1
|
Cui Y, Yang G, Li H, Sun J, Liu X, Xia X. Reduced expression of NUPR1 alleviates epilepsy progression via attenuating ER stress. Biochem Biophys Res Commun 2024; 730:150365. [PMID: 38996786 DOI: 10.1016/j.bbrc.2024.150365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
Epilepsy is a neurological disorder characterized by recurring seizures. It is necessary to further understand the mechanisms of epilepsy in order to develop novel strategies for its prevention and treatment. Abnormal endoplasmic reticulum stress (ERS) activation is related to the pathogenesis of epilepsy. Nuclear protein 1, transcriptional regulator (NUPR1) is involved in ERS and it might play a role in epilepsy progression. In the present study, we generated an epileptic mouse model using pilocarpine induction. After 72 h of pilocarpine treatment, the expression of NUPR1 was increased in epileptic mice. Furthermore, NUPR1 knockdown reduced the number of spontaneous recurrent seizures and alleviated hippocampal damage in these mice. Interestingly, NUPR1 knockdown also reduced the protein expression levels of LC3, PINK1, and Parkin in the mitochondria, and decreased the PINK1 expression in hippocampus. Additionally, the expression of ERS-related proteins-cleaved caspase-12, ATF4, and CHOP-decreased in epileptic mice following NUPR1 knockdown. In vitro experiments showed that the absence of NUPR1 reduced the expression of ATF4, CHOP, and cleaved caspase-12 in hippocampal neurons and inhibited the neuron apoptosis. In all, our study suggested that NUPR1 maybe a potential molecular target for epilepsy therapy.
Collapse
Affiliation(s)
- Ying Cui
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.
| | - Guang Yang
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Hong Li
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Jianying Sun
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Xiaoman Liu
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Xiaohan Xia
- Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong, China
| |
Collapse
|
2
|
Cheng Q, Sun J, Zhong H, Wang Z, Liu C, Zhou S, Deng J. Research trends in lipid-lowering therapies for coronary heart disease combined with hyperlipidemia: a bibliometric study and visual analysis. Front Pharmacol 2024; 15:1393333. [PMID: 38828451 PMCID: PMC11140088 DOI: 10.3389/fphar.2024.1393333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024] Open
Abstract
Background Cardiovascular disease (CVD) poses a significant global health and economic challenge, with atherosclerosis being a primary cause. Over the past 40 years, substantial research has been conducted into the prevention and reversal of atherosclerosis, resulting in the development of lipid-lowering agents such as statins and fibrates. Despite the extensive literature and formulation of numerous therapeutic guidelines in this domain, a comprehensive bibliometric analysis of the current research landscape and trends has not been performed. This study aimed to elucidate the evolution and milestones of research into lipid-lowering treatments for coronary heart disease (CHD) in conjunction with hyperlipidemia through bibliometric analysis, offering insights into future directions for treatment strategies. Methods This study examined publications from 1986 to 2023 retrieved from the Web of Science database (Core Collection). Utilizing tools such as VOSviewer, Pajek, and CiteSpace, we analyzed publication and citation numbers, H-indexes, contributions by countries and institutions, authorship, journal sources, and keyword usage to uncover research trajectories and areas of focus. Results Our analysis of 587 publications revealed a recent surge in research output, particularly post-2003. The American Journal of Cardiology published the highest number of studies, with 40 articles, whereas Circulation received the highest number of citations (6,266). Key contributors included the United States, Japan, and China, with the United States leading in citation numbers and the H-index. Harvard University and Leiden University emerged as pivotal institutions, and Professors J. Wouter Jukema and Robert P. Giugliano were identified as leading experts. Keyword analysis disclosed five thematic clusters, indicating a shift in research towards new drug combinations and strategies, signaling future research directions. Conclusion The last 4 decades have seen a notable rise in publications on lipid-lowering therapies for CHD and hyperlipidemia, with the United States retaining world-leading status. The increase in international collaboration aids the shift towards research into innovative lipid-lowering agents and therapeutic approaches. PCSK9 inhibitors and innovative combination therapies, including antisense oligonucleotides and angiopoietin-like protein 3 inhibitors, provide avenues for future research, intending to maximize the safety and efficacy of treatment approaches.
