Accepted: 01/06/2016] [Indexed: 01/08/2023]
|
11
|
Mahmoudvand H, Sheibani V, Shojaee S, Mirbadie SR, Keshavarz H, Esmaeelpour K, Keyhani AR, Ziaali N. Toxoplasma gondii Infection Potentiates Cognitive Impairments of Alzheimer's Disease in the BALB/c Mice. J Parasitol 2016; 102:629-635. [PMID: 27513205 DOI: 10.1645/16-28] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This study tests the hypothesis that in chronic Toxoplasma gondii infection communication among immune cells promotes neuroinflammation through cytokine networks and potentiate cognitive impairments in BALB/c mice with Alzheimer's disease (AD). The animal model of Toxoplasma infection was established by the intraperitoneal inoculation of 20-25 tissue cysts from the Tehran strain of T. gondii . We injected amyloid-beta 1-42 peptide (Aβ1-42, 1 and 2 μl) into the hippocampus of BALB/c mice to establish an animal model of AD. The behavioral experiments such as spatial learning and memory were performed using the Morris water maze test. The mRNA levels of TNF-α, IL-1β, IFN-γ, and inducible nitric oxide synthase (iNOS) were examined by real-time PCR. We found that T. gondii infection caused AD-like symptoms and impaired learning and memory functions of the infected BALB/c mice. We also found that in Toxoplasma infection + Aβ1-42 (1 μl) group, T. gondii infection could potentiate AD in infected mice receiving subdoses of Aβ1-42 (1 μl) and caused considerable impairment in learning and memory functions similar to AD group. Comparison of the results demonstrated that mRNA levels of IL-1β, TNF-α, IFN-γ, and iNOS significantly (P < 0.001) increased in T. gondii + Aβ1-42 (1 μl) in comparison with the other tested groups. The obtained results showed that chronic T. gondii infection communication among immune cells promotes neuroinflammation through cytokine networks and induces pathological progression of AD in the mice brain, whereas the presence of neuroanatomical Toxoplasma tissue cysts in the brain could also affect the behavioral functions in T. gondii -infected mice.
Collapse
Affiliation(s)
- Hossein Mahmoudvand
- Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Vahid Sheibani
- Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Saeideh Shojaee
- Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Seyed Reza Mirbadie
- Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hossein Keshavarz
- Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Khadijeh Esmaeelpour
- Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Reza Keyhani
- Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Naser Ziaali
- Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
12
|
Wang F, Shen X, Li S, Chen L, Wang Y, Qin J, Zhou G, Peng Y, Feng X, Li R, Liang C. Splenocytes derived from young WT mice prevent AD progression in APPswe/PSENldE9 transgenic mice. Oncotarget 2016; 6:20851-62. [PMID: 26317549 PMCID: PMC4673234 DOI: 10.18632/oncotarget.4930] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/24/2015] [Indexed: 12/28/2022] Open
Abstract
Immunosenescence contributes to pathogenesis of Alzheimer's disease (AD) in the elderly. In this study, we explored the effects of young wild type (WT) splenocytes (ySCs) on Alzheimer's disease by transplanting ySCs into APPswe/PSENldE9 transgenic mice. Young WT splenocytes not only prevented AD, but also improved the spatial learning and memory of APPswe/PSENldE9 transgenic mice. Young WT splenocytes enhanced Aβ clearance, decreased astrogliosis and increased systemic growth differentiation factor 11 (GDF11) levels. Splenocytes derived from old AD mouse promoted AD. There was an increased number of regulatory T cells (Tregs) among old AD splenocytes. We suggest that alterations of GDF11 and Tregs are involved in AD progression and that rejuvenation of the immune system is a potential therapeutic strategy in AD.
Collapse
Affiliation(s)
- Fei Wang
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| | - Xueyan Shen
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| | - Shuping Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P. R. China.,Department of Radiology, PLA No. 455 Hospital, Shanghai, P. R. China
| | - Long Chen
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| | - Yanru Wang
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| | - Jie Qin
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| | - Guomin Zhou
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| | - Yuwen Peng
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| | - Xiaoyuan Feng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Ruixi Li
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| | - Chunmin Liang
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| |
Collapse
|