Collapse
Affiliation(s)
- Quankai Cheng
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jingjing Sun
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Haicheng Zhong
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ziming Wang
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chang Liu
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Sheng Zhou
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jie Deng
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
3
|
Feng Y, Lang J, Sun B, Yan Z, Zhao Z, Sun G. Atorvastatin prevents endoplasmic reticulum stress-mediated apoptosis via the Nrf2/HO-1 signaling pathway in TBI mice. Neurol Res 2023; 45:590-602. [PMID: 36681943 DOI: 10.1080/01616412.2023.2170905] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Our present study evaluated the neuroprotection effects of atorvastatin by inhibiting TBI-induced ER stress, as well as the potential role of the Nrf2/HO-1 pathway in experimental TBI. METHODS First, the mice were divided into four groups:sham, TBI, TBI+Vehicle and TBI+atorvastatin groups. The mice received atorvastatin (10 mg/kg/day) through intragastric gavage once a day for 3 days before TBI. In addition, Nrf2 WT and Nrf2 knockout mice were randomly divided into four groups: Nrf2+/+ TBI, Nrf2+/+ TBI+atorvastatin, Nrf2-/- TBI, and Nrf2-/- TBI+atorvastatin groups. Several neurobehavioral parameters were assessed post-TBI using mNSS, brain edema and the rotarod test, and the brain was isolated for molecular and biochemical analysis conducted through TUNEL staining and western blotting. . RESULTS The results showed that atorvastatin treatment significantly improved neurological deficits, alleviated brain edema, and apoptosis caused by TBI. Western blotting analysis showed that atorvastatin significantly suppressed ER stress and its related apoptotic pathway after TBI, which may be associated with the further activation of the Nrf2/HO-1 pathway. However, compared with the Nrf2+/+ TBI+Vehicle group, Nrf2 deficiency further aggravated neurological deficits and promoted ER stress-mediated apoptosis induced by TBI. Interestingly, atorvastatin failed to improve neurological deficits but reversed apoptosis, and the loss of the beneficial properties of anti-ER stress in the Nrf2-/- TBI mice. . CONCLUSIONS The results indicated that atorvastatin improves the neurologic functions and protects the brain from injury in the Nrf2+/+ TBI mice, primarily by counteracting ER stress-mediated apoptosis, which may be achieved through the activation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Yan Feng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shi Jiazhuang, Hebei, China
| | - Jiadong Lang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shi Jiazhuang, Hebei, China
| | - Boyu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shi Jiazhuang, Hebei, China
| | - Zhongjie Yan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shi Jiazhuang, Hebei, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shi Jiazhuang, Hebei, China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shi Jiazhuang, Hebei, China
| |
Collapse
|
4
|
Zhang YP, Yang Q, Li YA, Yu MH, He GW, Zhu YX, Liu ZG, Liu XC. Inhibition of the Activating Transcription Factor 6 Branch of Endoplasmic Reticulum Stress Ameliorates Brain Injury after Deep Hypothermic Circulatory Arrest. J Clin Med 2023; 12:jcm12030814. [PMID: 36769462 PMCID: PMC9917384 DOI: 10.3390/jcm12030814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Neurological dysfunction is a common complication of deep hypothermic circulatory arrest (DHCA). Endoplasmic reticulum (ER) stress plays a role in neuronal ischemia-reperfusion injury; however, it is unknown whether it contributes to DHCA-induced brain injury. Here, we aimed to investigate the role of ER stress in a rat DHCA model and cell hypothermic oxygen-glucose deprivation reoxygenation (OGD/R) model. ER stress and apoptosis-related protein expression were identified using Western blot analysis. Cell counting assay-8 and flow cytometry were used to determine cell viability and apoptosis, respectively. Brain injury was evaluated using modified neurological severity scores, whereas brain injury markers were detected through histological examinations and immunoassays. We observed significant ER stress molecule upregulation in the DHCA rat hippocampus and in hypothermic OGD/R PC-12 cells. In vivo and in vitro experiments showed that ER stress or activating transcription factor 6 (ATF6) inhibition alleviated rat DHCA-induced brain injury, increased cell viability, and decreased apoptosis accompanied by C/EBP homologous protein (CHOP). ER stress is involved in DHCA-induced brain injury, and the inhibition of the ATF6 branch of ER stress may ameliorate this injury by inhibiting CHOP-mediated apoptosis. This study establishes a scientific foundation for identifying new therapeutic targets for perioperative brain protection in clinical DHCA.
Collapse
Affiliation(s)
- You-Peng Zhang
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Qin Yang
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Yi-Ai Li
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Ming-Huan Yu
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Guo-Wei He
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
- Department of Cardiac Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310027, China
- School of Pharmacy, Wannan Medical College, Wuhu 241001, China
- Department of Surgery, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yu-Xiang Zhu
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Zhi-Gang Liu
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
- Correspondence: (Z.-G.L.); (X.-C.L.); Tel.: +86-18822686088 (Z.-G.L.); +86-13821359285 (X.-C.L.)
| | - Xiao-Cheng Liu
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
- Correspondence: (Z.-G.L.); (X.-C.L.); Tel.: +86-18822686088 (Z.-G.L.); +86-13821359285 (X.-C.L.)
| |
Collapse
|
5
|
Keylani K, Arbab Mojeni F, Khalaji A, Rasouli A, Aminzade D, Karimi MA, Sanaye PM, Khajevand N, Nemayandeh N, Poudineh M, Azizabadi Farahani M, Esfandiari MA, Haghshoar S, Kheirandish A, Amouei E, Abdi A, Azizinezhad A, Khani A, Deravi N. Endoplasmic reticulum as a target in cardiovascular diseases: Is there a role for flavonoids? Front Pharmacol 2023; 13:1027633. [PMID: 36703744 PMCID: PMC9871646 DOI: 10.3389/fphar.2022.1027633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Flavonoids are found in natural health products and plant-based foods. The flavonoid molecules contain a 15-carbon skeleton with the particular structural construction of subclasses. The most flavonoid's critical subclasses with improved health properties are the catechins or flavonols (e.g., epigallocatechin 3-gallate from green tea), the flavones (e.g., apigenin from celery), the flavanones (e.g., naringenin from citrus), the flavanols (e.g., quercetin glycosides from berries, onion, and apples), the isoflavones (e.g., genistein from soya beans) and the anthocyanins (e.g., cyanidin-3-O-glucoside from berries). Scientific data conclusively demonstrates that frequent intake of efficient amounts of dietary flavonoids decreases chronic inflammation and the chance of oxidative stress expressing the pathogenesis of human diseases like cardiovascular diseases (CVDs). The endoplasmic reticulum (ER) is a critical organelle that plays a role in protein folding, post-transcriptional conversion, and transportation, which plays a critical part in maintaining cell homeostasis. Various stimuli can lead to the creation of unfolded or misfolded proteins in the endoplasmic reticulum and then arise in endoplasmic reticulum stress. Constant endoplasmic reticulum stress triggers unfolded protein response (UPR), which ultimately causes apoptosis. Research has shown that endoplasmic reticulum stress plays a critical part in the pathogenesis of several cardiovascular diseases, including diabetic cardiomyopathy, ischemic heart disease, heart failure, aortic aneurysm, and hypertension. Endoplasmic reticulum stress could be one of the crucial points in treating multiple cardiovascular diseases. In this review, we summarized findings on flavonoids' effects on the endoplasmic reticulum and their role in the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Arbab Mojeni
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Asma Rasouli
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Dlnya Aminzade
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Karimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nazanin Khajevand
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasrin Nemayandeh
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mohammad Ali Esfandiari
- Student Research Committee, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sepehr Haghshoar
- Faculty of Pharmacy, Cyprus International University, Nicosia, Cyprus
| | - Ali Kheirandish
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Erfan Amouei
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Science, Tehran, Iran
| | - Amir Abdi
- Student Research Committee, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Azizinezhad
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Afshin Khani
- Department of Cardiovascular Disease, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Niloofar Deravi,
| |
Collapse
|
6
|
Wang L, Liu Y, Zhang X, Ye Y, Xiong X, Zhang S, Gu L, Jian Z, Wang H. Endoplasmic Reticulum Stress and the Unfolded Protein Response in Cerebral Ischemia/Reperfusion Injury. Front Cell Neurosci 2022; 16:864426. [PMID: 35602556 PMCID: PMC9114642 DOI: 10.3389/fncel.2022.864426] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is an acute cerebrovascular disease characterized by sudden interruption of blood flow in a certain part of the brain, leading to serious disability and death. At present, treatment methods for ischemic stroke are limited to thrombolysis or thrombus removal, but the treatment window is very narrow. However, recovery of cerebral blood circulation further causes cerebral ischemia/reperfusion injury (CIRI). The endoplasmic reticulum (ER) plays an important role in protein secretion, membrane protein folding, transportation, and maintenance of intracellular calcium homeostasis. Endoplasmic reticulum stress (ERS) plays a crucial role in cerebral ischemia pathophysiology. Mild ERS helps improve cell tolerance and restore cell homeostasis; however, excessive or long-term ERS causes apoptotic pathway activation. Specifically, the protein kinase R-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE1) pathways are significantly activated following initiation of the unfolded protein response (UPR). CIRI-induced apoptosis leads to nerve cell death, which ultimately aggravates neurological deficits in patients. Therefore, it is necessary and important to comprehensively explore the mechanism of ERS in CIRI to identify methods for preserving brain cells and neuronal function after ischemia.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shudi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Zhihong Jian,
| | - Hongfa Wang
- Rehabilitation Medicine Center, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Hongfa Wang,
| |
Collapse
|
7
|
Yu L, Liu S, Zhou R, Sun H, Su X, Liu Q, Li S, Ying J, Zhao F, Mu D, Qu Y. Atorvastatin inhibits neuronal apoptosis via activating cAMP/PKA/p-CREB/BDNF pathway in hypoxic-ischemic neonatal rats. FASEB J 2022; 36:e22263. [PMID: 35303316 DOI: 10.1096/fj.202101654rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/19/2022] [Accepted: 03/08/2022] [Indexed: 12/16/2022]
Abstract
Neuronal apoptosis is one of the main pathological processes of hypoxic-ischemic brain damage (HIBD) and is involved in the development of hypoxic-ischemic encephalopathy (HIE) in neonates. Atorvastatin has been found to have neuroprotective effects in some nervous system diseases, but its role in regulating the pathogenesis of neonatal HIBD remains elusive. Thus, this study aimed to explore the effects and related mechanisms of atorvastatin on the regulation of neuronal apoptosis after HIBD in newborn rats. The rat HIBD model and the neuronal oxygen glucose deprivation (OGD) model were established routinely. Atorvastatin, cAMP inhibitor (SQ22536), and BDNF inhibitor (ANA-12) were used to treat HIBD rats and OGD neurons. Cerebral infarction, learning and memory ability, cAMP/PKA/p-CREB/BDNF signaling molecules, and apoptosis-related indicators (TUNEL, cleaved caspase-3, and Bax/Bcl2) were then examined. In vivo, atorvastatin reduced cerebral infarction, improved learning and memory ability, decreased the number of TUNEL-positive neurons, inhibited the expression of cleaved caspase-3 and Bax/Bcl2, and activated the cAMP/PKA/p-CREB/BDNF pathway in the cerebral cortex after HIBD. In vitro, atorvastatin also decreased the apoptosis-related indicators and activated the cAMP/PKA/p-CREB/BDNF pathway in neurons after OGD. Furthermore, inhibition of cAMP or BDNF attenuated the effect of atorvastatin on the reduction of neuronal apoptosis, suggesting that atorvastatin inhibits HIBD-induced neuronal apoptosis and alleviates brain injury in neonatal rats mainly by activating the cAMP/PKA/p-CREB/BDNF pathway. In conclusion, atorvastatin may be developed as a potential drug for the treatment of neonatal HIE.
Collapse
Affiliation(s)
- Luting Yu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Shixi Liu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Ruixi Zhou
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Hao Sun
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Xiaojuan Su
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Qian Liu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Shiping Li
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Junjie Ying
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Fengyan Zhao
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dezhi Mu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yi Qu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
8
|
Avan R, Sahebnasagh A, Hashemi J, Monajati M, Faramarzi F, Henney NC, Montecucco F, Jamialahmadi T, Sahebkar A. Update on Statin Treatment in Patients with Neuropsychiatric Disorders. Life (Basel) 2021; 11:1365. [PMID: 34947895 PMCID: PMC8703562 DOI: 10.3390/life11121365] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 12/04/2021] [Indexed: 02/06/2023] Open
Abstract
Statins are widely accepted as first-choice agents for the prevention of lipid-related cardiovascular diseases. These drugs have both anti-inflammatory and anti-oxidant properties, which may also make them effective as potential treatment marked by perturbations in these pathways, such as some neuropsychiatric disorders. In this narrative review, we have investigated the effects of statin therapy in individuals suffering from major depressive disorder (MDD), schizophrenia, anxiety, obsessive-compulsive disorder (OCD), bipolar disorder (BD), delirium, and autism spectrum disorders using a broad online search of electronic databases. We also explored the adverse effects of these drugs to obtain insights into the benefits and risks associated with their use in the treatment of these disorders. Lipophilic statins (including simvastatin) because of better brain penetrance may have greater protective effects against MDD and schizophrenia. The significant positive effects of statins in the treatment of anxiety disorders without any serious adverse side effects were shown in numerous studies. In OCD, BD, and delirium, limitations, and contradictions in the available data make it difficult to draw conclusions on any positive effect of statins. The positive effects of simvastatin in autism disorders have been evaluated in only a small number of clinical trials. Although some studies showed positive effect of statins in some neuropsychiatric disorders, further prospective studies are needed to confirm this and define the most effective doses and treatment durations.
Collapse
Affiliation(s)
- Razieh Avan
- Department of Clinical Pharmacy, Medical Toxicology and Drug Abuse Research Center (MTDRC), School of Pharmacy, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd 9453155166, Iran;
| | - Javad Hashemi
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9453155166, Iran;
| | - Mahila Monajati
- Department of Internal Medicine, Golestan University of Medical Sciences, Gorgan 4934174515, Iran;
| | - Fatemeh Faramarzi
- Clinical Pharmacy Research Center, Iran University of Medical Sciences, Tehran 1445613131, Iran;
| | - Neil C. Henney
- Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 5UX, UK;
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy;
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
9
|
Ye X, Wang X, Kong Y, Dai M, Han D, Liu Z. FRET Modulated Signaling: A Versatile Strategy to Construct Photoelectrochemical Microsensors for In Vivo Analysis. Angew Chem Int Ed Engl 2021; 60:11774-11778. [PMID: 33655593 DOI: 10.1002/anie.202101468] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Indexed: 12/20/2022]
Abstract
Microelectrode-based electrochemical (EC) and photoelectrochemical (PEC) sensors are promising candidates for in vivo analysis of biologically important chemicals. However, limited selectivity in complicated biological systems and poor adaptability to electrochemically non-active species restrained their applications. Herein, we propose the concept of modulating the PEC output by a fluorescence resonance energy transfer (FRET) process. The emission of energy donor was dependent on the concentration of target SO2 , which in turn served as the modulator of the photocurrent signal of the photoactive material. The employment of optical modulation circumvented the problem of selectivity, and the as-fabricated PEC microelectrode showed good stability and reproducibility in vivo. It can monitor fluctuations of SO2 levels in brains of rat models of cerebral ischemia-reperfusion and febrile seizure. More significantly, such a FRET modulated signaling strategy can be extended to diverse analytes.
Collapse
Affiliation(s)
- Xiaoxue Ye
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Xing Wang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Yao Kong
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Mengjiao Dai
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering c/o School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Dongxue Han
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering c/o School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Zhihong Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
10
|
Ye X, Wang X, Kong Y, Dai M, Han D, Liu Z. FRET Modulated Signaling: A Versatile Strategy to Construct Photoelectrochemical Microsensors for In Vivo Analysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaoxue Ye
- College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
| | - Xing Wang
- College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
| | - Yao Kong
- College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
| | - Mengjiao Dai
- Center for Advanced Analytical Science School of Chemistry and Chemical Engineering c/o School of Civil Engineering Guangzhou University Guangzhou 510006 China
| | - Dongxue Han
- Center for Advanced Analytical Science School of Chemistry and Chemical Engineering c/o School of Civil Engineering Guangzhou University Guangzhou 510006 China
| | - Zhihong Liu
- College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
| |
Collapse
|
11
|
Yang Y, Zhou Q, Gao A, Chen L, Li L. Endoplasmic reticulum stress and focused drug discovery in cardiovascular disease. Clin Chim Acta 2020; 504:125-137. [PMID: 32017925 DOI: 10.1016/j.cca.2020.01.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/28/2022]
Abstract
Endoplasmic reticulum (ER) is an intracellular membranous organelle involved in the synthesis, folding, maturation and post-translation modification of secretory and transmembrane proteins. Therefore, ER is closely related to the maintenance of intracellular homeostasis and the good balance between health and diseases. Endoplasmic reticulum stress (ERS) occurs when unfolded/misfolded proteins accumulate after disturbance of ER environment. In response to ERS, cells trigger an adaptive response called the Unfolded protein response (UPR), which helps cells cope with the stress. In recent years, a large number of studies show that ERS can aggravate cardiovascular diseases. ERS-related proteins expression in cardiovascular diseases is on the rise. Therefore, down-regulation of ERS is critical for alleviating symptoms of cardiovascular diseases, which may be used in the near future to treat cardiovascular diseases. This article reviews the relationship between ERS and cardiovascular diseases and drugs that inhibit ERS. Furthermore, we detail the role of ERS inhibitors in the treatment of cardiovascular disease. Drugs that inhibit ERS are considered as promising strategies for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yiyuan Yang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Qionglin Zhou
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Anbo Gao
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
12
|
Xu F, Zhang G, Yin J, Zhang Q, Ge MY, Peng L, Wang S, Li Y. Fluoxetine mitigating late-stage cognition and neurobehavior impairment induced by cerebral ischemia reperfusion injury through inhibiting ERS-mediated neurons apoptosis in the hippocampus. Behav Brain Res 2019; 370:111952. [DOI: 10.1016/j.bbr.2019.111952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/11/2019] [Accepted: 05/16/2019] [Indexed: 01/16/2023]
|
13
|
Yi S, Chen K, Zhang L, Shi W, Zhang Y, Niu S, Jia M, Cong B, Li Y. Endoplasmic Reticulum Stress Is Involved in Stress-Induced Hypothalamic Neuronal Injury in Rats via the PERK-ATF4-CHOP and IRE1-ASK1-JNK Pathways. Front Cell Neurosci 2019; 13:190. [PMID: 31130849 PMCID: PMC6509942 DOI: 10.3389/fncel.2019.00190] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/16/2019] [Indexed: 12/22/2022] Open
Abstract
Objective As a high-level nerve center that regulates visceral and endocrine activity, the hypothalamus plays an important role in regulating the body’s stress response. Previous studies have shown that stress can cause damage to hypothalamic neurons. The present study aimed to further clarify the mechanism of endoplasmic reticulum stress (ERS) involvement in hypothalamic neuronal injury. Methods A 7-day stressed rat model was established with daily restraining for 8 h and forced ice-water swimming for 5 min. The rats were randomly divided into control, stress, stress + GSK2606414 (PERK phosphorylation inhibitor), stress + KIRA6 (IRE1 phosphokinase activity inhibitor), GSK2606414, and KIRA6 groups. The pathological changes of hypothalamic neurons were observed by thionine staining. Expression of ERS proteins GRP78, ATF4, ASK1, JNK, and CHOP in the hypothalamic neurons were observed by immunohistochemical staining. The expression of JNK and CHOP mRNA in the hypothalamic neurons were observed by RNA in situ hybridization (RNA Scope) and the expression of related proteins and mRNA was semiquantitatively analyzed by microscopy-based multicolor tissue cytometry (MMTC). Results Thionine staining revealed that stress exposure resulted in edema, a lack of Nissl bodies, and pyknosis in hypothalamic neurons. Immunohistochemistry and RNA Scope showed that stress exposure significantly increased the expression of GRP78, ATF4, ASK1, CHOP, JNK, JNK mRNA, and CHOP mRNA. Treatment with PERK and IRE1 inhibitors attenuated pathological damage and downregulated the expression of ATF4, ASK1, JNK, CHOP, JNK mRNA, and CHOP mRNA. Conclusion Stress caused pathological changes in rat hypothalamic neurons. ERS PERK-ATF4-CHOP and IRE1-ASK1-JNK pathways were involved in the injury process.
Collapse
Affiliation(s)
- Shanyong Yi
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ke Chen
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Lihua Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Weibo Shi
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yaxing Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Shiba Niu
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Miaomiao Jia
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yingmin Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
14
|
Abstract
The endoplasmic reticulum (ER) is critical in protein processing and particularly in ensuring that proteins undergo their correct folding to exert their functionality. What is becoming increasingly clear is that the ER may undergo increasing stress brought about by nutrient deprivation, hypoxia, oxidized lipids, point mutations in secreted proteins, cellular differentiation or significant deviation from metabolic set points, and loss of Ca2+ homeostasis, with detrimental effects on ER-resident calcium-dependent chaperones, alone or in combination. This results in the unfolded protein response (UPR) that is a repair mechanism to limit the formation of newly damaged proteins until ER homeostasis is restored, though may result in increased cell death. ER stress has been shown to be implicated in a variety of diseases. Statins are well-known cholesterol-lowering drugs and have been extensively reported to possess beneficial cholesterol-independent effects in a variety of human diseases. This review focuses on the concept of ER stress, the underlying molecular mechanisms and their relationship to the pathophysiology and, finally, the role of statins in moderating ER stress and UPR.
Collapse
|
15
|
Wei B, Liu Y. Clinical significance and efficacy analysis of atorvastatin in the treatment of patients with cerebral infarction and aspiration pneumonia. Exp Ther Med 2018; 16:5144-5148. [PMID: 30542469 PMCID: PMC6257107 DOI: 10.3892/etm.2018.6829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/06/2018] [Indexed: 12/24/2022] Open
Abstract
Therapeutic efficacy of the use of oral atorvastatin in the treatment of patients with aspiration pneumonia complicated with cerebral infarction was investigated. Three hundred and fourteen cerebral infarction patients complicated with aspiration pneumonia who were admitted to the emergency department of Beijing Chaoyang Hospital Jingxi Branch from May 2015 to July 2017 were retrospectively analyzed. Among them, 160 patients who took atorvastatin were treated as observation group, and the remaining 154 patients were the control group. Patients were given basic treatment after diagnosis, and atorvastatin was also used for patients in the observation group. Venous blood was extracted to detect blood lipids and inflammatory cytokines. Patients were followed up for a period of six months, and the mortality was recorded. After treatment, blood lipid function and inflammatory factors in both groups were significantly improved (P<0.05). Hospital stay in the observation group (86.88%) was significantly shorter than that in the control group (76.33%) (P<0.01). After treatment, levels of TC, LDL, TG and CRP in the observation group (86.25%) were significantly lower than those in the control group (76.32%) (P=0.01). However, after treatment, level of HDL-C in the observation group (11.88%) was significantly higher than that in the control group (23.38%) (P=0.01). After treatment, levels of IL-6, IL-8 and TNF-α in the observation group were significantly lower than those in the control group (P<0.01). Total effective rate in the observation group was significantly higher than that of the control group (P=0.01). Total death rate in the observation group was significantly lower than that in the control group (P=0.02). In conclusion, atorvastatin is effective in the treatment of cerebral infarction patients complicated with aspiration pneumonia.
Collapse
Affiliation(s)
- Bing Wei
- Department of Emergency Medicine, Beijing Chaoyang Hospital Jingxi Branch, Capital Medical University, Beijing 100043, P.R. China
| | - Yugeng Liu
- Department of Emergency Medicine, Beijing Chaoyang Hospital Jingxi Branch, Capital Medical University, Beijing 100043, P.R. China
| |
Collapse
|
16
|
Liu C, Fu Q, Mu R, Wang F, Zhou C, Zhang L, Yu B, Zhang Y, Fang T, Tian F. Dexmedetomidine alleviates cerebral ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress dependent apoptosis through the PERK-CHOP-Caspase-11 pathway. Brain Res 2018; 1701:246-254. [PMID: 30201260 DOI: 10.1016/j.brainres.2018.09.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/14/2018] [Accepted: 09/06/2018] [Indexed: 01/07/2023]
Abstract
Dexmedetomidine (Dex) has the neuroprotective effect on cerebral ischemia-reperfusion injury (CIRI). But the mechanism is not yet clear. In this study, we established a model of middle cerebral artery occlusion (MCAO) and treated primary cortical neurons with oxygen glucose deprivation (OGD), followed by Dex treatment. Neurological protection of Dex was then assessed by neurological deficit score, brain edema, TTC staining, TUNEL assay, Western blot analysis, immunohistochemistry, and RT-PCR. The results showed that Dex significantly reduced the neurological deficit score, brain edema and cerebral infarction area due to CIRI. After Dex treatment, the expression levels of ER stress-related apoptosis pathway proteins (GRP78, p-PERK, CHOP and Cleaved-caspase-3) were significantly decreased and the apoptosis of brain cells was also significantly reduced. Immunohistochemistry showed that expression and nuclear localization of CHOP decreased significantly after the application of Dex. The downstream apoptotic protein caspase-11 mediated by PERK-CHOP was also markedly inhibited by Dex. In conclusion, our results suggested that Dex reduced ER stress-induced apoptosis after CIRI. Its protective mechanism may be related to PERK-CHOP-Caspase-11 dependent signaling pathway.
Collapse
Affiliation(s)
- Chong Liu
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Qiang Fu
- Department of Critical Care Medicine, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China.
| | - Rong Mu
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Fang Wang
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Chunjing Zhou
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Li Zhang
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Baojin Yu
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Yang Zhang
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Tao Fang
- Central Laboratory, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Fengshi Tian
- Department of Cardiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China.
| |
Collapse
|
17
|
Zhang T, Lu D, Yang W, Shi C, Zang J, Shen L, Mai H, Xu A. HMG-CoA Reductase Inhibitors Relieve Endoplasmic Reticulum Stress by Autophagy Inhibition in Rats With Permanent Brain Ischemia. Front Neurosci 2018; 12:405. [PMID: 29970982 PMCID: PMC6018104 DOI: 10.3389/fnins.2018.00405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/25/2018] [Indexed: 01/08/2023] Open
Abstract
Exploring and expanding the indications of common clinical drugs, such as statins, is important to improve the prognosis of patients with permanent cerebral infarction. It has been suggested that reversing the defects in cellular autophagy and ER stress with statin therapy may be a potential treatment option for reducing ischemic damage. Male Sprague-Dawley rats underwent permanent middle cerebral artery occlusion (PMCAO) by electrocoagulation surgery. Atorvastatin (ATV, 10 mg/kg/day) or vehicle was administered intraperitoneally. Rats were divided into the vehicle-treated (SHAM), ATV pretreatment for MCAO (AMCAO), and 3-methyladenine (3MA) combined with ATV pretreatment (3MAMCAO) groups. Magnetic resonance imaging, as well as immunohistochemical and Western blot assessments, were performed 24 h after MCAO. Each ATV-treated group demonstrated significant reductions in infarct volume compared with that in the vehicle-treated group at 24 h after MCAO, which was associated with autophagy reduction and ER stress attenuation in neurons and neovascularization. Next, Western blotting was used to detect the levels of the autophagy-related proteins LC3B and P62 and of ER stress pathway proteins. However, 3MA significantly partially inhibited the ER stress pathway via limiting the autophagic flux in the AMCAO group. In conclusion, our results imply that the neuroprotective function of ATV depends on autophagic activity to diminish ER stress-related cell apoptosis in rats with PMCAO and suggest that compounds that inhibit autophagic activity might reduce the neuroprotective effect of ATV after brain ischemia.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dan Lu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Wanyong Yang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Changzheng Shi
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiankun Zang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Lingling Shen
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Hongcheng Mai
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Biochemical targets of drugs mitigating oxidative stress via redox-independent mechanisms. Biochem Soc Trans 2017; 45:1225-1252. [PMID: 29101309 DOI: 10.1042/bst20160473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
Acute or chronic oxidative stress plays an important role in many pathologies. Two opposite approaches are typically used to prevent the damage induced by reactive oxygen and nitrogen species (RONS), namely treatment either with antioxidants or with weak oxidants that up-regulate endogenous antioxidant mechanisms. This review discusses options for the third pharmacological approach, namely amelioration of oxidative stress by 'redox-inert' compounds, which do not inactivate RONS but either inhibit the basic mechanisms leading to their formation (i.e. inflammation) or help cells to cope with their toxic action. The present study describes biochemical targets of many drugs mitigating acute oxidative stress in animal models of ischemia-reperfusion injury or N-acetyl-p-aminophenol overdose. In addition to the pro-inflammatory molecules, the targets of mitigating drugs include protein kinases and transcription factors involved in regulation of energy metabolism and cell life/death balance, proteins regulating mitochondrial permeability transition, proteins involved in the endoplasmic reticulum stress and unfolded protein response, nuclear receptors such as peroxisome proliferator-activated receptors, and isoprenoid synthesis. The data may help in identification of oxidative stress mitigators that will be effective in human disease on top of the current standard of care.
Collapse
|
19
|
Bayatmakoo R, Rashtchizadeh N, Yaghmaei P, Farhoudi M, Karimi P. Atorvastatin inhibits cholesterol-induced caspase-3 cleavage through down-regulation of p38 and up-regulation of Bcl-2 in the rat carotid artery. Cardiovasc J Afr 2017; 28:298-303. [PMID: 28498386 PMCID: PMC5730680 DOI: 10.5830/cvja-2017-005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 01/12/2017] [Indexed: 12/30/2022] Open
Abstract
AIM Atherosclerotic lesions in the carotid arteries lead to a broad range of cerebrovascular disorders such as vascular dementia and ischaemic stroke. Recent studies have verified the beneficial role of atorvastatin (AV) in atherosclerosis. Despite a large body of studies, the mechanisms underlying this effect have not been completely explained. In this study, several experiments were performed on atherosclerotic rat models to investigate the anti-inflammatory and anti-apoptotic effect of AV in the carotid artery. METHODS In this experimental study, 40 male Wistar rats (250 ± 25 g) were randomly divided into four groups: rats on a normal diet (ND; n = 10); a high-cholesterol diet (HD; n = 10); a high-cholesterol diet plus AV (HD + AV; n = 10) ; and the AV control group (AV; n = 10). Cleavage of caspase-3 protein, expression of B-cell lymphoma 2 (Bcl-2) as well as phosphorylation of p38 mitogen-activated protein kinase (MAPK) were determined by immunoblotting assay in the carotid artery homogenate. Plasma atherogenic indices, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) were measured by colorimetric assay at the end of the experiment. Plasma levels of oxidised LDL (oxLDL) were measured by sandwich enzyme-linked immunosorbent assay (ELISA). RESULTS After eight weeks of feeding with a high-cholesterol diet, an elevated level of oxLDL was observed in the plasma in the HD group compared with the ND group [214.42 ± 17.46 vs 69.13 ± 9.92 mg/dl (5.55 ± 0.45 vs 1.78 ± 0.26 mmol/l); p < 0.01]. AV administration significantly reduced oxLDL levels in the HD + AV compared to the HD group [126.52 ± 9.46 vs 214.42 ± 17.46 mg/dl (3.28 ± 0.25 vs 5.55 ± 0.45 mmol/l); p < 0.01]. Results also showed that compared with the HC group, the HC + AV group had lower levels of p38 phosphorylation (p < 0.05) and higher levels of Bcl-2 expression (p < 0.05). Lower levels of cleaved caspase-3 were observed in the HC + AV group in comparison with the HC group (p < 0.05). CONCLUSIONS The resultant data suggest that the anti-apoptotic effect of AV could be partially mediated by the pro-inflammatory protein p38 MAPK and the anti-apoptotic protein Bcl-2 in the rat carotid artery. Atorvastatin can therefore be considered a target drug in the prevention or development of atherosclerotic events.
Collapse
Affiliation(s)
- Roshanak Bayatmakoo
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Centre (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Centre (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Dai B, Yan T, Shen YX, Xu YJ, Shen HB, Chen D, Wang JR, He SH, Dong QR, Zhang AL. Edaravone protects against oxygen-glucose-serum deprivation/restoration-induced apoptosis in spinal cord astrocytes by inhibiting integrated stress response. Neural Regen Res 2017; 12:283-289. [PMID: 28400812 PMCID: PMC5361514 DOI: 10.4103/1673-5374.199006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We previously found that oxygen-glucose-serum deprivation/restoration (OGSD/R) induces apoptosis of spinal cord astrocytes, possibly via caspase-12 and the integrated stress response, which involves protein kinase R-like endoplasmic reticulum kinase (PERK), eukaryotic initiation factor 2-alpha (eIF2α) and activating transcription factor 4 (ATF4). We hypothesized that edaravone, a low molecular weight, lipophilic free radical scavenger, would reduce OGSD/R-induced apoptosis of spinal cord astrocytes. To test this, we established primary cultures of rat astrocytes, and exposed them to 8 hours/6 hours of OGSD/R with or without edaravone (0.1, 1, 10, 100 μM) treatment. We found that 100 μM of edaravone significantly suppressed astrocyte apoptosis and inhibited the release of reactive oxygen species. It also inhibited the activation of caspase-12 and caspase-3, and reduced the expression of homologous CCAAT/enhancer binding protein, phosphorylated (p)-PERK, p-eIF2α, and ATF4. These results point to a new use of an established drug in the prevention of OGSD/R-mediated spinal cord astrocyte apoptosis via the integrated stress response.
Collapse
Affiliation(s)
- Bin Dai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Department of Orthopedics, Binhai County People's Hospital, Binhai, Jiangsu Province, China
| | - Ting Yan
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yi-Xing Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - You-Jia Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hai-Bin Shen
- Department of Orthopedics, Binhai County People's Hospital, Binhai, Jiangsu Province, China
| | - Dong Chen
- Department of Orthopedics, Binhai County People's Hospital, Binhai, Jiangsu Province, China
| | - Jin-Rong Wang
- Department of Orthopedics, Binhai County People's Hospital, Binhai, Jiangsu Province, China
| | - Shuang-Hua He
- Department of Orthopedics, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Qi-Rong Dong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ai-Liang Zhang
- Department of Orthopedics, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| |
Collapse
|
21
|
Sui T, Ge DW, Yang L, Tang J, Cao XJ, Ge YB. Mitomycin C induces apoptosis in human epidural scar fibroblasts after surgical decompression for spinal cord injury. Neural Regen Res 2017; 12:644-653. [PMID: 28553347 PMCID: PMC5436365 DOI: 10.4103/1673-5374.205106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Numerous studies have shown that topical application of mitomycin C after surgical decompression effectively reduces scar adhesion. However, the underlying mechanisms remain unclear. In this study, we investigated the effect of mitomycin C on the proliferation and apoptosis of human epidural scar fibroblasts. Human epidural scar fibroblasts were treated with various concentrations of mitomycin C (1, 5, 10, 20, 40 μg/mL) for 12, 24 and 48 hours. Mitomycin C suppressed the growth of these cells in a dose- and time-dependent manner. Mitomycin C upregulated the expression levels of Fas, DR4, DR5, cleaved caspase-8/9, Bax, Bim and cleaved caspase-3 proteins, and it downregulated Bcl-2 and Bcl-xL expression. In addition, inhibitors of caspase-8 and caspase-9 (Z-IETD-FMK and Z-LEHD-FMK, respectively) did not fully inhibit mitomycin C-induced apoptosis. Furthermore, mitomycin C induced endoplasmic reticulum stress by increasing the expression of glucose-regulated protein 78, CAAT/enhancer-binding protein homologous protein (CHOP) and caspase-4 in a dose-dependent manner. Salubrinal significantly inhibited the mitomycin C-induced cell viability loss and apoptosis, and these effects were accompanied by a reduction in CHOP expression. Our results support the hypothesis that mitomycin C induces human epidural scar fibroblast apoptosis, at least in part, via the endoplasmic reticulum stress pathway.
Collapse
Affiliation(s)
- Tao Sui
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Da-Wei Ge
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lei Yang
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jian Tang
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiao-Jian Cao
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying-Bin Ge
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|